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Abstract

In engineering, geographical applications, scientific visualization, and bio-informatics, a variety of phenomena is described by a
large set of data modeled as the values of a scalar function f : M→ R defined on a surface M. A low quality of the discrete
representations of the input data, unstable computations, numerical approximations, and noise might produce functions with a high
number of critical points. In this context, we propose an algorithmic framework for smoothing an arbitrary scalar function, while
simplifying its redundant critical points and preserving those that are mandatory for its description. From our perspective, the
critical points of f are a natural choice to guide the approximation scheme; infact, they usually represent relevant information about
the behavior of f or the shape itself. To address the aforementioned aims, we compute a smooth approximation f̃ : M→ R of f
whose set of critical points contains those that have been preserved by the simplification process. The idea behind the proposed
approach is to combine smoothing techniques, critical points, and spectral properties of the Laplacian matrix. Inserting constraints
in the smoothing of f allows us to overcome the traditional error-driven approximation of f , which does not provide constraints on
the preserved topological features. Finally, the computational cost of the proposed approach is O(n log n), where n is the number
of vertices of M.

Key words: Signal and function smoothing, critical points, Laplacian matrix, shape analysis, Morse complex, level sets.

1. Introduction

Scalar functions are extensively used to model data in engi-
neering, geographical applications, scientific visualization, and
bio-informatics. In each of these research fields, a variety of
phenomena is described by a large set of data modeled as the
values of a scalar function defined on a surface. These val-
ues can be acquired from the real world (e.g., terrain models in
GIS) or generated by solving simulation problems (e.g., fluid
dynamics, heat equation [3, 18]).

In the aforementioned contexts, an arbitrary scalar function
f : M→ R, defined on a 2-manifold surface M, is usually as-
sociated to a high differential noise, which is due to a low qual-
ity of the discrete representations of the input data, unstable
computations, and numerical approximations. Here, as differ-
ential noise of f we refer to a high number of critical points,
which have very close positions or f -values, include multiple
saddles, and generally do not verify the Euler formula. From
our perspective, the critical points of f are a natural choice to
guide the approximation and smoothing of f ; infact, they usu-
ally represent relevant information about its behavior. Com-
puting and controlling the distribution of the critical points of
smooth approximations of noisy maps is also crucial for quadri-
lateral remeshing [8, 18], shape [6, 9, 10] and molecular [17]
analysis. In the following, as (discrete) smooth approximation
of f we refer to any approximation of f with regular (i.e., un-
noisy) level sets and a generally low number of non-clustered
critical points.
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In the literature (see Section 2.2), there are two main ap-
proaches to discarding irrelevant critical points. The former is
to cancel pairs of critical points [6, 9, 10], relying on their topo-
logical structures as captured by the Morse complex. At the end
of the procedure, the Morse complex is no more associated to
a corresponding scalar function. The latter works in the func-
tion space and applies isotropic Laplacian filters [8, 18, 24] or
bilateral smoothing operators to the function itself [15]. Here,
the main drawback of these techniques is the lack of control
on the final number and distribution of the critical points of the
smoothed function, which also depend on the number of times
the filter has been applied.

In this context, we present a novel framework for simplify-
ing the critical points of a noisy scalar function f : M → R
and computing a smooth approximation f̃ : M→ R of f con-
strained to the f -values at a set C of feature points for f . The
set C is defined by evaluating the significance of the critical
points through a novel simplification procedure, which consid-
ers the variation of the f -values on M. Then, we compute a
smooth approximation f̃ of f using the f -values at C as inter-
polating or least-squares constraints. Finally, the computational
cost of the proposed framework is O(n log n), where n is the
number of vertices of M.

Even though we mainly use the critical points of f to guide its
smoothing and approximation, other choices of the set of fea-
ture points are possible without changing the overall structure
of the proposed approach. For instance, the feature points can
be defined through the analysis of the f -values based on clus-
tering techniques (e.g., principal component analysis, k-means
clustering) or guided by a-priori information on f or the appli-
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cation context.
The idea behind our approach is to combine the least-squares

approximation [12] and Tikhonov regularization [4, 26] with
the smoothing and spectral properties of the Laplace-Beltrami
operator. By adapting Tikhonov regularization to the case of
scalar functions defined on surfaces, we introduce an uncon-
strained smoothing algorithm based on the minimization of a
functional F . Here, F is a trade-off between approximation ac-
curacy and smoothness of the solution. This choice also allows
us to easily insert constraints in the smoothing process and to
control the number of preserved critical points. The constrained
and unconstrained smoothing reduces to solving a sparse linear
system with direct or iterative techniques [12]. In case of in-
terpolating constraints, the set of critical points of f̃ contains C
plus a number of additional and well-behaved maxima, minima,
and saddles, which is low with respect to those of f .

With our approach, the points of C are preserved in f̃ with-
out diffusing them. On the contrary, the isotropy of the Lapla-
cian matrix indiscriminately smooths noise and topological fea-
tures [8, 18, 24] without constraints on their relocations or can-
cellations. Constrained least-squares techniques [22] have been
efficiently used to define compression schemes based on the se-
lection of a set of anchors. While in [22] the choice of the con-
strained vertices is guided by the final approximation accuracy
of the reconstructed surface, in this work the emphasis is on the
preservation of the differential properties of f through the sim-
plification of its critical points. Figure 1 gives an overview of
the proposed approach.

The paper is organized as follows: in Section 2, we introduce
the theoretical background on the representation and differen-
tial analysis of an arbitrary scalar function f defined on triangu-
lated surfaces. Section 3 introduces a novel method to robustly
classify and simplify the critical points of f . In Section 4, we
describe two approaches to smoothing a scalar function using
interpolating or least-squares constraints. Section 5 discusses
the main properties of the proposed approach and Section 6
concludes the paper.

2. Related work

We briefly introduce the theoretical background on the
triangle-based representation (see Section 2.1), simplification
and smoothing (see Section 2.2) of scalar functions defined on
triangulated surfaces.

2.1. Discrete scalar functions defined on triangulated surfaces
We represent a 2-manifold surface as a triangle mesh

M := (P, T ) where P := {pi, i = 1, . . . , n} is a set of n ver-
tices and T is an abstract simplicial complex that contains the
adjacency information about M. The piecewise linear func-
tion f : M→ R is defined by linearly interpolating the val-
ues (f(pi))n

i=1 of f at the vertices by using barycentric coor-
dinates. Finally, we assume that f is a general scalar function;
that is, f(pi) 6= f(pj), for each edge (i, j) of M.

The analysis of f : M→ R is usually based on the study of
its level sets γα := {p ∈M : f(p) = α}; as α varies, the be-
havior of f is mainly conveyed by the critical points of f at

which the level sets split, merge, and join. In the following,
we refer to the critical points of f as the topological features
of f . Assuming that f is general, the critical points of f occur
only at the mesh vertices. These points correspond to the max-
ima, minima, and saddles of f and are computed by analyzing
the distribution of the f -values on the neighborhoods of each
vertex [2]. For more details on the computation of the critical
points, we refer the reader to [5] and Section 3.

Since the critical points and shape of the level sets
are independent of positive re-scalings of the function val-
ues, we assume that the values of the piecewise lin-
ear function f have been normalized in such a way
that Image(f) := {f(p), p ∈M} is the interval [0, 1].
Among several error metrics, we use the L∞-error be-
tween two functions f1, f2 : M→ R, which is defined as
‖ f1 − f2 ‖∞:= maxi=1,...,n{|f1(pi)− f2(pi)|}.

2.2. Simplification and smoothing of scalar functions

Given a scalar function f with a large number of critical
points associated to a low variation of the f -values, [6] defines
a topological hierarchy for f that is constructed by perform-
ing a progressive simplification of the Morse complex F of f
through the cancellation of pairs of critical points. Then, the
critical points are paired by visiting M with respect to the re-
ordering of its vertices according to increasing values of f . The
importance weight associated to the pair (pi,pj) is measured
as the persistence of pi, pj , that is, |f(pi)− f(pj)|. The lo-
cal updates of the complex are performed by iteratively remov-
ing those pairs with the lowest persistence and reconnecting the
neighbors of the removed nodes. Each node removal affects the
number and configuration of the critical points of F without
changing f . Therefore, the simplification provides a hierarchy
for f where each Morse complex F (k) is not associated to a
corresponding scalar function f (k) on M.

Recently, [10] has proposed a technique that replaces f with
a new function f̃ that has the same points of persistency of f
higher than a given threshold ε and the L∞-error between f
and f̃ is lower than ε. The ε-simplification of the structure
of f and the construction of f̃ are based on an iterative process,
which cancels minimum-saddle pairs by sweeping the vertices
from bottom to top and lower the saddles that belong to a pair
of persistency lower than ε.

An alternative way is to consider a polynomial transfer func-
tion ϕ and define the Laplacian low-pass filter f → ϕ(L)f [18,
24]. Here, L ∈ Rn×n is the Laplacian matrix associated to M
and f := (f(pi))n

i=1 ∈ Rn×1 is the vector of function values at
the mesh vertices (see Section 4.1). Small powers of L attenu-
ate higher frequencies of f and the definition of the Laplacian
filter resembles the convolution operator.

Finally, [15] introduces a bilateral filter operator, which up-
dates f(pi) using a weighted average sσ(pi) of the func-
tion differences between its neighboring vertices and pi. For
i = 1, . . . , n, this value is defined as

sσ(pi) :=

∑
pj∈N (pi,σ) fijϕσ1(dij)ϕσ2(fij)∑
pj∈N (pi,σ) ϕσ1(dij)ϕσ2(fij)

,
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(a) (b) (c) (d) (e) (f)

Figure 1: Level sets and critical points (a,b) of an input scalar function (m = 174, M = 180, s = 370) and its smoothed version achieved by applying the
Tikhonov regularization without (c,d) (m = 44, M = 31, s = 91) and (e,f) with (m = 65, M = 23, s = 104) least-squares constraints. In both cases, the
L∞-approximation error is lower than 1%. Reb, black, and green points locate the m minima, M maxima, and s saddle points of the corresponding function.

with weights dij := ‖pj − pi‖2 and fij := |f(pj)− f(pi)|.
The function ϕσ(t) := e−

t2
2σ is the Gaussian kernel of sup-

port σ and N (pi, σ) is the set of vertices of M that fall inside
the sphere of center pi and radius σ. Once the value sσ(pi)
has been computed, each function value f(pi) is updated
to f̃(pi) := f(pi) + sσ(pi) and the iteration proceeds until
a chosen number k of steps is reached. This approach requires
to set the parameters σ1, σ2, σ, k and does not have a direct
control on the final number of preserved critical points. The
methods in [9, 10, 15] take O(n log n)-time and [24] is linear
in the number n of vertices of M.

3. Simplifying the critical points of scalar functions

In the following, we introduce a novel method to ro-
bustly classify and simplify the critical points of a function
f : M→ R. The idea behind our simplification of the criti-
cal points is to modify the definition in [2], which classifies the
vertices of M on the base of the distribution of the f -values
on their local neighborhoods. We propose to check the changes
of the sign of f along the edges of the 1-star of each vertex
with respect to a positive threshold δ. Indeed, the δ-sensitive
sign of f along the oriented edge (pi,pj) is defined as positive
if f(pj)− f(pi) > δ; in this case, we write f(pj) >δ f(pi).
Similarly, the δ-sensitive sign of f along the previous edge is
considered as negative if f(pj)− f(pi) < −δ; hence, we write
f(pj) <δ f(pi). Formally, if we let

Lk(i) := {j1, . . . , jk ∈ N(i) : (jl, jl+1)k
s=1 edges of M}

be the link of i, then the (δ-sensitive) upper link is defined as

Lk+(i) := {jl ∈ Lk(i) : f(pjl
) >δ f(pi)},

and the (δ-sensitive) mixed link as

Lk±(i) := {jl ∈ Lk(i) : f(pjl+1) >δ f(pi) >δ f(pjl
) or

f(pjl+1) <δ f(pi) <δ f(pjl
)},

where jk+1 := j1. For the definition of the lower link, we re-
place the inequality “>δ” with “<δ” in the definition of the up-
per link. If Lk+(i) = ∅ or Lk−(i) = ∅, then pi is a δ-sensitive
maximum or minimum, respectively. If the cardinality of the
set Lk±(i) is 2+2mi, then pi is classified as a saddle of multi-
plicity mi ≥ 1. We note that if δ = 0, then we get the definition
introduced in [2]. Under the assumption that M is a closed
surface and δ = 0, the Euler formula

χ(M) = m− s + M, g =
1
2
(2− χ(M)),

gives the link between the critical points of (M, f) and the Eu-
ler characteristic χ(M) of M [2, 16]. Here, m and M is the
number of minima and maxima; the s :=

∑
pi saddle mi saddle

points of f are counted with their multiplicity mi. If δ is not
null, then the preserved critical points no necessarily satisfy the
Euler formula. Indicating with Cδ the critical points of f that
are preserved after the simplification with respect to δ, we get
that δ > δ

′
implies Cδ ⊆ Cδ′ and the set {Cδ}δ gives a hierar-

chy of simplified critical points. Increasing δ, a larger num-
ber of critical points of f is simplified. In our implementa-
tion, the parameter δ is proportional to the maximum variation
max(i,j) edge{|f(pi)− f(pj)|} of the f -values along the edges
of M. Note that the computational cost of the simplification
procedure is O(n), where n is the number of vertices. Infact,
we need to visit all the 1-stars of M and compare the f -values
along their edges. Examples of simplification of the critical
points are shown in Figure 2 and 3.

4. Smoothing scalar functions

This section describes two approaches to smooth a scalar
function f through the properties of the Laplace-Beltrami op-
erator (see Section 4.1). The first one uses the Tikhonov regu-
larization to smooth arbitrary signals and treat all the function
values with the same degree of importance (see Section 4.2).
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(a)

(b) δ = 0.01

(c) δ = 0.02

Figure 2: Simplification of the critical points with respect to a given threshold δ.
(a) Evolution of the number of critical points (y-axis) with respect to a different
threshold δ (x-axis): red, blue, and black curves represent the number of max-
ima, minima, and saddle points at each step. (b,c) Critical points preserved by
the simplification.

We also replace the least-squares error of the Tikhonov regular-
ization measured by the Euclidean norm with a metric induced
by the geometry of the input surface. The second approach
(see Section 4.3) computes a smooth approximation of f con-
strained to interpolate or approximate the values attained at a
set C of feature points. As C, we consider all the critical points
of f or those that are preserved by the δ-simplification. Finally,
we analyze the approximation error between the input and the
smoothed function.

4.1. Smoothing operators for scalar functions
The smoothness of a scalar function f : M→ R is defined

by imposing that the value of f at a vertex differs as little as pos-
sible from the f -values on its neighbors. Therefore, a smooth-
ing operator [24] assigns to each value f(pi) the difference be-
tween f(pi) and the weighted average of its neighbors, that is,

f(pi)−
∑

j∈N(i) wijf(pj)∑
j∈N(i) wij

, i = 1, . . . , n,

with wij real weight. The 1-star of pi is defined as the set
N(i) := {j : (i, j) edge} of the vertices adjacent to i. The co-

Figure 3: Simplification of the critical points with respect to a different thresh-
old (x-axis), which increases from left to right; the initial set of critical points
is shown in the left image.

efficients wij have been computed by minimizing the Dirichlet
energy [7, 19] and the mean-value theorem [11]. In our tests,
we used wij := (cot αij + cot βij)/2 [19], where αij , βij are
the angles opposite to the edge (i, j). These weights give
a sparse and symmetric Laplacian matrix; finally, the mean-
value [11] and normalized cotangent weights [7] are possible
alternatives. Indicating with f := (f(pi))n

i=1 ∈ Rn×1 the ar-
ray of the f -values at the mesh vertices of M, the Laplace-
Beltrami operator can be approximated as f → Lf , where
L := (lij)ij ∈ Rn×n

lij :=





∑
k 6=i wik i = j,

−wij (i, j) edge,
0 else,

is the graph Laplacian matrix. For more details on the Lapla-
cian matrix and its applications, we refer the reader to sur-
veys on mesh filtering [25], differential coordinates [21, 23],
spectral methods [29] for mesh processing and shape analysis.
Since f = const implies that S(f) := 〈f , Lf〉2 := fT Lf = 0,
the value S(f) provides a measure of the smoothness of f . In-
fact, if S(f) ≈ 0 then the deviation of the f -values at each ver-
tex from the average of its neighboring values is negligeable.
We refer to S(f) as the Sobolev semi-norm of f .

4.2. Smoothing scalar functions via Tikhonov regularization

Let K : H → R be an operator defined on a linear space H
of functions, e.g. the space of square-integrable functions
on a 2-manifold or a Reproducing Kernel Hilbert Space [1].
Tikhonov regularization [4, 26] is commonly used to transform
the ill-posed problem Kf = g, f ∈ H, in a well-posed one;
to this end, the regularized solution is computed by minimizing
the functional

F(f) := ε‖Kf − g‖2H + ‖Lf‖2H, f ∈ H,

on the linear spaceH. Here, L is a regularization operator (e.g.,
the derivatives of a given order) and ε is a positive constant
which defines the trade-off between the approximation error
‖Kf − g‖H and the smoothness energy ‖Lf‖H.
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(a) f (b) (c)

(d) f̃ (e) (f) (g)

Figure 4: (a) Level sets, (b) critical points, and (c) Morse Complex of a scalar function f with m = 28 minima, M = 28 maxima, and s = 58 saddle points. The
function f is smoothed using the Tikhonov regularization. (b) The smooth function f̃ has m = 6, M = 6, and s = 14 critical points. The level sets, critical points,
and Morse complex of f̃ are shown in (d), (e), and (f). Comparing (c) with (f), we see that the paths of the Morse Complex have been smoothed. (g) Zoom-in on a
handle of the input surface before and after the smoothing. The L∞-error between f and f̃ is 0.087.

In the discrete setting, we apply the Tikhonov regulariza-
tion to the scalar function f : M→ R, defined on a trian-
gulated surface M. Therefore, we replace f with the func-
tion f̃ : M→ R, whose values f̃ := (f̃(pi))n

i=1 ∈ Rn×1 at the
mesh vertices minimize the functional

F(f̃) := ε‖f̃ − f‖2B + ‖Lf̃‖22. (1)

A natural choice of the smoothing operator L is the Laplacian
matrix associated to M. Therefore, F(f̃) is defined as the
compromise between approximation accuracy ‖f̃ − f‖B and
smoothness ‖Lf̃‖2 of the solution. The norm ‖x‖2B := xT Bx
is induced by the scalar product 〈x,y〉B := xT By, where B
is a positive-definite matrix. Firstly, we consider the Euclidean
distance (i.e., B := I). Then, we discuss a choice of B that
takes into account the geometry of M and is provided by the
linear finite element discretization of the Laplace-Beltrami op-
erator [20, 27].

Smoothing f using the Euclidean metric. Given f : M→ R,
we apply the Tikhonov regularization [4, 26] and replace f with
the function f̃ : M→ R, whose values f̃ := (f̃(pi))n

i=1 at the
mesh vertices are defined as the solution of the following mini-
mization problem (i.e., B := I in (1))

min
f̃∈Rn

{ε‖f̃ − f‖22 + ‖Lf̃‖22}. (2)

The minimization problem (2) is equivalent to solve the normal
equation

(LT L + εI)f̃ = εf ; (3)

the positive definitiveness of the coefficient matrix (LT L + εI)
guarantees that f̃ is unique (see Figure 4). Since the condition
N(i) ∩N(j) = ∅ implies that (LT L)ij = 0, i, j = 1, . . . , n,
the coefficient matrix in (3) is sparse and f̃ can be efficiently
computed through direct or iterative solvers of sparse linear sys-
tems [12].

Using the eigensystem of L, we express f̃ as a linear com-
bination of the eigenvectors of L and make explicit the reg-
ularization coefficients. More precisely, from the relations
Lxi = λixi, i = 1 . . . , n, it follows that

LX = X∆, ∆ := diag(λ1, . . . , λn) ∈ Rn×n,

with X := [x1, . . . ,xn] ∈ Gln(R) orthogonal matrix (i.e.,
XT X = I). In the following, we assume that the eigen-
values of L have been reordered in increasing order,
0 = λ1 ≤ . . . ,≤ λn; finally, we remind that x1 = 1 is the con-
stant eigenvector related to the eigenvalue λ1 = 0. Applying
this decomposition to the normal equation (3), we get the equiv-
alent formulation (∆2 + εI)XT f̃ = εXT f and the following
representation of f̃

f̃ =
n∑

i=1

ε
fT xi

λ2
i + ε

xi. (4)

Assuming that the noise in f is concentrated in high frequency
and the Fourier coefficient |fT xi| decays rapidly with i, most
of the energy of f can be reconstructed from the lowest fre-
quency components xi and the noise contribution along xi is
small. From equation (4), we conclude that the regularization
term (λ2

i + ε)−1 filters out the contributions to the solution cor-
responding to the high eigenvalues (see Figure 5).

Smoothing f using the metric induced by the FEM discretiza-
tion. For a triangulated surfaceM, the basis functions {xi}n

i=1

can also be computed solving the generalized eigenvalue prob-
lem [20, 27]

Lxi = λiBxi, i = 1, . . . , n, 0 = λ1 ≤ . . . ≤ λn,

where L is the stiffness matrix with cotangent weights and the
mass matrix B := (bij)n

i,j=1 codes the geometry ofM in terms
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(a)

(b)

(c)

Figure 5: (a) Noisy (m = 127, M = 57, s = 188) and (b) smooth scalar
function (m = 12, M = 14, s = 30) achieved applying the Tikhonov regu-
larization. (c) Zoom-in on the level sets of the input (left) and smoothed (right)
function.

of triangle areas

bij :=

{ |tr|+|tl|
12 (i, j) edge,∑

k∈N(i)|tk|
6 i = j.

Here, tr and tl are the triangles that share the edge (i, j), tk,
k ∈ N(i), is a triangle belonging to the 1-star of the vertex of
index i, and | tk | is the area of the triangle tk. Since B is
positive definite we measure the least-squares error between f
and f̃ with respect to the metric induced by B; i.e.,

‖f̃ − f‖2B := (f̃ − f)T B(f̃ − f).

In this case, the normal equations of the new functional
F(f̃) := ε‖f̃ − f‖2B + ‖Lf̃‖22 are

(LT L + εB)f̃ = εBf . (5)

The coefficient matrix in (5) is sparse and positive definite; in
particular, f̃ is uniquely defined as solution of the previous lin-
ear system (see Figure 6).

The main criterion to choose the identity or the mass matrix
as B in (1) is the variation of the triangle areas of the input
surface. To show the different results, we consider these two

m = 12, M = 28, s = 42

m = 10, M = 12, s = 24 ε := 0.1, L∞ = 0.081

Figure 6: Tikhonov regularization without constraints and achieved using the
linear FEM approximation of the Laplacian matrix. The level sets and critical
points of the input and smoothed scalar function are shown in the first and
second row, respectively.

choices of B and apply the Tikhonov regularization to a noisy
scalar function defined on an irregularly-sampled triangle mesh.
From the examples in Figure 7 and 8, it follows that using B
instead of I is more suitable for surfaces with irregular triangles
and provides smooth functions with a low number of critical
points. In case of regular sampling, our tests have shown that
both choices give similar results.

Error bounds for the smoothed scalar function. Let us sup-
pose that we perturb the f -values and consider the new scalar
function fe : M → R whose values on the vertices of M
are fe := (f(pi) + ei)n

i=1, with e := (ei)n
i=1. Then, we denote

with f̃ and f̃e the solution to the unperturbed and perturbed
problem, respectively; the corresponding function values are
f̃ := (f̃(pi))n

i=1, f̃e := (f̃e(pi))n
i=1. In the following, we es-

timate the error ‖f̃ − f̃e‖2 and distinguish two cases on the base
of the smoothing techniques that are applied.

If we apply the Tikhonov regularization using the Euclidean
norm, f̃ and f̃e satisfy the normal equations

(
∆2 + εI

)
XT f̃ = εXT f ,

(
∆2 + εI

)
XT f̃e = εXT fe;

it follows that

‖f̃ − f̃e‖2 ≤ ‖εX (
∆2 + εI

)−1
XT (f − fe)‖2

≤ ε

λmin(∆2 + εI)
‖f − fe‖2 = ‖e‖2.

To prove the last equality, note that λ1 = 0 and therefore
λmin(∆2 + εI) = λ2

min(∆) + ε = λ2
1 + ε = ε. From the previ-

ous inequality, we conclude that for all reasonable parameters ε
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7: (a) Toroidal surface M with irregularly sampled patches; (b,c)
level sets and critical points of a noisy scalar function (m = 266, M = 258,
s = 524) defined on M. Results achieved by applying the Tikhonov regu-
larization with respect to (d,e) the mass matrix related to the linear FEM dis-
cretization of the Laplace-Beltrami operator (m = 1, M = 1, s = 2) and (f,g)
the Euclidean norm (m = 9, M = 8, s = 17).

the perturbation bound of the f̃e-values is proportional to the
magnitude ‖e‖2 of the noise.

If we apply the Tikhonov regularization using the FEM met-
ric, we have that

(LT L + εB)f̃ = εBf , (LT L + εB)f̃e = εBfe;

therefore,

‖f̃ − f̃e‖2 = ‖ε(LT L + εB)−1B(f − fe)‖2
≤ ε‖(LT L + εB)−1‖2‖B‖2‖e‖2
≤ ελ−1

min(LT L + εB)‖B‖2‖e‖2.

We conclude that the perturbation bound is proportional to the
trade-off ε, the eigenvalue λ−1

min(LT L + εB), the norm ‖B‖2,
and the error magnitude ‖e‖2.

In the approximation schemes previously described, as ε in-
creases (see Figure 9 and 10), the approximation error domi-
nates the value of the functional F in (1); therefore, the solu-
tion is forced to precisely approximate all the f -values on M
and the error ‖f − f̃‖2 is minimized. In particular, the number
of critical points of f̃ increases with ε. As ε tends to zero, the
smoothness of f̃ becomes predominant and filters out close crit-
ical points and/or f -values. In this case, we have a lower num-
ber of critical points and a higher approximation error, which
is estimated according to the previous upper bounds. A de-
tailed discussion on the choice of ε is presented in [13, 28].
Figure 10 shows the selection of the optimal value of the thresh-
old ε, which is based on the L-curve criterion [13] and provides
the approximation of f that is the best compromise between
accuracy and smoothness.

It is worth noting that these schemes do not take into account
the configuration of the critical points of f and are guided by
all the f -values at the mesh vertices. Therefore, in Section 4.3

(a) (b) h (c)

(d) f (e) (f)

(g) (h) (i)

Figure 8: (a) Irregularly-sampled surface M, (b) critical points (m = 35,
M = 35, s = 74) and (c) level sets of a scalar function h defined onM. (d,e)
Noisy version f of h with clustered critical points (m = 2024, M = 1993,
s = 4021). Critical points and level sets of the smoothed approximation of f
achieved by applying the Tikhonov regularization with respect to (f,g) the mass
(m = 3, M = 2, s = 9) and (h,i) identity matrix (m = 5, M = 5, s = 14).
Comparing (e) with (g,i) shows that the variation and shape of the level sets is
almost the same; however, using an area-dependent metric reduces the number
of critical points of the smoothed approximation with respect to both the input
(b) and noisy (d) function.

we change (3) in such a way that the solution of the correspond-
ing minimization problem is forced to accurately approximate
those f -values that characterize the behavior of f .

4.3. Smoothing scalar functions with constraints on the critical
points distribution

In several cases, the critical points of a scalar function
f : M→ R, defined on a 3D shapeM, are more essential than
geometric error to analyze the properties measured of f andM.
For instance, the spectral quadrilateral remeshing [8, 14] is
mainly guided by the number and position of the critical points
of the Laplacian functions {fi}n

i=1. Therefore, smoothing tech-
niques constrained to preserve a subset of the critical points
of fi, while discarding redundant critical points with close po-
sitions and function values, provide a flexible control over the
number, shape, and size of the resulting quadrangular patches.
Removing clustered critical points and filtering small varia-
tions of the function values also diminish the number of patches
and improves the smoothness of the patch boundaries (see Sec-
tion 5).

Since traditional approaches to function approximation are
mainly driven by a numerical error estimation, they do not pro-
vide an error metric useful to assess the preservation of the
topological and geometric features of a given scalar function.
Our aim is to define an approximation scheme that preserves the
topological features of f : M→ R through its critical points,
or a subset of them, and distinguishes the global structure of f
from its local details. Therefore, we now include in the smooth-
ing process a set of constraints related to the topological fea-
tures of f that should be maintained.

7



(a) (b)

(c) (d)

(e) ε = 0.03, m = 61, (f) ε = 0.06, m = 97,
M = 60, s = 163 M = 102, s = 240

Figure 9: We generated a noise scalar function (m = 4248, M = 4233,
s = 8523) (b) by adding a Gaussian noise to a smooth map (a) defined on a
22-genus surface. (c) Zoom-in. (d) Results of the Tikhonov regularization with
respect to several thresholds ε. (e,f) Level sets and number of critical points of
two smooth scalar functions corresponding to different values of ε.

To this end, we compute a smooth approximation
f̃ : M→ R of f that preserves/approximates a subset of the
critical points of f . More precisely, let {pi, i ∈ C} be the set
of critical points of f or those that have been preserved by the
δ-simplification scheme described in Section 3. We remind that
setting δ = 0 we use all the critical points of f as constraints.
Then, we consider the set

I := C ∪ {j ∈ N(i), i ∈ C},

whose indices belong to C and to the corresponding
1-stars {N(i), i ∈ C}. Assuming that the indices in I are
without repetitions and that its cardinality is k, we compute
the approximation f̃ of f using the set {f(pi), i ∈ I} as in-
terpolating (see Section 4.3.1) or least-squares constraints (see
Section 4.3.2).

(a) (b)

(c) (d)

Figure 10: (a) Level sets and (b) critical points of a noisy scalar func-
tion f (m = 312, M = 280, s = 594). Variation (y-axis) of the (c) L∞-
approximation error and (d) the Sobolev semi-norm (see Section 4.1) of the
Tikhonov approximation of f with respect to several thresholds ε (x-axis). The
pictures (c,d) also show the function that represents the best compromise be-
tween approximation accuracy and smoothness.

4.3.1. Smoothing scalar functions with interpolation con-
straints

To guarantee that the points of C are the critical points of a
smooth scalar function f̃ : M→ R, we define f̃ as the solution
of the constrained minimization problem

{
minf̃∈Rn ‖Lf̃‖2
f̃(pi) := f(pi), i ∈ I.

(6)

In this way, we have that the set C̃ of critical points of f̃ con-
tains the set C. To compute the solution of the aforementioned
problem, we consider the complement IC of I and we note that

(Lf̃)i = liif̃(pi)−
∑

j∈N(i)

lij f̃(pj) = liif̃(pi)

−
∑

j∈N(i)∩IC

lij f̃(p)−
∑

j∈N(i)∩I
lijf(pj), i ∈ IC .

Indicating with g := (f̃(p))i∈IC ∈ Rn−k the set of unknowns,
the previous identities can be written in matrix form as L̃g − b.
Here, L̃ ∈ R(n−k)×(n−k) is the matrix achieved by cancelling
the ith-row and ith-column of L, i ∈ I, and the entries of the
constant term b ∈ Rn−k are given by

∑
j∈N(i)∩I lijf(pj),

i ∈ IC . Therefore, the constrained least-squares minimization
problem (6) is equivalent to

min
x∈Rn−k

{‖L̃x− b‖2}.

Since L is a sparse matrix and rank(L) = n− 1, it follows
that L̃ is still sparse and rank(L̃) = n− k, k ≥ 1; indeed, the
vector g is uniquely defined by the equation L̃g = b. Examples
are shown in Figure 11 and 12.

8



Figure 11: Tikhonov smoothing with interpolating constraints. The level sets
and critical points of the input and smoothed scalar function are shown in the
first and second row. The L∞-error is 0.08.

Figure 12: First row: level sets of the noisy f (left) and smoothed f̃ (right)
scalar function. Second row: critical points of (left) f (M = 18, m = 38,
s = 58) and (right) simplified set (M = 10, m = 12, s = 10). This last set
of critical points are used as interpolating constraints to compute f̃ (M = 12,
m = 14, s = 28). See also Figure 14.

4.3.2. Smoothing f with selected least-squares constraints
Let K ⊆ {1, . . . , n} be a set of indices, (f(pi))i∈K the set

of f -values that we want to preserve, and ‖Lf̃‖2 the regu-
larization term. Then, the function f̃ : M→ R which is the
best compromise between the constraints on the f -values in K,
i.e.

∑
i∈K |f̃(pi) − f(pi)|2, and the regularization term is the

solution of the following problem

min
f̃∈Rn

{
ε
∑

i∈K
|f̃(pi)− f(pi)|2 + ‖Lf̃‖22

}
. (7)

Indicating with F(f̃(p1), . . . , f̃(pn)) the functional in (7),
we have that the derivative of F with respect to the un-
known f̃(pk) is

{ ∑n
i,j=1 lij likf̃(pj) + ε(f̃(pk)− f(pk)) k ∈ K,∑n
i,j=1 lij likf̃(pj) k ∈ KC .

The equations ∇F = 0 can be written in matrix form as

(LT L + ε∆)f̃ = εb,

(a) (b) (c) ε := 0.05

(d) (e) ε := 0.1 (f)

Figure 13: Critical points and level sets of (a,b) a noisy scalar function and (c-g)
the smoothed approximations achieved by using different thresholds and all the
critical points as least-squares constraints. Statistics are reported in Table 1.

with ∆ := (∆ij)n
i,j=1 ∈ Rn×n, b := (bi)n

i=1 ∈ Rn, and

∆ij :=
{

1 i = j ∈ K,
0 else, bi :=

{
f(pi) i ∈ K,
0 i ∈ KC .

Similarly to the discussion in Section 4.2, it is possible to
prove that the coefficient matrix LT L + ε∆, ε > 0, is symmet-
ric, sparse, and positive definite. While in (2) all the f -values
have been used to measure the least-squares error ‖f − f̃‖2,
in (7) this discrepancy is measured only on the set {pi, i ∈ K}
of feature points of f (see Figure 13, 14, and Table 1).

In our tests, we have selected K as the set of all the criti-
cal points of f (see Figure 15(a)) or the points preserved by
the δ-simplification (see Figure 15(b)); in both cases, we can
also consider the points of the corresponding 1-stars (i.e., the
set I introduced in the previous section). The best compromise
between smoothness, number of critical points, and approxima-
tion error is achieved by considering all the critical points of f
and the vertices of the corresponding 1-stars as least-squares
constraints. Infact, close critical points and f -values are filtered
out by the regularization term in (7), while guaranteeing that
the new function values smoothly vary in these regions without
being constant on the edges and faces ofM. Here, the interpre-
tation of the threshold ε resembles the discussion in Section 4.2.
Whenever it is important to have a higher approximation accu-
racy and smoothness in those regions that include the critical
points of f (see Figure 15), we prefer the least-squares con-
straints to the Tikhonov regularization.
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Table 1: With reference to Figure 13, the table shows the L∞-approximation
error and the number of critical points (m, M, s) of the smooth approximation
of a noisy scalar function achieved using different thresholds ε.

Figure ε m M s L∞
Fig. 13(a,b) – 1398 1438 2834 0.0
– 0.01 13 5 16 0.121
– 0.02 23 12 33 0.092
– 0.03 12 14 24 0.104
– 0.04 11 10 19 0.128
Fig. 13(c,d) 0.05 12 10 20 0.127
– 0.06 18 10 26 0.116
– 0.07 15 10 23 0.112
– 0.08 14 10 22 0.115
– 0.09 14 10 22 0.123
Fig. 13(e,f) 1.0 15 11 24 0.127

Error bounds for the smoothed scalar functions. If we
apply the smoothing with interpolation constraints, then f̃
and f̃e assume the same values {f(pi)}i∈I on the set of con-
strained points {pi}i∈I ; therefore, on these points the error
|f̃(pi)− f̃e(pi)|, i ∈ I, is null. On the vertices {pi}i∈IC , the
values (f̃(pi))i∈IC and (f̃e(pi))i∈IC satisfy the normal equa-
tions

L̃(f̃(pi))i∈IC = b and L̃(f̃e(pi))i∈IC = b̃,

with L̃ submatrix of the Laplacian matrix. Hence,

‖f − fe‖2 = ‖(f̃(pi))i∈IC − (f̃e(pi))i∈IC‖2
≤ ‖L̃−1(b− b̃)‖2 ≤ ‖L̃−1‖2‖b− b̃‖2
≤ λ−1

min(L̃)‖b− b̃‖2.
We conclude that the perturbation bound related to the func-
tion values on the unconstrained vertices {pi}i∈I is propor-
tional to λ−1

min(L̃) and to the perturbation ‖b− b̃‖2 related to
the right-hand side.

If we apply the smoothing with least-squares constraints,
then f̃ and f̃e are the solution of the following linear systems

{
(LT L + ε∆)f = b,
(LT L + ε∆)fe = b + εe.

Therefore, we get the inequality

‖f̃ − f̃e‖2 = ‖ε(LT L + ε∆)−1e‖2 ≤ ελ−1
min(LT L + ε∆)‖e‖2.

It follows that the perturbation bound related to the function
values is proportional to the threshold ε, the perturbation er-
ror ‖e‖2, and the eigenvalue λ−1

min(LT L + ε∆).

5. Discussion

Since the choice of the parameter ε and of the set of con-
strained points has been already discussed in those sections
where each method has been presented, in the following we

Figure 14: First row: critical points and Morse complex of a noisy scalar func-
tion f (M = 18, m = 38, s = 58). Second row: critical points of the
scalar function f̃ (m = 10, M = 12, s = 24) achieved by smoothing f with
least-squares constraints on the set of preserved critical points shown in (a,right
corner).

Table 2: Computation cost of the smoothing techniques discussed in the paper;
here, n is the number of vertices of the input triangle mesh and k is the number
of anchor points.

Method Eq. Computational Cost
Critical points simpl. – O(n)
Tikh. B := I (1) O(n log n)
Tikh. B mass matrix (1) O(n log n)
Tikh. interp. constr. (6) O((n− k) log(n− k))
Tikh. least-squares constr. (7) O(n log n)

focus our attention on the applications, computational cost, and
comparison of our approach with previous work.

In [8, 14], the Morse-Smale complexes of the Laplacian
eigenfunctions {fi}n

i=1 and the iso-lines of the global multi-
chart parameterization have been used to automatically create
a quadrangular remeshing of 3D surfaces. For both methods,
the smoothness of each function fi, used to guide the remesh-
ing and the control over the number and position of its critical
points, is crucial. Infact, the number and location of the critical
points determine the vertices, dimension, and alignment of the
quadrangular patches. Furthermore, the Laplacian eigenfunc-
tions have increasing numbers of critical points at progressively
higher frequencies and numerical instabilities might result in
clusters of critical points with close positions and fi-values. In
all these cases, our approach addresses the previous problems
in one step by cancelling extraneous critical points, removing
small and noisy arcs of the Morse complex through the smooth-
ing of the fi-values, and constraining the regularization to pre-
serve the critical points with high persistency values. Examples
of regularized Morse complexes with a low number of critical
points and smooth paths among them are shown in Figure 4(f,g)
and 14.

As already mentioned in Section 1, previous work is not able
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ε = 0.03 ε = 0.06 ε = 0.09

(a)
m = 62, M = 45 m = 98, M = 79 m = 132, M = 93

s = 149 s = 219 s = 267

(b)
m = 62, M = 45 m = 98, M = 79 m = 132, M = 93

s = 149 s = 219 s = 267

Figure 15: With reference to Figure 9, level sets of three representative smooth functions achieved by applying the least-squares regularization constrained to (a) all
and (b) the δ-simplified critical points (δ := 0.2). The evolution of the number of critical points (y-axis) with respect to several thresholds ε (x-axis) is shown in
the first column. In both cases, the results is almost the same. Here, the variation of the number of critical points is lower than the example in Figure 9.

to constrain the critical points during the smoothing process.
As shown in Figure 16, the Tikhonov regularization also pro-
vides smoother results than [15]. Infact, the number of pa-
rameters used by the saliency-driven filtering do not make ex-
plicit the magnitude of the final smoothing. Finally, the pro-
posed variants of the Tikhonov regularization combine two
types of smoothing effects: one is introduced by the least-
squares approximation term and the second one is provided by
the smoothing properties of the Laplacian matrix.

Table 2 summarizes the computational cost of the different
variants of the proposed smoothing framework. Since their cost
is almost O(n log n), with n number of vertices of M, these
methods are competitive with previous work, whose cost varies
from O(n) [24] to O(n log n) [15].

6. Future work

This paper has presented a framework to smooth a scalar
function f with or without constraints on the preservation of the
feature points of f (see Figure 17). These features are identified
through a δ-simplification of the critical points of f . The un-
constrained smoothing is usually applied when the input scalar
function has several and close critical points with a low per-
sistency of the corresponding f -values. Smoothing f with in-
terpolating or least-squares constraints is preferable in all those
applications, such as quadrilateral remeshing and skeleton ex-
traction, where a direct control on the final number and po-
sition of the critical points is crucial. In this case, the inter-

polating or least-squares constraints are chosen on the base of
the application needs. The threshold δ used for the simplifica-
tion of the critical points can be easily selected on the base of
the variation of the f -values. To select the tradeoff ε between
smoothness and approximation accuracy, statistical and heuris-
tic methods (e.g., L-curve, best ration criterion) have been ex-
tensively discussed in [13, 28]. The proposed approach can be
applied to all those applications where the critical points have
a specific meaning. Infact, in these cases critical points must
be preserved, relocated, or cancelled according to specific rules
which guarantee a correct surface tesselation (e.g., quadrilateral
remeshing) and skeletonization, molecular simulation and in-
teraction (e.g., docking). As future work, we plan to generalize
the proposed scheme to multi-dimensional data and arbitrary
basis functions.
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(a) (b) (c) (d) (e)

Figure 16: Level sets and critical points of (a,b) a noisy (m = 416, M = 382, s = 798) and a smoothed scalar function computed (c,d) using the Tikhonov
regularization with respect to the mass matrix of the linear FEM discretization of the Laplace-Beltrami operator and (e) the saliency smoothing [15]. In (d), the
smoothed scalar function has m = 7 minima, M = 2 maxima, and s = 9 critical points.

Figure 17: Given the height functions fx, fy , and fz on M with respect
to the coordinates axis (top row), we visualize the corresponding approxima-
tions f̃x, f̃y (interpolating constraints), and f̃z (bottom row) as an approxima-
tion Q of M. The smoothness of Q confirms that the approximation scheme
generates smooth scalar functions. A larger discrepancy between M and Q
highlights a larger error between the input and the approximated scalar func-
tions.
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