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Abstract

The behavior of a variety of phenomena measurable on thedboun
ary of 3D shapes is studied by modelling the set of known mea-
surements as a scalar functign P — R, defined on a surfack.
Furthermore, the large amount of scientific data calls féicieht
techniques to correlate, describe, and analyze this dathid con-
text, we focus on the problem of extending the measures &ptu
by a scalar functiory, defined on the boundary surfageof a 3D
shape, to its surrounding volume. This goal is achieved bypd-

ing a sequence of volumetric functions that approximfate to a
specified accuracy and preserve its critical points. Moeeigely,
we compute a smooth map: R® — R such that the piecewise lin-
ear functionh := gp : P — R, which interpolates the values gf

at the vertices of the triangulated surfae is an approximation
of f with the same critical points. In this way, we overcome the i
itation of traditional approaches to function approxiroatiwhich
are mainly based on a numerical error estimation and do mat pr
vide measurements of the topological and geometric feaiiré.
The proposed approximation scheme builds on the propestigs
related to itgylobal structurei.e. its critical points, and ignores the
local details off, which can be successively introduced according
to the target approximation accuracy.

CR Categories: 1.3.5 [Computational Geometry and Object Mod-
eling]: Boundary representations—Curve, surface, sahd,object
representations; G.1.2 [Approximation]: Approximatiof sur-
faces and contours.

Keywords: Critical points, topological and geometric algorithms,
surface/volume-based decompositions and visualiza®Drscalar
functions, topological simplification, computational tdpgy.

1 Introduction

Given a scalar functiorf : P — R, defined on a surfac®, we ad-
dress the problem of defining a map P — R, which extendsf
from P to R® by computing a sequence of volumetric functions
that approximatef up to a specified accuracy and preserve its crit-
ical points. The implicit magy is the superposition of a set of ba-
sis functions, generated by a kemnele C*, so that the order of
smoothness qf is k. The novelty of our approach resides in the use
of the critical points off to drive the approximation process: this
choice allows us to use a relatively small amount of basistfans
and provides an easy control on the local details and theedegjr
smoothness of the final approximation.

The large amount of scientific data available nowadays italig
form calls for efficient techniques to correlate, descrified ana-
lyze this data. Most frequently, scientific data corresptmthea-
surements or sampling of scalar functions that model thebeh
ior of a variety of phenomena measurable on the boundary of a
3D shape. For example, in geographical data analysis arterra
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model is associated to an elevation map; in engineerintgrdcac-
tions are generated by solving differential equationsteel#o sim-
ulation problems (e.g., the Laplace and heat equation [Belkd
Niyogi 2003; Ni et al. 2004]) or decomposing the spectrumaibd
dependent kernels [Belkin and Niyogi 2003].

A volume-based approximation ¢f: P — R, which gives an in-
sight into the behaviour of in the space wher® is embedded,
could be useful to make predictions about the phenomenon-or a
alyze their reactiveness to other entities. For instarreapprox-
imation of spatio-physico-chemical properties measurnedirau-
lated on a molecular surface to the surrounding volume could
be used to predict the interactions among proteins [Ciprizamd
Gleicher 2007]. Other examples ¢fare the electrostatic charge,
hydrophobicity, temperature, and pressure. Also, a volbased
approximation off enables to couple the analysis of the behaviour
of its iso-contours with the corresponding iso-surfacethefvolu-
metric approximation.

Recent research work addresses the problem of converting su
face data to volumetric one: volumetric functions have besed
to parameterize 3D shapes for trivariate B-spline fittingafivh
et al. 2008] and solid modeling applications such as tetdet
remeshing and solid texture mapping [Li et al. 2007]. Fotanse,
in [Martin et al. 2008] the iso-parametric paths [Dong et24l06]
of two orthogonal harmonic functions oregenus surfac® pro-
vide a parameterization grid that is used toHAitwith a trivariate
B-spline. Our approach builds on implicit modeling techrasg,
can be applied to surfaces with arbitrary genus, is moretiexi
with respect to the smoothness propertieg,aind does not require
a parameterization domain.

Traditional approaches to function approximation are igariven
by a numerical error estimation: from our perspective, eadt
the critical points are a natural choice to guide the apjpnaxion
scheme as they usually represent very relevant informaitimut
the phenomena coded by For instance, in biomolecular simula-
tion the maxima of the electrostatic charge are those fesattivat
guide the interaction and that should be preserved for @cbanal-
ysis of the phenomenon. Approximating the electrostatizgé on
a molecular surface without preserving the distributioit®fmax-
ima and minima introduces artifacts in the modeling of thoser-
actions that are guided by the energy extrema. By presethiag
shape of the input scalar function through its critical pirit is
also possible to devise an approximation scheme that allswe
distinguish theglobal structureof f from local details, which can
be preserved or discarded according to the target accuracy.

More precisely, given a8-manifold triangle mestP in R? and a set
of scalar values at the verticdd := {p;}i—, of P, let us consider
the piecewise linear map: P — R that interpolates these values
overP. Our aim is to compute a smooth functign R®> — R such
that the piecewise linear mag, which interpolates the values gf
at the vertices ofP, approximates within a prescribed error and
preserves its critical points. The approximation schenmaptges

g := g1 + g2 as the sum of two componenys, g» : R®> — R such
that

1. ¢1 captures the global structure gfin terms of its critical
points, that is, the piecewise linear scalar functfon= g »
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Figure 1: Overview of the proposed approach. (a) Critical poindd (= 99, m = 35, s = 148) and (b) level sets of a stress functigron
a mechanical surfac®. Here, M, m, ands is the number of maxima, minima, and saddles. (c) Level $ets approximationh := gp
achieved by using = 1924 globally-supported basis functiong:and i have the same critical points and tie&°-error betweenf and i
is 0.094. (d) Iso-surfaces of the volume-based approximagiorR®> — R of f. (e) Level sets of the functidit computed using a simplified

set of critical points (i.e.M = 28, m = 8, ands = 50 critical points) and r» =

1011 globally-supported radial basis functions. (f)

Iso-surfaces of the volume-based approximagorf A*; comparing (b) with (e) and (d) with (f) we see that the levsdbshare a common
behavior aroundP. (h) Distribution of theL>-error betweenf and h*, where|| f — h*||c = 0.017 (red areas).

that interpolates the values gf at the vertices of? has the
same critical points off. On the basis of this property, we
refer to f1 as theglobal componentf f;

2. go recovers the local details gf; i.e., the piecewise linear
scalar functionf, := go2,», Which interpolates the values
of g» at the vertices of?, guarantees that the error betwefen
and f1 + f> is below the target approximation accuracy. On
the basis of this property, we refer fo as thelocal compo-
nentof f.

The functiong; is computed as a linear combination of globally-
supported radial basis functions [Aronszajn 1950; Bloatin&irand
Whyvill 1997; Dyn et al. 1986; Poggio and Girosi 1990], whosa-<
ters are selected through an iterative procedure whicherges in

a generally low number of steps. The functignis generated as a
linear combination of locally-supported radial basis fimrts, us-
ing as error metric thé°°-norm or alocal comparison measure [Bi-
asotti et al. 2007; Edelsbrunner et al. 2004].

An important constraint o is its global support. In fact, using
only compactly-supported basis functions would provideapm
with several and small iso-surfaces that have artifactsrevitee
supports of the basis functions intersect. Therefore, Heeaf a
compact support results in a poor visualizationgadind a coarse
approximation off onP. Furthermore, the support selection is not
trivial and a local definition of would not extrapolate the behavior
of f on the interior and exterior @P. On the contrary, using glob-
ally supported radial basis functions cannot result in \grblends
and the kernel variance can be adapted to the local samimgitgt
and geometry [Dey and Sun 2005; Mitra and Nguyen 2003].

The proposed approximation scheme handles scalar fusctien
fined on surfaces represented Bynanifold triangle meshes with-
out imposing constraints on the sampling density. The &hofc
globally- and compactly-supported radial basis functienable to
adapt the construction of the approximation to specific jemb
constraints, such as the number of input samples, the lacal a
racy, and the degree of smoothness of the final approximafioa
approximation method can also be used to smooth the fungtioyn
selecting only the critical points which are perceived ésrimative
ones. For instanceg, might exhibitdifferential noisethat is, a high
number of critical points with very close positions and laaviation
of the f-values, due to a low quality of the discrete representation
of the input data, unstable computations, or noisy measemesn

The approximation can be run only on a subset of critical §80in
for instance, those considered relevant by persistensedbsim-
plification methods [Edelsbrunner et al. 2004], LaplaciBatane
and Falcidieno 2009; Taubin 1995] and Gaussian smoothiagpep
tors [Liu et al. 2007]. We will show how the relevant critigadints

of f contain enough information to definetapology-drivenap-
proximation of f in a computationally efficient way. If necessary,
the approximatiory; of f can be improved by adding ta the lo-
cal component, that is, treror-driventermg, so that the error be-
tweenf; + g2, » andf is below the target approximation accuracy.
To show the flexibility of the proposed approach, we alsowderi
a least-squares and a constrained approximation schegareHi
and 2 show the main steps of the entire framework.

This article is organized as follows: Section 2 briefly revséepre-
vious work on the analysis of scalar functions and implipipx-



Figure 2: Level sets of amap : P — R and its volumetric approximatiog : R* — R. The mayy is a superposition of functions centered
at a set of points of? and has been sampled on a tethraedralizatiofPoBoth f and g» have the same critical points.

imation. In Section 3, we discuss how to build smooth appnaxi
tions of f onP. In Section 4, we focus the analysis pbn specific
properties, related to its global structure, and neglecilldetails,
which are successively introduced according to the tangetosi-

mation accuracy. In Section 5, we analyse the main progestiithe
surface- and volume-based approximating functions. Ii&eé,

we discuss the application of the method to the simplificatiod
visualization of scalar functions, and also detail the degrof free-
dom of the proposed approach. Finally, future work is disedsn
Section 7.

2 Theoretical background and previous work

This section introduces the theoretical background on épeer
sentation and analysis of scalar functions defined on tuiabed
surfaces (Section 2.1); then, we briefly review previousknam
implicit approximation (Section 2.2).

2.1 Theoretical background

The key concepts used in the presentation of the proposedatp
are those related to the triangle-based representatiaratafrunc-
tion, to the classification of critical points, and to theleadion of
the approximation error. We summarize here the basic defisit
and refer the reader to [Biasotti et al. ; Bloomenthal and Myv
1997] for a complete discussion.

A map f: M — R of classC?, defined on a smooth mani-
fold M, is Morseif it has no degenerate critical points (i.e., the
Hessian matrix is not singular at the critical points f In
the following, we replacef with a piecewise linear scalar func-
tion f : P — R over a triangulation? := (M,T) of N,
where M := {p;}i=, is a set ofn vertices andT is an ab-
stract simplicial complexthat contains the adjacency informa-
tion. The functionf on P is defined by linearly interpolating

the values(f(p:))i=, of f at the vertices using barycentric co-
ordinates. Assuming that:= (p;,p;, px) IS a triangle of P
with verticesp;, p;, px, the valuef(p), p €t, is defined as
f(P) = A f(pi) + A2 f(Ps) + Asf(Pr), WhereAs, Az, Az > 0,
A1+ A2 + A3 = 1, are the barycentric coordinates pfwith re-
spect to the vertices af If f(p;) # f(p;), for each edg€si, j),
then f is calledgeneral Finally, we assume that is general and
degenerate cases will be discussed in Section 6.3.

As a € R varies, the behavior of is conveyed by the correspond-
ing level setsy, and the critical points of, at which the number
of connected components of the level sets changes. Theatriti
points of f : P — R are computed by analyzing the distribution
of the f-values on the neighborhood of each verggx[Banchoff
1967]. More precisely, leN (i) := {7 : (4,7) edgg be thel-star

of 4, i.e. the set of vertices incident toFormally, if we let

Lk(i) := {ju, ... (js» do+1)s1 edges ofP}

be thelink of i then theupper linkis the set

LE*(i) := {js € Lk(i) : f(p;.) > f(Po)},

and themixed linkis given by

LE* (i) == {js € Lk(3) : f(Pj.sy) > f(Pi) > f(pj.) OF
f(Pjogr) < f(Pi) < f(Pjo)}s

whereji+1 := jx. Thelower link Lk~ (¢) is defined by replacing
the inequality “>” with “ <” in the upper link. If Lk (i) = 0 or
Lk~ (i) = 0, thenp, is amaximumor a minimum respectively.
If the cardinality of the seLk™ (i) is 2 + 2m, m > 1, thenp; is
classified as aaddleof multiplicity m.

,Jk € N(i) :

For a closed surfacP and a general functioffi, the identity

x(P)=m—s+ M, (1)



gives the relation between the critical points(&f, f) and the Eu-
ler characteristig¢(P) of P [Banchoff 1967; Milnor 1963]. Note
thats is the number of saddles counted with their multiplicitg, i.
1=, saddie i, Wherem; is the multiplicity of the saddig;.

Comparison of scalar functions. Since the level sets and
critical points are independent of positive re-scalings fof

lead to efficient clustering techniques such as the kernél &l
the Voronoi tessellation of the feature space [Schoelkogf@mola
2002] (Ch.1).

Recently, Gaussian radially symmetric [Co et al. 2003; Jetray.
2004; Weiler et al. 2005] and ellipsoidal [Jang et al. 2006n#
et al. 2006] basis functions have been used to approximate 3D
scalar maps. The variance and width parameters of ellipkbakis

we assume that the function values have been normalized infunctions, which are best suited to fit data that is not radigtm-

such a way that Imad¢) = [0,1]. The L°°-approximation
error between two functionsfi, f: P — R is defined as

[ f1 = f2 lloo:= maxi=1,__n{[fi(P:) — fa(p:)[}. In the article
pictures, theL*°-error is coded with colors that range from red
(maximum error) to blue (null error).

A number of local and global comparison measures [Biasbtl.e
2007; Edelsbrunner et al. 2004], based on the differentidlgeo-
metric properties of the level sets, are alternative tolifenorm.
More precisely, the comparison measure between two saaiar f
tions fi1, fo : P — R, on the same surfac®, is defined as the
averaged angle variation of their gradient fields [Biasettial.
2007], i.e. I(f1, fz) P —R, :Z-(f17 fz) = <Vf1,Vf2> As an
alternative, in [Edelsbrunner et al. 2004]) the comparis@asure
Z(f1, f2) == [V fi A V2|2 is the norm of the wedge product of
the gradient fields. The main difference between [Biasadttle
2007] and [Edelsbrunner et al. 2004] is that the former plesian
explicit relation between the critical points 6f, f2, andZ(f1, f2).
In both cases, thaveraged error measutigetweenf; and f, onP

iST(f17 f2) = @ fPI(fly fQ)dp
2.2 Previous work

In implicit modeling [Bloomenthal and Wyvill 1997], a 3D pui
setL:={p; €¢R®: i=1,...,n} is approximated by the sur-
face ¥ := {p € R®: g(p) =0}, whereg:R*> = R is an im-
plicit function. In this context, implicit approximationeth-
nigues [Aronszajn 1950; Dyn et al. 1986; Micchelli 1986; Pog
gio and Girosi 1990] computg(p) := >, aspi(p) as a lin-
ear combination of the basis elemeiis= {¢(||p — pill2) }i=1,
where ¢ is the kernel function. Depending on the properties
of ¢ and of the corresponding approximation scheme, we dis-
tinguish globally- [Carr et al. 2001; Turk and O'Brien 2002]
and compactly- [Wendland 1995; Morse et al. 2001; Ohtake
et al. 2005a] supported radial basis functions, and thetiparof
unity [Ohtake et al. 2003; Xie et al. 2004]. We briefly remitnehtt
the supportof an arbitrary magy : R®> — R is defined as the set
supf(g) := {p € R3: ¢g(p) # 0}. If supp(g) := R?, theng has
global support

To reduce the amount of memory storage and computation time o
the implicit approximation, sparsification methods sekecubset

of centers inC such that the associated functigrmpproximatesC
within a target accuracy. This aim is usually achieved thhoa-
posterioriupdates of the approximating function, which are guided
by the local approximation error [Carr et al. 2001; Chen anggaf
1995; Kanai et al. 2006; Ohtake et al. 2005b; Shen et al. 2@04]
by solving a constrained optimization problem [Girosi 1998tane
2006; Steinke et al. 2005; Walder et al. 2006].

Clustering techniques can also be used to group those pbists
satisfy a common “property” and center a basis function apa r
resentative point of each cluster. Main clustering criteaie the
planarity and closeness, measured in the Euclidean spaog us
the k-means clustering [Lloyd 1982] and the principal component
analysis [Jolliffe 1986] (PCA, for short). As an alternatikernel
methods [Cortes and Vapnik 1995] evaluate the correlatinorsy
points with respect to the scalar product induced by a pesiti
definite kernel. In this case, the PCA and theneans algorithm

metric, are computed using the Levenberg-Marquardt opétitn
method [Madsen et al. 2004]. In both cases, the centers titsis
functions are selected by clustering techniques or an-erieen
scheme, which add the points with the maximum error values as
new centers. The iteration stops when the approximaticor ér
below a given threshold. As discussed in [Weiler et al. 20014

set of centers can be enriched by including the peaks andrésw f
guency regions of the input data.

3 Topology-driven approximation

This section discusses the core of our approach and is aryhas
follows. In Section 3.1 and 3.2, we describe how a scalartfonc
f: P — Ris approximated by a map := g1 » such thatf andh
have the same critical points. We refertas theglobal component
of f. The piecewise linear functioh interpolates the values of the
implicit map g; : R* — R at the vertices o andg; is computed
as alinear combination of globally-supported radial basistions.
The centers of the basis functions are selected througleatiite
procedure, which is guided by the information conveyed leycifit-
ical points of f and converges in a low number of steps.

In Section 4, the approximatioh of f is improved by adding an
error-driven termgs to g1 such that the error betwedn+ go »
andf is below the target approximation accuracy. In this casés
a linear combination of locally-supported functions ane tenter
selection is guided by the target approximation accuracy.

3.1 Proposed approach

We formulate the approximation of a piecewise linear scialac-
tion f : P — R, defined on the-manifold triangle mesk®, in such
a way that we preserve its critical points. To this end, wei$oaur
attention on the following problem.

Problem statement. Find a smooth functiong; : R* — R
with global support such that the piecewise linear function
h = g1,7 : P — R, which interpolates the values gf at the ver-
tices of P (i.e., h(pi) := ¢1(pi), i = 1,...,n), satisfies the fol-
lowing conditions:

1. f andh have exactly the same critical points;

2. hhas fair level sets with a regular distribution Bn
Let{p;, ¢« € C} be the set of critical points of. Atthe levelk = 1
(Figure 3(a,b)), we search a functigh” : R* — R such that

9" (ps) = f(p)),

i.e., we impose thaf andg®) have the same values at the critical
points of f and at the vertices of the correspondihgtars. In the
following, we assume that the indices are without repet#tio

ieTW :=Ccu{jeN@),ieC}, (2

We computey? using an implicit interpolation scheme. Choosing
akernely : RY — R, ¢V is defined as [Aronszajn 1950; Poggio
and Girosi 1990]

gV () = > aipip)+7(P), p=(z,9,2), @)
iez(M)
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Figure 3: (a) Color map, level sets, and (b) critical points of a stréssction f on a mechanical surfac®. (c-j) Level sets, number of
critical points, and selected centers of the approximatjéf! of f, k = 1,...,8. From the first (c) to the fourth (f) iteration, the current
approximation off shows evident changes with respect to the previous one;therifth (g) to the eighth (j) iteration, the shape of the leve
sets slightly varies. (k) Final approximatignof f: f andh have the same critical points. Comparing (a) with (k), wetbegh accurately
and smoothly resembles the global behaviof pthe distribution of thel. > -error betweenf andh is shown in (l). See also Figure 4.

that is, a linear combination of the radial basis functions constraints

0i(p) := ¢(||p — pill2), centered afp;, i € (M}, plus a first-
degree polynomialr(p) := Bo + f1x + B2y + Bzz.  Common
choices of ¢ are the Gaussian(t) := exp(—t) and the bi-
harmonicy(t) :=| ¢ |* kernel.

The second termr in (3) is used to fitf over regions ofP where
it is linear. Without loss of generality, we s&t") = {1,...,m};
then, the coefficients in (3) that uniquely satisfy (2) aregblution
of the following (r1 + 4) x (r1 + 4) square linear system

[ann ... air,  pi pY pi 17 [ f(p1)
Qry1 .. Qryry pfl p7y~1 pil 1 f(pf'l)
pi ... D 0 0 0 0 |9t= 0
Py ... DY 0 0 0 0 0
pi R < 0 0 0 0 0
L 1 1 0 0 0 0 | L 0 J
LM
4
o] = [ a1 e [0723% /80 ﬂl /82 ﬂ3 }T )

with ai; := ¢(|lpi — p;ll2) andp: := (pi’, p{,p7). The last four
rows of the full matrix in (4) correspond to thmeatural additional

1 1 71
> aipf =0, > aip!=0, Y oupi=0.
=1 =1 =1

These relations guarantee tiiat) is invertible; in fact, the; x r1
sub-matrixA := (as;),,; is conditionally positive-definite on the
subspace of vectors that are orthogonal to the last four ofwse
full matrix. Once we have calculategf’), the piecewise linear
scalar functionf™® := ¢\’ : P — R is a new map that approxi-
matesf (Figure 3(c)).

We explicitly note that the constraints in (2) guaranted gach
critical point of f is also critical for f; if ™ has additional
critical points, then they will be used to build the new apqimoa-
tion of f. If C() are the indices of the critical points ¢f'), then
QW .= {p;, i e CW, i ¢ TM} can be interpreted as the set of
points where the current approximatigit") differs from f with
respect to the point of view of the critical points distrilout

At the next stepk = 2, the points inQ*) are used to improve the
current approximatiorf™ of f. More precisely, we calculate the
function ¢‘® that satisfies the previous interpolating conditions (2)



(a)r = 4504 sel. centers (b)

(©) (" ||f —h*[|eo = 0.01

Figure 4: (a) Centers used to compute the approximation in Figure @(&), the0.06% of the input vertices). Variation of (b) the number
of critical points and (c) selected centers pf*) at each iteration. (d) Level sets af achieved by summing to the approximatibrin

Figure 3(k)1928 locally-supported basis functions.

(@) f : n=280K, 22-genus
M=20,m=9,s="171

() ||f — hllec = 0.068 (red)

(©

Figure5: (a) Color map, level sets, and number of critical points o€alar functionf on a22-genus surfac®. (b) Variation of the number
of critical points and distribution of th& > -error betweenf and h on P (top). Statistic values are reported in Table 1. (c) Plotte# error
If = f® oo, k = 1,...,15. The final approximatiot of f has been computed witlY89 centers (i.e., th®.01% of the input vertices).
The level sets of and selected centers are shown in the top part of (c).

Algorithm 1 Main steps of the topology-driven approximation.

Require: A scalar functionf : P — R defined on the triangulated
surfaceP.
Ensure: The implicit functiong : R* — R such thath := gp has
the same critical point§ of f.
1: Extract and store thée-star of each vertex dP.
2: Setk := 0, := 0,70 =9, fO .= 7.
3: whileC™® £ C do
. compute the saZ*) of critical points of f*);
QW = {icc® g™,
T® = {j € N(i), i € Q¥};
T+ .= 7R k) T (k)
compute g+ (p) := 3=, 741y @ii(p) + 7(p) such
thatg* 1 (p;) = f(p:), i € Z*+Y (c.f., Eq. (6));
9:  computef*+1) .= g¥ ),
10:  compute the critical pointép;, i € C**+1} of f-+1:
11: k:=k+1;
12: end while

ON O aOR

and the new ones related to the g&t), that is,

9% (pi) = f(pi),

whereT™ := {j € N(i), i € QW} (Figure 3(d)). Analogously
to the previous step, we sgf?) := ¢

iez1® :=7WuoWuTh,

We now describe the general case.
at the iterationk we have built ¢ : R® = R such that

g™ (pi) = f(pi), i € Z". Then, we compute the scalar function
f® = ¢ and evaluate its sdtp;, i € C*)} of critical points.
At step (k + 1), the points related to the indices 6f*), and its
1-star vertices, that do not belong 1¢*) are added as new con-
straints and we consider the functigff*') such that

g(kJrl)(pi) = f(pi), i€ "D .= 7Ry ™) 7—(76)7
where the set of indices ar@® := {i e ¢® i ¢ 7™} and
TW .= {j € N(i),i € Q™} (Figure 3(e-j)).

Since at each iteratiork the critical points of f*) include
those of f, f*) has M + M(k) maxima, m +m(k) min-
ima, ands + s(k) saddle points. Herem, M, s is the num-
ber of minima, maxima, saddles ¢, f) and M (k), m(k),
and s(k) are positive integers. The iteration stops when
the critical points of f**Y have been already used to
build 7, ie. c*t) C ZM) . In this case, we have that
M(k+1)=m(k+1) = s(k +1) = 0 and thereforef **1) has
the same critical points of. We conclude thay; = ¢®**" is
the solution of the problem stated at the beginning of thidice
(Figure 3(k-I) and 4). In the worst case, the iterative pdure
involves as many steps as the number of vertices divided by th
average number of points in thestars ofP.

Assuming that the scalar functigii®) is general and Morse, from
the Euler formula (1) we get that the additional criticalqeisatisfy

Let us suppose thatthe “nullity relation” m(k) — s(k) + M (k) = 0. The uniqueness

of each functiory™™ and its smoothness degree are guaranteed by
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Figure6: (a,b) Level sets of ¥, k = 1, ..., 12; at each iterationk, the basis functions are centered at the critical pointgéf and not at
the vertices of theii-stars. (c) Evolution of the number of critical points andested centers; the red, blue, and green colors represent th
number of maxima, minima, and saddle points. (d-f) Diffewws on the iso-surfaces of the volume-based appro>omatif .

Table 1: With reference to Figure 5, the table shows the humber of
critical points,2-saddles, and selected centers.

It. | Max. | Min. | Sad.| 2-Sad. | §Cent. | L*>-err.
1 |20 9 71 0 - -

2 |30 46 118 | 4 100 0.0957
3 | 64 38 144 | 4 1343 | 0.0783
4 | 54 17 113 | 3 2120 | 0.0751
5 |39 11 92 3 2510 | 0.0690
6 |31 12 85 3 2682 | 0.0691
7 |23 9 74 1 2784 | 0.0683
8 | 22 9 73 1 2814 | 0.0682
9 |21 10 73 0 2836 | 0.0683
10 | 20 9 71 0 2846 | 0.0683
14 | 19 9 70 0 2880 | 0.0682
15| 20 9 71 0 - 0.0683

the theory of the Reproducing Kernel Hilbert Spaces and ¢ge r
ularity of the kernel function [Aronszajn 1950; Poggio anildSi
1990], respectively. Algorithm 1 summarizes the main stefibe
iterative procedure.

3.2 Properties of the iterative scheme

Our experiments have shown thatfihas close critical points then

a function f*) might have saddle points of multiplicity equal to
or greater than two (Figure 4, 5, and Table 1). In fact, impgsi

that f(*) interpolates closg-values at a seR of redundant critical
points results in a low-varying behavior ¢f*) in a neighborhood
of R and a higher probability of generating multiple saddlesat t
region. Our tests have also shown thaffifs general then each
approximationf*) is general; indeed, the nullity relation is satis-
fied at each iteration. For more details on the choice of ttsisba
functions, we refer the reader to Section 4. As will be diseds
in Section 6, degenerate and redundant critical points regpect
to their persistence values can be simplified before runtiagp-
proximation scheme. In this way, we easily handle noisyascal
functions, which are commonly characterized by very clogeal
points with low-persistence values.

As shown in Figure 4(b), 5(b), and 6(c), the number of critica
points of each approximatiofi’*) increases at the beginning of
the iterations until a maximum is reached. This behaviorus d
to the fact that each approximatigit® is achieved by using few
basis functions, i.e. few interpolating conditions of thealues.
Then, the number of critical points gf*) starts to decrease until
it converges to the number of critical points ff In fact, at this
stage eactf*) incorporates the global structure pfind the small
discrepancy betweefi® and f**Y in terms of number and po-
sition of the critical points, forces the insertion of fewnneenters.
Note that the number of selected centers increaseskwith

Even though the computation @f and h := g1,» is fully con-
trolled by the distribution of the critical points, the apgimation
error ||f — f*)|| rapidly decreases to zero with respect to the
iterationk. In fact, a higher number of interpolating conditions is
used to computg™® from f*~1 k > 1 (Figure 5(c) and Table 1).
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Figure7: Level sets of (a-c) three functions with a different number
of critical points, and (d,e) two harmonic maps. The pararet
used for their approximation are reported in Table 2 and 3.

Table 2: Given the bitorusP in Figure 7(a-d) with a differ-
ent numbern of vertices, we computed four scalar functiofis
i=1,...,4, with an increasing number of critical points. The ta-
ble shows the numbés of iterations and-; basis functions used to
compute the corresponding approximations. The numbenuéce
and iterations slightly vary with respect to the growthnof
fi:(M=1m=1,s=4) fo: (M=11,m=12,s = 25)
f3: (M =31,m=35s=68) fa: (M=3,m=3,s=6

f1 f2 f3 fa
n kl 1 k)1 1 kl 1 k)1 T1
766 4 90 3 | 169 4 | 256 3 | 142
3070 3 | 134 6 | 329 4 | 310 4 | 196
12286 5 | 222 6 | 506 5 | 469 5 | 324
49150 5 | 358 || 10 | 967 5 | 601 8 | 542

As reported in Figure 7 and Tables 2, 3, the number of itematand
selected centers is slightly affected by a different samgptiensity
of the input surface and/or the choice of a different keroatfion.
This difference becomes minimal while increasing the nunadfe
vertices of P. Assuming that the surfac&t underlying the trian-
gle meshP is smooth, the functioh := gp is a piecewise linear
approximation of the restrictiog| ¢ of g to M.

4 Error-driven approximation

This section discusses how the topology-driven scheme eam-b
proved using locally-supported basis functions (Sectidy. 4 hen,
we use the selected centers to define a least-squares apatioxi
without (Section 4.2) or with constraints on the criticairgs of the
input function (Section 4.3). These two variants guarattieero-
bustness of the approximation against noise. Finally (Sedt4),
we estimate the approximation error.

4.1 From topology- to error-driven function approxi-
mation

Let us suppose that the approximation= g» of f has been com-
puted using the topology-driven scheme discussed in Se8tidVe
now improve the approximatioh of f by adding tog; an error-
driven termgs such that the error betweént+ g- » andf is below
the target approximation accuracy. In this casés a linear combi-
nation of locally-supported radial basis functions [Wemdl 1995]
and the center selection is guided by the target accuracgreth
fore, f> captures those local details ffpreviously neglected.

First of all, we construct the family of nested spa¢¥s}7_, (Sec-
tion 3.1) such that

Vi = span{z,y, 2,1} & Span{soz‘, (S I(k)} )

Table 3: Given the torus in Figure 7(e) with a different number

of vertices, the table shows the number(resp.,k2) of iterations
andr; (resp.,r2) basis functions used to compute the approxima-
tions of the same scalar function using the Gaussian (rdsp.,
harmonic) kernel. Fixing the kernel, the number of centerd a
iterations slightly vary with respect to the growthraf

Kernel function
p(t) :=exp(=t) || o) :=[t[°
n k1 r1 ko T2
400 4 110 3 86
1600 4 162 4 267
3600 4 187 5 400
6400 6 242 5 518
10K 5 293 6 640
40K 7 517 7 1148
160K || 11 990 7 1546
(&) f: n=15K, 1-genus (by
(© (d)

Figure 8: (a) Input functionf and (b) its approximatiorh. (c)

L -error betweenf and h, and selected centers. (d) Iso-surfaces
of g at saddles; here, we used th#)28% and 0.05% of globally-
and locally-supported radial basis functions.

Vi € Viy1, g € Vi. The notation spafp;, i € Z} refers to
the linear space generated by the basis functions € Z. In-
deed, each approximatioft® of f has a number of critical points
greater thary and is associated to the implicit maff”). At the last
iterationg, we have that the map

91(p) == 9" (p) =D cvips(p) + Bo + Prz + By + Bz, (5)
€T

7 := 7(9, is the superposition df- + 4) basis functions.

The coefficientsy := (a;)iez € R”, B:= (3:)i—o € R*, are the
solutions of the linear system

Lo =

b, o:=

{ g ] eRCHIXT (L= L@) (5

with b := [(f(p:))iez,0,0,0,0]7 € RCHHXT,

Assuming that the indices thare{1, ..., r} and according to (4),

the coefficient matrix is

3 A P 1 v

L:=| P’ 0 0 | cGlu(R), A:=(o(lpi—p;il2)ieT,
1" o0 o
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Figure 9: (a,b) Given the height functions:., f,, and f. on P
with respect to the coordinates axis, we visualize the spwading
approximationsh., hy, andh. as a new surfac®. Its regularity
confirms that the scheme generates smooth approximatiorgb), |
a larger discrepancy betweeR and Q highlights a larger error
between the input and the approximated functions.

P cR™™® is the matrix whose columns are ther,y,z)-
coordinates of the points iff := {pi}icz, and1 € R™*" is the
constant vector whose entries are equal to one. Since thexapp
imation error betweerf andh on the set of points corresponding
toZ is zero, we consider the points Bfwhere the error is greater
than a given threshold> 0,i.e. A := {i : |f(p:) — h(p:)| > €},
and we useA to updateg:. To this end, it is sufficient to compute
the new function

g(P) ==Y upi(P)+ > aidi(p), PER’,  (7)

1€T i€A

g1(p) glob. supp. g2 (p) loc. supp.

that satisfies the interpolating conditiong(p:) = f(p:),

1 € ZUA. To definegs, we also impose that it is zero at the
points of B := {p; }icz and at the vertices of the corresponding
1-stars. As error measure to defige we can also use the local
distances defined in [Biasotti et al. 2007; Edelsbrunnet. 2084].
Analogously, the piecewise linear approximatignsp and gz, »

to P provide theglobal andlocal component off.

Even though the critical points gf and f; are the same, those of
h = f1 + f2 and f might be different; in fact, summing. to f;
can add or cancel some of the critical pointsfef To avoid this
case, at each iteration we use tfaevalues at its critical points and
at the vertices of the correspondirgstars as interpolating con-
straints. In our tests, this situation never happened aisdddated
to special configurations of the critical points.

(@) (b)

(© (d)

Figure 10: (a) Level sets of (a) the magnitugieof an energy field
generated by twelve sources distributed on the earth seffaand
(b) its approximationh := gp. (c,d) Iso-surfaces of that repre-
sent the behavior of around the earth surface. The functign
has been computed with t2e52% and 31.41% of globally- and
locally- supported basis function§ f — h||.c = 0.081).

In (7), the new basis functiond¢:}.c4a are chosen with
compact support; in our implementation, we have selected
#(t) == (1 —t)*(4t + 1) € C?([0,1]) [Wendland 1995] as sparse
kernel (i.e.,¢:(p) := ¢ (||p — p:ll2/0:)) and the support; has
been set equal to the averaged radius oftsear of the vertexp;.
Finally, choosinge := 0 provides the highest approximation ac-
curacy; in fact,g interpolates all thef-values, using only a small
number of globally-supported radial basis functions (Fegs).

At each iteration, the evaluation of the critical pointsféf’ takes
linear time; in fact, thel-star structure ofP is calculated at the
first step to initialize the set of centers in (2) and, onceestpit is
used at the next steps without any additional overhead. ppyox-
imation g(k), k < q, is a linear combination of, basis functions
{5} ;ez00 andL® is the correspondingry, + 4) x (rx + 4) co-
efficient matrix in (4). Then, for the construction &f**Y we

ceg(k+1)
calculate only the new elemenfs(|| pi — p; [|2)}/S5., and

insert them if.(*). Modeling the local details of with compactly-
supported basis functions requires to insertlina sparse sub-
matrix, thus guaranteeing the scalability of the propoggar@ach
with respect to the number of vertices Bfand without creating a
bottleneck for the solution of the associated linear systientrig-
ure 9, we used the approximation scheme to reconstruct tfecsu
geometry of two shapes using the height function with respec
the coordinate axes. The results in Figure 10 and 11 hightigh
smoothness of our scheme.

If we assume thaf is computed by sampling an implicit function
v : R® — R on the surfacé, then we expect that the approxima-
tion error between and the topology- and/or error-driven approx-
imation g will be low as long as we are close to the surface. To
verify this remark, in Figure 12 the surfag&has been normalized
in such a way that the main diagonal of its bounding box hasoni
length and the-values belong to the intervéd, 1]. Until the sam-
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Figure 11: Given the functiory in (a), we computed four noisy maps (b-e, left and middlethHais achieved by summing foa Gaussian
noised,, With mean zero and standard deviation one, fg:= f + didgn, i = 1,...,4 (right). Here,d; decreases to zero while increasiing
Each column shows the critical points, the level setg; pind the approximated functidiy. The red boxes in (b,c) show that the level sets
of h1, ho are smoother than those ¢f, f», thus confirming that the approximation smooths the noigaoh f;. The red box in (c) shows a
set of clustered critical points that disappear in (d). Ijy @achh; resembles the behavior gfand|| f — hil|lc < 0.01,7i=1,...,4.

ple points fall inside the unitary sphere centered at thgdeater

of P, the discrepancy between the corresponding valuesaoflg

is lower than0.1. Moving far from the surface wherg is known
increases the approximation error. Maintaining the ovetalcture

of the proposed approach, the accuracy of the approximafien
aroundP can be improved by using additional interpolating con-
straints or ara-priori information on the underlying phenomenon.

4.2 Least-squares function approximation

Once the center®s := {p; := (pf, p?, pi) }icz Of the globally-
supported basis functions have been identified throughoat t
topology-driven scheme, we can also compute the best ajppaex
tion of f with respect to the least-squares error betwgem@nd f.

To this end, we search the function

9(P) = aipi(p) + fo + Bz + fay + P32, p € R, (8)

1€T
that minimizes the least-squares error
E(g) = llgr — fllz := > _ lg(p:) — f(p)|*. ©
=1

To compute the unknown®v;):cz U {Bo, 51, B2, B3} in (8), let us
introduce the following: x (r + 4) matrix

1 z
ailr a2 air 1 1 pf P1
€T Y z
a1 a22 azr 1 p3 py 2
L:= . (10)
T 1 z
an1  QGn2 anr 1 Pn p% DPn

with coefficients{a.; := ¢(||p: — p,|2)}/=; ", and the vectors

Ln

o=[o ... a fo B B B }TGR(T‘F‘I)Xl’
b:=[ f(p1) fpn) 17 e R™.

The functional in (9) can now be rewritten #g) = || Lo — b)|3
and its minimum is attained at the solutienof the normal equa-
tion L"Lo = L7b; i.e., 0 = L'b, with LT := (L”L) 'L pseu-
doinverse of.. Assuming that. is large, we do not construct the

n x (r +4) matrix L but we store only thér + 4) x (r + 4) co-
efficient matrixL” L and the right-hand vectd”b. Then, the
solution o of the corresponding linear system is computed using
direct or iterative solvers without explicitly storing tipseudoin-
verseL!. An example of least-squares approximation of a noisy
scalar function is shown in Figure 13.

4.3 Function approximation with least-squares con-
straints on the set of critical points

Let us suppose thd# := {p;, ¢ € Z} is the set of centers which
guarantee that the functiog in (8) has the same critical points
of f. In particular, we have thaj(p:;) = f(p:), ¢ € Z. Using
the set of basis function§p; (p) := ¢(||p — pill2) }:cz centered

at the points of3, we can attenuate the previous interpolating con-
ditions by imposing thay approximates all the¢'-values but with

a greater accuracy on the valuesjfoét its critical points. This is
equivalent to search the functigrthat minimizes the functional

E(g) =Y _lgi)—f(@)[*+e Y lgp)—f(p)*, €>0,
€L icZC

(11)
whereZ¢ is the complementary of ande is a trade-off between
the two terms off/(¢). Note that ife = 0 then we get the solution
to our initial problem (i.e.g» and f have the same critical points).
If ¢ = 1, theng is the least-squares solution of (9). Therefare,
is the trade-off between preserving all the critical poiots’ and
minimizing the least-squares error over all th&alues. As shown
in Figure 13, the constrained least-squares formulationiges a
smooth approximation while controlling the final distrilmut of the
critical points.

To compute the minimum of the functional in (11), we observe
that E(g) = |[Lio — b1 |3 + €||L2o — bal|3, whereLy, Ly are
the sub-matrices d in (10) whose rows correspond to the indices
in Z andZ¢, respectively. Analogously; andb, are the sub-
vectors ofb whose entries correspond to the indicegiandZ°.

Indeed, we rewritd”(g) as
— bl
g 61/2b2

L, 2

s &,

)
2
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Figure 12: Evolution of theL>°-error between a volume-based functiofx, y, z) and its approximatiory(x,y, z) computed by using the
values ofv on a surfaceP. The iso-surfaces are related o The plots show the maximubi®-error (y-axis) betweem and g on the points
of a set of spheres centered at the barycenté? aihd with increasing radii £-axis).

) . ) thatg is such thay» and f have the same critical points, we have
Table 4: Computational cost of the main steps of the proposed () = f(p,),i € 7 and

framework;r and n is the number of basis functions and vertices

of P at the iterationk. Finally, d is the number of new basis func- n
tions that have been added with respect to the previoustitera E(g):=llgr — fll5 = _ lgr(p:) — f(p)[*
Task k=1 k>2 i=1
Critical point class. O(n o(1) _ A N2 = Lo — by 2.
Matrix constr./updates| O(r?/2) O(nd/2) Lezz:c lg7(B:) = (po) IE 1l
Sol. linear system o(r? O(r?)
Computation oy O(rn) O(rn) From (6),c = L™'b and the error is2(g) := ||[L;L"'b — by ||3.
Morse Complex simpl.| O( ]2\4 +mts)n) | = Finally, for the least-squares case (12) we have that
Least sq./Constrain. | O(r~) —
E(g) = Lo —b|3
T T —1 T T 2
whose normal equatioW 2 = 0 is = |L(Li L1 + €L2 L2) " (Li b1 + €Lz ba) — b2,

T ajayT L, T 1j2rT b1 Since the remarks in Section 4.2 and 4.3 are independeng &&th
[ Li €/7Ls } 2L, |97 [Ll ¢ L2] /?p, |’ nel and its support, the previous discussion also applidseteol-
umetric approximation achieved as superposition of botially-

i.e., and globally-supported basis functions (Section 4.1)|eTdtsum-
(LlTLl + eLzTLg) o =LTb; + ¢LIbs,. (12) marizes the computational cost of the proposed framework.

As e tends to zero, the interpolating conditionép;) := f(p:), 5 Properties of the volume- and surface-

¢ € Z, dominate the value of(g) in (11); therefore, the least- . .

squares solution is forced to interpolate the valudg (p:)}icz. based approximation

As a consequence, the critical points @f will be the same or . . .

close to those off. By increasinge, we reduce the approxima- In Section 5.1 and 5.2, we present the main properties ofdhe v

tion error||g» — f||» and accept a local discrepancy between the Metric functiong and the piecewise linear functign .

critical points ofgr and f. The least-squares scheme and smooth

basis functions guarantee that this discrepancy is asedcia a 5.1 Properties of the volume-based approximation g

low number of critical points. We expect that reducinthe criti-

cal points ofg» become closer to those ¢f To select the trade-  We first discuss the computation of the gradient field and tite c
off ¢ between smoothness and approximation accuracy, statistic ical points of the approximatiop: D C R* — R of f: P — R.
and heuristic methods (e.gl-curve) have been extensively dis- Then, we show that the harmonic kernel provides a smoothgnap
cussed in [Hansen and O’Leary 1993; Wahba 1990]. Figure)13(c in the interior of P, whose values are a subset of the imagg.of
shows the typicalL-curve associated to the functionglg) with
respect to different choices ef The optimal threshold that min-
imizes E(g) gives the best compromise between smoothness and
least-squares error. For more details on fheurve, we refer the
reader to [Hansen and O’Leary 1993].

Gradient field and upper bound to the energy of  ¢g. Without
loss of generality, we assume that the implicit represemtat is
still of the form (5). In fact, we can rewrite (7) as (5) by rema
ing its terms and separating the indices related to the tjeba
o ] ) and compactly-supported basis functions. Indeed, in tHewe
4.4 Error estimation for the interpolating and least- ing it is not necessary to distinguish between globally- ledlly-
squares approximation supported kernels, which are treated in the same manneiv-Der
ing (7), we compute the gradient gfas
Let us now consider the error estimation for the interpotati
case. Since th¢-values are known orP, we estimate the er- Va(p) = ZOMP;(P) PP 1 (8,8, 0), (13)

ror |[gr — f|l2. Using the notation in Section 4.3 and assuming p lp — pill2
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Figure13: (a,b) Critical points and level sets of a noisy functifn(c) Variation ¢-axis) of the least-squares err@f(g.) in (11) with respect
to several values of the threshaldz-axis). Here g has been computed using only the maxima and minima as itégingconstraints. (d)
Variation (y-axis) of the critical points ok. := g..» with respect ta (z-axis). The red, blue, and black curve shows the nhumber ofmaax
minima, and saddles di., respectively. (e,f) Level sets of two approximationsesponding to different thresholds. Level sets of (g) the

least-squares (9) and (h) constrained least-squares (fpfpjaximation.

wherecp/ is the derivative of the kernel functiop. From (13), we
estimate the energiV¢||2 as follows:

p Pi
Vo)l < || 3 avei(p) =L ' + 1181l
1€T —Pi
< laillgi(@)] + 118
€L
< Cllafly + [1Bll2 < CV/rllall2 + [|8]]2,

whereC' := sup,cp+{¢ (1)}, o := (a)iez, and g := (Bi)3s.
Note thatC' is finite for most of the kernel functions such as the
Gaussian kernel and compactly supported kernels. Usintethe
tion in (6), the previous upper bound becomes

IV9(P)ll2 < VPAmax(L7H)[bll2 < VAL (L) [

Therefore, the bound to the gradient norm is proportionéhéan-
verse of the minimum eigenvalue of the coefficient malkriand to

the norm||b|j2. In Section 3.1, each basis function has been cen-
tered at a point oP. However, if we are interested in analyzing the
derivatives ofg on P, it is sufficient to center the basis functions
at the pointsc; := p; + dn(p;), ¢ € Z, close to the vertices dP

and in the normal direction(p;). Here, the offset valué is pro-
portional to the bounding box @? [Morse et al. 2001; Shen et al.
2004; Turk and O'Brien 2002].

Special choice: volume-based harmonic approximation. The
harmonicity and the minimization of the Dirichlet energye ahe
most natural ways to characterize the smoothness of anxaprao
tion. In this context, the maximum principle of harmonic reap
easily applied to our approach. In fact, the valueg iofthe interior
of P are fully determined by its boundary conditions, which ae s
lected among thg-values. Using the kernel functiop(t) := 1/t
of the 3D Laplacian operator in (3) and during the subseqitent
erations, we get that each basis elemgyip) is harmonic. Since
the functiony; (p) := ||p — pill; ' is not defined ap;, the har-
monic kernel is centered at the offset poirtspreviously intro-

In (h), we used the thresheld/hich minimizes(ge.).

duced. In particularg is harmonic (i.e.Ag = 0) in D := R*\B,
with B := {c; }icz, as superposition of harmonic functions.

From the construction qf, it follows thatg : D — R is the unique
solution of the Laplace equatiahg(p) = 0, p € D, with Dirich-
let boundary conditiong(p:) = f(p:), ¢ € Z. Once the boundary
constraints have been fixed, the functipminimizes the Dirichlet
energy[,, [[Vg(p) ||I2dp. We conclude that the topology-driven ap-
proximationg is a smooth function which minimizes the Dirichlet
energy and interpolates the minimal numberfefalues necessary
to guarantee thaft andg» have the same critical points. In partic-
ular, we expect thaj has a low number of critical points.

Analysis of the critical points of g. To compute the critical
points of g we can proceed in two ways. A first approach is to
sample the functioy at the nodes of a voxelizatiow of the vol-
ume around the input surfad@. According to [Gerstner and Pa-
jarola 2000], the nodes af are classified as regular or critical on
the basis of the number of connected components of the Sieapli
edge graph. In this case, the function values at the nodédgare
early interpolated on each tetrahedron. Alternative aggtes are
discussed in [Weber et al. 2002; Weber et al. 2007].

A second choice is to classify the nodes of the grid using the
values of the gradient field [Hart 1998]. From (13), it follew
that p € R*, p ¢ B := {pi}icz, is critical for g if and only if

ez aiwi(p)ﬁ + (B1, B2, 33) = 0. The discrepancy be-
tween the smoothness gfand the discreteness of the voxel grid
implies that the values oVg at the nodes of the grid will not
be null. Indeed, we replace the previous condition with an ap
proximate version|Vg(p)||2 ~ 0; the thresholdd used to ver-
ify that ||Vg(p)|l2 < ¢ is defined on the basis of the values
{IIVg(p)|l2}pev. As shown in Figure 14, the smoothness of the
basis functions guarantees a low number of critical poifiigg 0



Figure 14: The smoothness properties of the approximation guar-

antees a low number of critical points (black dots).

5.2 Properties of the surface-based approximation gp

We now provide a global and a local upper bound to the approx-

imation of h := gp to f, also analyzing the critical points gfp.

Upper bound to the approximation of h := gp to f on P.
Without loss of generality, we omit the linear term in (8). Weh

in Section 4.4 we have evaluated the least-squares appmexim

tion error ||gp — f]||2, we now derive an upper bound to the er-
rorex := |g(px) — f(pr)|, k= 1,...,n. Sinceg interpolates the
f-values{ f(px)}rez, we getthat, =0,k € Z. Letj € Z be an
index such thad # f(p;) = > ,c; «ipi(p;) andk ¢ Z. Using

the identity f (px) = 285 5™ a¢;(p;) and the upper bound

C = supt€R+{|<p(t)|}Jf(tP(’)j)the kernelp, from (6) we have that
atpe) = £ = [ (11(o0) - 2 goi(pj))’
< St (lestonl + | K2 1)

1/ (s
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whereZ* = {j € Z, f(ps) # 0}. Indeed, the approximation error
is bounded bynin (L) and||b||2.

Upper bound to the approximation of A := gp to f on trian-

gles. Let us consider the trianglé := (p;, p;, px) of P and as-
sume thay interpolates thg-values at the vertices &f; therefore,
the following relations holdf(ps) = g(ps) = >_,c7 c1v1(Ps),
s =1,4,k. The piecewise linear approximation ¢fon the tri-
angleT" is defined asf(p) := A1 f(p:) + A2f(pj) + Asf(Pk),

@)n =2K (b) (© (d)

(€) /" n=8K ) b Q) f*n=32K

(h) h () f* n = 128K Q) R

(k)

Figure 15: (a,c) Critical points and (b,d) level sets of a noisy func-
tion f (m = 28, M = 32, s = 64) and its topology-driven approx-
imationh := gp (m = 4, M = 4, s = 12). Level sets and critical
points of (e,g,i) the linear interpolatiorf* and (f,h,j) approxima-
tion h := gp+ on (k) several tessellatiori8* of P.

p € T, with barycentric coordinates; , A2, A\s. Then,

lg(p) — fF(P)| = |\ Y au(@u(p) — @u(pi))+
+22 Y ailei(P) — @i(ps)) + A3 Y aulu(p) — wi(pr))
ez leT
<MY aul o) — i)l + A2 Y laul lpu(p) — u(py)|+
+ s ) leal [u(p) — @u(pr)| < 20|z

<20V A (D)[bll2,  C = sup {|e(t)[}}.

teR+
Indeed, the upper bound to the approximation error betwgen
and f on a trianglel’ whereg interpolates the'-values at the ver-

tices, is proportional ta. ! (L) and to||b).

Analysis of the critical points of  gp. Assuming that we have
computedy as described in Section 3, we evaluate its value at each
point of P and not only at its vertices. Indeed, we compute the
critical points of the piecewise linear function that iqtelates the
values ofg at the vertices of an over-tessellati@t of the sur-
faceP. To this end, a new surfad@* is generated by subdividing
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Figure 16: (a) Level sets and critical points of a noisy map (= 380, M = 390, s = 768). Topology-driven approximation achieved
using (b, d) all the simplified critical pointsi{ = 55, M = 61, s = 114) and (c, e) only the simplified maxima and minima & 51,
M = 55, s = 104) as interpolating constraints. In both cases, the shapéelavel sets and iso-surfaces are almost the same.

@ (P, fhg="17 (b) f

(C) h = gp
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Figure 17: Level sets and critical points of (a,b) a noisy magith m = 1426 minima,M = 1550 maxima,s = 2988 saddles and (c,d) its
smoothed approximatioh := g of f. Here,h hasm = 28 minima, M = 25 maxima, ands = 65 saddles. Im, the critical points off
with low-persistence have been smoothed out by the topalidggn approximation and thé&>-error betweenf andh is below0.001. (e)
Iso-surfaces of. Note that the level sets in (c) and the iso-surfaces in (@oshty resemble the noisy level sets in (a).

each triangle of P into four sub-triangles by joining the mid-point
of each edge of. Then, we study the evolution of the critical points
of the piecewise linear functions, gp+, andf*. The scalar func-
tion f* : P* — Ris computed extending from P to P* using the
linear interpolation of thef-values; ifp is a refined vertex ofP*
and corresponds to the midpoint of the edgej) of P, then we
define f*(p) := (f(p:) + f(p;))/2. By applying several times
the previous scheme, we recursively tesselfateand update the
corresponding majp*.

Figure 15 shows the evolution of the critical points of theabap-
proximations on the same surface with different tesseltati If f
has a low number of critical points, then the number of ailtic
points of f* andgp+ slightly increases with respect #o If f has

a high number of critical points, then the number of critipaints

of both f* and gp+ remains of the same order and is almost the
same. This means that extendifigo the volume aroun® using

a smooth functiory resembles the number of critical points of the
piecewise linear case. The difference between the numbenitof
ical points of f*, g» and f is mainly due to the over-tessellation
of the surfaceP. In fact, over-tessellating rapidly increases the
number of vertices gP* and the probability of generating discrete
critical points when we consider the piecewise linear axipna-
tion gp+x. Comparing (e,f), (g,h), (i,j) in Figure 15, the additional
critical points have a low variation of the persistence &alln fact,
they belong to the refinett or 2-star of a point that is critical at the
previous resolution. For each tessellation and for htrand k,
the shape and variation of the level sets is almost the same.

Applying the Loop subdivision to the input surfageincreases the
number of vertices of the subdivided surfaé and improves its
smoothness. Our tests have shown that a higher smoothn@ss of
produces a lower number of critical points @+ with respect to
the over-tessellation. Examples of stability of the appration
scheme with respect to noise are shown in Figure 16 and 17.

6 Applications

This section presents three applications of the proposmuhef
work. In Section 6.1, we introduce a simple method for enhanc
ing the visualization of the behavior gfthrough the iso-surfaces
Y = {p € R*: g(p) = f(pi)}, i €C. In Section 6.2, we dis-
cuss how a function with a large number of clustered criicaihts
can be approximated by simplifying those that are redunideie
description off. Then, Section 6.3 discusses possible variations in
the approximation and degenerate cases.

6.1 From surface- to volume-based scalar functions:
an enhanced visualization approach

The volume-based approximation ¢f allows us to approxi-
mate f on the volumeV around P, while preserving key-
elements for its description such as the distribution ofciti$-
ical points and the related function values. To this end,
we consider the sef{f(pi),7 € C} as representative func-
tion values to visualizeg and trace the related iso-surfaces
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Figure18: (a) Level sets of two maps, f» and (b) their approximationa, ko defined on a torus and a sphere. (c-p) Level sets and critical
points(M, m, s) of the approximations generated by the iterative scheme LPh-error betweer( f1, f2) and (h1, hz2) is 0.087.
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Figure 19: Integral lines ofVg, whereg is the volumetric approxi-
mation of the mapg., f in Figure 18(a): the starting positions of
the integral lines are the (a) red and (b) black circles.

%= {p € R*: g(p) = f(p:)}, i € C (Figure 8 and 10). These
iso-surfaces and those related to the critical iso-valtigs[@/eber
etal. 2007] are useful to inspect the behaviog oh the volume sur-
rounding the input shape and enhance the analysfs 8 shown

in Figure 10(c,d), the smoothness of the iso-surfaces cosfihe
regularity ofg around and orP. Note that the functiory is inde-
pendent of the resolution @ and the voxel gridV. Furthermore,
its global support allows us to compute the value of the floncat
each point of the volume arour®land the approximation accuracy
is higher at those points which are closefRolsosurfacing [Bajaj
and Schikore 1998; Stander and Hart 1997; Gerstner andoRajar
2000; Lorensen and Cline 1987] and volumetric rendering-tec
niques [Fujishiro et al. 2000; Gyulassy et al. 2007; Pascetcal.
2004; Weber et al. 2007] are used to guarantee that the tedrac
iso-surfaces have the same topological structure as tgmakiand

to enhance the exploration of the propertieg afoundP.

The proposed approximation strategy can also be used telaterr
different phenomena, each represented by a scalar funmtidhe

the same critical points of;, = = 1,...,l. To compute such a
function, we proceed as done in Section 3; the only diffezeisc
that at the iteratior{k + 1) the approximatiory**% is a linear
combination of the radial basis functions centered at eaticat
point of the scalar functiong%ki), 1 =1,...,1, and at the vertices
of the corresponding-star (Figure 18(a-p)). Therefore, the criti-
cal points of eacly; contribute to define aniquevolumetric ap-
proximationg, which is used to compute global descriptors of the
interaction among théf; }._; such as integral lines, particles, and
ribbons of Vg (Figure 19 and 20). Note th&fg is computed by
analytically deriving the implicit function (7).

6.2 Approximating f with simplified critical points

The topology-driven approximation guarantees that has the
same critical points off, which correspond to the nodes of their
Morse complexes and are joined by flow lines of steepest as-
cent/descent (Figure 21). Finally, we expect that the afdbe
complex ofh are smoother than those ¢f Whenever the scalar
function f has a large number of critical points associated to a low
variation of the f-values, it is useful to simplify them and com-
pute a smooth approximation ¢f with a lower number of criti-
cal points. To this end, [Bremer et al. 2004] defines a topelog
cal hierarchy forf that is constructed by performing a progressive
simplification of the Morse comples of f through the cancella-
tion of pairs of critical points. The importance weight asated to
the pair(pi, p;) is measured as theersistencd f(p;) — f(p;)|

of p;, p;. The local updates of the complex are performed by
iteratively removing those pairs with the lowest persisteiand
reconnecting the neighbors of the removed nodes. Each made r
moval affects the number and configuration of the criticahts

of F without changingf or modifying the gradient behavior in the
neighborhoods of the cancelled pairs of critical pointserEffiore,

at the end of the simplification we get a hierarchy fowhere each
Morse complexF*) is not associated to a corresponding scalar

same or on different surfaces. Let us suppose that we know thefunction f*) onP. Thee-simplification[Edelsbrunner et al. 2006]
measurements of a phenomenon on two or more surfaces. Thesgeplacesf with a new function: such that: has the same points of

functions might show a common behavior on the regions oédiff
ent surfaces, changes in their relations, or a similar biehawith
respect to a comparison measure [Biasotti et al. 2007; Edels
ner et al. 2004]. More precisely, lgt : P; — R be a scalar
function defined on &-manifold triangle mestP;, ¢ = 1,...,L.

persistence of higher than a given threshotdand theL*°-error
betweenf andh is lower thane.

In this context, the idea is to buikdby using only the critical points
of f that describe its global behavior and neglecting thoseatet

To apply our approximation scheme, we search a smooth func- redundant. To this end, we use the persistence-based faatiin

tion g : R® — R with global support such thatp, has exactly

to identify the set of critical points which guide the impliapprox-



Figure 20: Iso-surfaces of the volumetric approximation of two scélenctions defined on two nested spheres.

Table 5: Timings (s:ms) related to the main steps of the proposed
framework; i.e., the center selection, the constructiotthefvolu-
metric approximatiory of f, and the computation of the := gp.
Tests are performed on a Pentium IV 2.80 GHz.

Test fVert. | gCent. | flter. | Cent. sel&kyg h

Fig. 1 60K 1011 16 4.18 2.01
Fig. 3,4 || 60K | 4472 9 4.02 0.80
Fig. 5 280K | 2789 16 8.41 2.56
Fig. 6 310K | 3613 13 24.58 10.23
Fig. 10 125K | 1231 11 6.01 2.46
Fig. 23 65K 975 7 8.01 2.12

imation of f (Section 3.1). In some cases, it might happen that we
get a functionh whose set of critical pointstrictly includes the
preserved maxima, minima, and saddlesfofin fact, let us sup-
pose that the persistence-based simplification discamdsritical
pointp € P of f and that it becomes a critical point ¢f*) at the
iterationk. Sincef**Y interpolates thef-values atp and at the
points of its one starp is a critical point of the final approxima-
tion h of f. The smoothness of the solution guarantees the rein-
sertion of a low number of simplified critical points ¢fin h. To
avoid this reinsertion, we can proceed as discussed indbedti.
Our tests (Figures 1(e-f), 16, 17, 22, 23(d), and 24) havesshbat

the number and distribution of the critical points fofstill reflect
those of f and theL*°-error betweenf andh is low. The error
can be further reduced by adding the error-driven term based
compactly-supported radial basis functions; the numbeetcted
centers at each iteratidnis maintained low by using thg-values

at the extrema of each® as interpolating conditions.

6.3 Scalar functions approximation with weak con-
straints and treatment of degenerate cases

Since the global structure ¢fis reconstructed by a linear combi-
nation of globally-supported basis functions, we must enshat
each matrixL™®, k < g, still fits the available main memory. To
address this issue, we devise two main strategieg. hiés a huge
number of critical points, which appear clustered into onenore
regions, then they are simplified (Section 6.2) before mgrhe
approximation scheme. |If the critical points have a highsiger
tency, then a strong increase of the simplification rate trighete
points that are important to reconstruct the global stmectdi f. In
this case, we use a low number of globally-supported basis-fu
tions by centering locally-supported basis functions atuértices
of the 1-star of each critical point. More precisely, at each iterat
we consider ag**+1 .= 7" y 9, thus neglecting the func-
tion values at the vertices of thestar of the indices iQ®, that
is, the se7 ™) .= {j € N(i), i € Q™} (Figure 6).

@) f (b) h

©f

Figure21: Morse complex of (a,c) the inpiitand (b,d) the approx-
imate functionh := gp, whereg is the topology-driven approxi-
mation. In both examples, the complexes have a similar tsiric
include a few number of paths with different shape, and the af

the Morse complex df are smoother than those ¢f

) h

If f is not general, then the Euler formula and the nullity relati
are not satisfied. A strict inequality in the definition of thex-
ima, minima, and saddles implies that the poitselonging to
the edges along whicfiis not general are not critical. However, at
a given iteratiork the f-values at’R become interpolating condi-
tions if a point of R belongs to the -star of a critical point off (*).
We also note that we can force the approximation to intetpola
the f-values along the edges whefds not general by consider-
ing a weak inequality in the definition of the critical point&ven
though the Euler formula fof*) is not necessarily satisfied, the
stop criterion remains unchanged and the stop is usualbheshin
few iterations (Figure 25 and 26).

To guarantee thaf and its approximation share the same global
behavior without having the same critical points, the regty of
the convergence suggests to stop the iterations when theerwh
critical points in the hierarchy and the centers of the bfasistions
slightly vary between two consecutive iterations. Regzssllthe
regularity of f and the sampling density &, the tests presented
throughout the paper show that the iterative scheme rexjiéveit-
erations to converge and the selected centers are a snahpege

of the number of input points. Timings are reported in Table 5
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Figure 22: (a) Morse complex of a functiofi on a3-genus surfacé’; f hasM = 327 maxima,m = 57 minima, ands = 388 saddles.
(b) The picture shows the critical points that have been taiied in those regions (yellow boxes) where they are dledtel he simplification
step has selecteti’4 maxima,26 minima, and204 saddles, i.e. th67% of the input critical points. (c) Level sets and color mapfaind
(d) of the approximated functiol; the L°°-error betweenf andh is 0.023. (e) Zoom-in on the Morse complex pfind the level sets df
in the bottom part of°. (f) The iso-surfaces of the volume-based approximatignreflect the spherical behavior gfonP.

@ f (b)

Figure 23: (a) Critical points and (b) level sets of an electrostatiare f measured on a molecular surface. The functfohas been
simulated by placing random charges on the molecular serféc) Level sets of the approximated scalar functidsuilt by maintaining all
the critical points off; ||f — k||l = 0.019. (d) Simplified sef of critical points; few points have been maintained in thétdmo part of the
molecule due to a low variation of thevalues on this region. (e) Level sets of the scalar functibbuilt onS. Since||f — h*||o = 0.023,
we conclude that the removal of clustered and redundantafipoints did not affect the point-wise approximationfof

(©h (d) h* (e)h*

tions concurrently defined on several surfaces, as welkdsdbrre-
lation and redundancy. We have demonstrated our methodtbn bo
synthetic and real data, which include computer graphiggo-t
graphic, mechanical, and biomolecular surfaces as welkezsore-
ments of the electrostatic charge, mathematical and gtrestons.
We plan to extend the proposed framework to time-dependidg a
three-dimensional scalar functions. For multi-dimenaloiunc-
tions defined or2-manifold surfaces, the approximation scheme
remains unchanged; in this case, we treat each componéreegi-
arately. Then, the visualization can be addressed by fiximgna:
ber of variables and drawing the iso-surfaces with respethé
remaining free parameters, applying a multi-dimensiowalisg,

or using state-of-the-art techniques developed for thealisation

of multi-dimensional data.

(@) (b) (© (d)

Figure 24: (a) Morse complex of a map with M := 60 max-
ima, m := 63 minima, ands := 125 saddles. The simpli-
fication has selected th89% of the critical points of f (i.e.,
M =23, m := 24 minima, ands := 49). Level sets of (b
and (c) the approximated functidn ||f — hl|cc = 0.081. (d) Iso-
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Figure 25: (a) Height functionf with respect to the:-axis on a
vulcano rim and (b) its smooth approximatién Both f and h
are not general; the evolution of the critical ponts j&": , M =
154, m =91, s = 232, r = 2720; f®: M =155, m =91, s =
237, 7 = 2754; f®: M = 155, m = 91, s = 244, r = 2768.
From the fourth step on, the critical points of the currenpegxi-
mation remains unchanged and the iterative procedure stops

@) (b) (© (d)
(23,6,7)  (13,10,23)  (10,9,19)  (8,5,13)
(e) (f) (9) (h)
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Figure 26: (a) Scalar functionf with five 1-stars wheref is not
general: one is visible in the bottom-left part of the torised
also the red region in (h)). (b-f) Approximating functiofi§®,
k=1,...,5 and critical points(M,m, s); (g) selected centers;
(h) zoom-in on the region whejeandh := ) are not general.
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