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Abstract

The behavior of a variety of phenomena measurable on the bound-
ary of 3D shapes is studied by modelling the set of known mea-
surements as a scalar functionf : P → R, defined on a surfaceP .
Furthermore, the large amount of scientific data calls for efficient
techniques to correlate, describe, and analyze this data. In this con-
text, we focus on the problem of extending the measures captured
by a scalar functionf , defined on the boundary surfaceP of a 3D
shape, to its surrounding volume. This goal is achieved by comput-
ing a sequence of volumetric functions that approximatef up to a
specified accuracy and preserve its critical points. More precisely,
we compute a smooth mapg : R

3 → R such that the piecewise lin-
ear functionh := gP : P → R, which interpolates the values ofg
at the vertices of the triangulated surfaceP , is an approximation
of f with the same critical points. In this way, we overcome the lim-
itation of traditional approaches to function approximation, which
are mainly based on a numerical error estimation and do not pro-
vide measurements of the topological and geometric features of f .
The proposed approximation scheme builds on the propertiesof f
related to itsglobal structure, i.e. its critical points, and ignores the
local details off , which can be successively introduced according
to the target approximation accuracy.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Boundary representations—Curve, surface, solid,and object
representations; G.1.2 [Approximation]: Approximation of sur-
faces and contours.

Keywords: Critical points, topological and geometric algorithms,
surface/volume-based decompositions and visualization,2D scalar
functions, topological simplification, computational topology.

1 Introduction

Given a scalar functionf : P → R, defined on a surfaceP , we ad-
dress the problem of defining a mapg : P → R, which extendsf
from P to R

3 by computing a sequence of volumetric functions
that approximatef up to a specified accuracy and preserve its crit-
ical points. The implicit mapg is the superposition of a set of ba-
sis functions, generated by a kernelϕ ∈ Ck, so that the order of
smoothness ofg isk. The novelty of our approach resides in the use
of the critical points off to drive the approximation process: this
choice allows us to use a relatively small amount of basis functions
and provides an easy control on the local details and the degree of
smoothness of the final approximation.

The large amount of scientific data available nowadays in digital
form calls for efficient techniques to correlate, describe,and ana-
lyze this data. Most frequently, scientific data correspondto mea-
surements or sampling of scalar functions that model the behav-
ior of a variety of phenomena measurable on the boundary of a
3D shape. For example, in geographical data analysis a terrain
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model is associated to an elevation map; in engineering, scalar func-
tions are generated by solving differential equations related to sim-
ulation problems (e.g., the Laplace and heat equation [Belkin and
Niyogi 2003; Ni et al. 2004]) or decomposing the spectrum of data-
dependent kernels [Belkin and Niyogi 2003].

A volume-based approximation off : P → R, which gives an in-
sight into the behaviour off in the space whereP is embedded,
could be useful to make predictions about the phenomenon or an-
alyze their reactiveness to other entities. For instance, the approx-
imation of spatio-physico-chemical properties measured or simu-
lated on a molecular surfaceP to the surrounding volume could
be used to predict the interactions among proteins [Cipriano and
Gleicher 2007]. Other examples off are the electrostatic charge,
hydrophobicity, temperature, and pressure. Also, a volume-based
approximation off enables to couple the analysis of the behaviour
of its iso-contours with the corresponding iso-surfaces ofthe volu-
metric approximation.

Recent research work addresses the problem of converting sur-
face data to volumetric one: volumetric functions have beenused
to parameterize 3D shapes for trivariate B-spline fitting [Martin
et al. 2008] and solid modeling applications such as tethrahedral
remeshing and solid texture mapping [Li et al. 2007]. For instance,
in [Martin et al. 2008] the iso-parametric paths [Dong et al.2006]
of two orthogonal harmonic functions on a0-genus surfaceP pro-
vide a parameterization grid that is used to fitP with a trivariate
B-spline. Our approach builds on implicit modeling techniques,
can be applied to surfaces with arbitrary genus, is more flexible
with respect to the smoothness properties off , and does not require
a parameterization domain.

Traditional approaches to function approximation are mainly driven
by a numerical error estimation: from our perspective, instead,
the critical points are a natural choice to guide the approximation
scheme as they usually represent very relevant informationabout
the phenomena coded byf . For instance, in biomolecular simula-
tion the maxima of the electrostatic charge are those features that
guide the interaction and that should be preserved for a correct anal-
ysis of the phenomenon. Approximating the electrostatic charge on
a molecular surface without preserving the distribution ofits max-
ima and minima introduces artifacts in the modeling of thoseinter-
actions that are guided by the energy extrema. By preservingthe
shape of the input scalar function through its critical points, it is
also possible to devise an approximation scheme that allowsus to
distinguish theglobal structureof f from local details, which can
be preserved or discarded according to the target accuracy.

More precisely, given a2-manifold triangle meshP in R
3 and a set

of scalar values at the verticesM := {pi}n
i=1 of P , let us consider

the piecewise linear mapf : P → R that interpolates these values
overP . Our aim is to compute a smooth functiong : R

3 → R such
that the piecewise linear mapgP , which interpolates the values ofg
at the vertices ofP , approximatesf within a prescribed error and
preserves its critical points. The approximation scheme computes
g := g1 + g2 as the sum of two componentsg1, g2 : R

3 → R such
that

1. g1 captures the global structure off in terms of its critical
points, that is, the piecewise linear scalar functionf1 := g1,P



(a)P , n = 60K, 8-genus (b)f : P → R (c) h : P → R, h := gP

(d) g : R
3 → R (e)h⋆ : P → R, h⋆ := g⋆

P (f) g⋆ : R
3 → R

Figure 1: Overview of the proposed approach. (a) Critical points (M = 99, m = 35, s = 148) and (b) level sets of a stress functionf on
a mechanical surfaceP . Here,M , m, ands is the number of maxima, minima, and saddles. (c) Level sets of its approximationh := gP
achieved by usingr = 1924 globally-supported basis functions:f andh have the same critical points and theL∞-error betweenf andh
is 0.094. (d) Iso-surfaces of the volume-based approximationg : R

3 → R of f . (e) Level sets of the functionh⋆ computed using a simplified
set of critical points (i.e.,M = 28, m = 8, and s = 50 critical points) and r = 1011 globally-supported radial basis functions. (f)
Iso-surfaces of the volume-based approximationg⋆ of h⋆; comparing (b) with (e) and (d) with (f) we see that the level sets share a common
behavior aroundP . (h) Distribution of theL∞-error betweenf andh⋆, where‖f − h⋆‖∞ = 0.017 (red areas).

that interpolates the values ofg1 at the vertices ofP has the
same critical points off . On the basis of this property, we
refer tof1 as theglobal componentof f ;

2. g2 recovers the local details off ; i.e., the piecewise linear
scalar functionf2 := g2,P , which interpolates the values
of g2 at the vertices ofP , guarantees that the error betweenf
andf1 + f2 is below the target approximation accuracy. On
the basis of this property, we refer tof2 as thelocal compo-
nentof f .

The functiong1 is computed as a linear combination of globally-
supported radial basis functions [Aronszajn 1950; Bloomenthal and
Wyvill 1997; Dyn et al. 1986; Poggio and Girosi 1990], whose cen-
ters are selected through an iterative procedure which converges in
a generally low number of steps. The functiong2 is generated as a
linear combination of locally-supported radial basis functions, us-
ing as error metric theL∞-norm or a local comparison measure [Bi-
asotti et al. 2007; Edelsbrunner et al. 2004].

An important constraint ong is its global support. In fact, using
only compactly-supported basis functions would provide a map g
with several and small iso-surfaces that have artifacts where the
supports of the basis functions intersect. Therefore, the use of a
compact support results in a poor visualization ofg and a coarse
approximation off onP . Furthermore, the support selection is not
trivial and a local definition ofg would not extrapolate the behavior
of f on the interior and exterior ofP . On the contrary, using glob-
ally supported radial basis functions cannot result in wrong blends
and the kernel variance can be adapted to the local sampling density
and geometry [Dey and Sun 2005; Mitra and Nguyen 2003].

The proposed approximation scheme handles scalar functions de-
fined on surfaces represented by2-manifold triangle meshes with-
out imposing constraints on the sampling density. The choice of
globally- and compactly-supported radial basis functionsenable to
adapt the construction of the approximation to specific problem
constraints, such as the number of input samples, the local accu-
racy, and the degree of smoothness of the final approximation. The
approximation method can also be used to smooth the functionf by
selecting only the critical points which are perceived as informative
ones. For instance,f might exhibitdifferential noise, that is, a high
number of critical points with very close positions and low variation
of thef -values, due to a low quality of the discrete representations
of the input data, unstable computations, or noisy measurements.

The approximation can be run only on a subset of critical points;
for instance, those considered relevant by persistence-based sim-
plification methods [Edelsbrunner et al. 2004], Laplacian [Patanè
and Falcidieno 2009; Taubin 1995] and Gaussian smoothing opera-
tors [Liu et al. 2007]. We will show how the relevant criticalpoints
of f contain enough information to define atopology-drivenap-
proximation off in a computationally efficient way. If necessary,
the approximationf1 of f can be improved by adding tog1 the lo-
cal component, that is, theerror-driventermg2 so that the error be-
tweenf1 + g2,P andf is below the target approximation accuracy.
To show the flexibility of the proposed approach, we also derive
a least-squares and a constrained approximation scheme. Figure 1
and 2 show the main steps of the entire framework.

This article is organized as follows: Section 2 briefly reviews pre-
vious work on the analysis of scalar functions and implicit approx-



Figure 2: Level sets of a mapf : P → R and its volumetric approximationg : R
3 → R. The mapg is a superposition of functions centered

at a set of points onP and has been sampled on a tethraedralization ofP . Bothf andgP have the same critical points.

imation. In Section 3, we discuss how to build smooth approxima-
tions off onP . In Section 4, we focus the analysis off on specific
properties, related to its global structure, and neglect local details,
which are successively introduced according to the target approxi-
mation accuracy. In Section 5, we analyse the main properties of the
surface- and volume-based approximating functions. In Section 6,
we discuss the application of the method to the simplification and
visualization of scalar functions, and also detail the degrees of free-
dom of the proposed approach. Finally, future work is discussed in
Section 7.

2 Theoretical background and previous work

This section introduces the theoretical background on the repre-
sentation and analysis of scalar functions defined on triangulated
surfaces (Section 2.1); then, we briefly review previous work on
implicit approximation (Section 2.2).

2.1 Theoretical background

The key concepts used in the presentation of the proposed approach
are those related to the triangle-based representation of scalar func-
tion, to the classification of critical points, and to the evaluation of
the approximation error. We summarize here the basic definitions
and refer the reader to [Biasotti et al. ; Bloomenthal and Wyvill
1997] for a complete discussion.

A map f̃ : M → R of class C2, defined on a smooth mani-
fold M, is Morse if it has no degenerate critical points (i.e., the
Hessian matrix is not singular at the critical points off ). In
the following, we replacẽf with a piecewise linear scalar func-
tion f : P → R over a triangulationP := (M, T ) of N ,
where M := {pi}n

i=1 is a set ofn vertices andT is an ab-
stract simplicial complexthat contains the adjacency informa-
tion. The functionf on P is defined by linearly interpolating

the values(f(pi))
n
i=1 of f at the vertices using barycentric co-

ordinates. Assuming thatt := (pi,pj ,pk) is a triangle ofP
with verticespi, pj , pk, the valuef(p), p ∈ t, is defined as
f(p) := λ1f(pi) + λ2f(pj) + λ3f(pk), whereλ1, λ2, λ3 ≥ 0,
λ1 + λ2 + λ3 = 1, are the barycentric coordinates ofp with re-
spect to the vertices oft. If f(pi) 6= f(pj), for each edge(i, j),
thenf is calledgeneral. Finally, we assume thatf is general and
degenerate cases will be discussed in Section 6.3.

As α ∈ R varies, the behavior off is conveyed by the correspond-
ing level setsγα and the critical points off , at which the number
of connected components of the level sets changes. The critical
points of f : P → R are computed by analyzing the distribution
of the f -values on the neighborhood of each vertexpi [Banchoff
1967]. More precisely, letN(i) := {j : (i, j) edge} be the1-star
of i, i.e. the set of vertices incident toi. Formally, if we let

Lk(i) := {j1, . . . , jk ∈ N(i) : (js, js+1)
k−1
s=1 edges ofP}

be thelink of i then theupper linkis the set

Lk+(i) := {js ∈ Lk(i) : f(pjs ) > f(pi)},

and themixed linkis given by

Lk±(i) := {js ∈ Lk(i) : f(pjs+1) > f(pi) > f(pjs ) or

f(pjs+1) < f(pi) < f(pjs )},

wherejk+1 := jk. The lower link Lk−(i) is defined by replacing
the inequality “>” with “ <” in the upper link. IfLk+(i) = ∅ or
Lk−(i) = ∅, thenpi is a maximumor a minimum, respectively.
If the cardinality of the setLk±(i) is 2 + 2m, m ≥ 1, thenpi is
classified as asaddleof multiplicity m.

For a closed surfaceP and a general functionf , the identity

χ(P) = m − s + M, (1)



gives the relation between the critical points of(P , f) and the Eu-
ler characteristicχ(P) of P [Banchoff 1967; Milnor 1963]. Note
thats is the number of saddles counted with their multiplicity, i.e.
s :=

P

pi saddlemi, wheremi is the multiplicity of the saddlepi.

Comparison of scalar functions. Since the level sets and
critical points are independent of positive re-scalings off ,
we assume that the function values have been normalized in
such a way that Image(f) = [0, 1]. The L∞-approximation
error between two functionsf1, f2 : P → R is defined as
‖ f1 − f2 ‖∞:= maxi=1,...,n{|f1(pi) − f2(pi)|}. In the article
pictures, theL∞-error is coded with colors that range from red
(maximum error) to blue (null error).

A number of local and global comparison measures [Biasotti et al.
2007; Edelsbrunner et al. 2004], based on the differential and geo-
metric properties of the level sets, are alternative to theL∞-norm.
More precisely, the comparison measure between two scalar func-
tions f1, f2 : P → R, on the same surfaceP , is defined as the
averaged angle variation of their gradient fields [Biasottiet al.
2007], i.e. I(f1, f2) : P → R, I(f1, f2) := 〈∇f1,∇f2〉. As an
alternative, in [Edelsbrunner et al. 2004]) the comparisonmeasure
I(f1, f2) := ‖∇f1 ∧∇f2‖2 is the norm of the wedge product of
the gradient fields. The main difference between [Biasotti et al.
2007] and [Edelsbrunner et al. 2004] is that the former provides an
explicit relation between the critical points off1, f2, andI(f1, f2).
In both cases, theaveraged error measurebetweenf1 andf2 onP
is I(f1, f2) := 1

area(P)

R

P
I(f1, f2)dp.

2.2 Previous work

In implicit modeling [Bloomenthal and Wyvill 1997], a 3D point
set L := {pi ∈ R

3 : i = 1, . . . , n} is approximated by the sur-
face Σ := {p ∈ R

3 : g(p) = 0}, where g : R
3 → R is an im-

plicit function. In this context, implicit approximation tech-
niques [Aronszajn 1950; Dyn et al. 1986; Micchelli 1986; Pog-
gio and Girosi 1990] computeg(p) :=

Pn
i=1 αiϕi(p) as a lin-

ear combination of the basis elementsB := {ϕ(‖p − pi‖2)}n
i=1,

where ϕ is the kernel function. Depending on the properties
of ϕ and of the corresponding approximation scheme, we dis-
tinguish globally- [Carr et al. 2001; Turk and O’Brien 2002]
and compactly- [Wendland 1995; Morse et al. 2001; Ohtake
et al. 2005a] supported radial basis functions, and the partition of
unity [Ohtake et al. 2003; Xie et al. 2004]. We briefly remind that
the supportof an arbitrary mapg : R

3 → R is defined as the set
supp(g) := {p ∈ R3 : g(p) 6= 0}. If supp(g) := R

3, theng has
global support.

To reduce the amount of memory storage and computation time of
the implicit approximation, sparsification methods selecta subset
of centers inL such that the associated functiong approximatesL
within a target accuracy. This aim is usually achieved through a-
posterioriupdates of the approximating function, which are guided
by the local approximation error [Carr et al. 2001; Chen and Wigger
1995; Kanai et al. 2006; Ohtake et al. 2005b; Shen et al. 2004], or
by solving a constrained optimization problem [Girosi 1998; Patanè
2006; Steinke et al. 2005; Walder et al. 2006].

Clustering techniques can also be used to group those pointsthat
satisfy a common “property” and center a basis function at a rep-
resentative point of each cluster. Main clustering criteria are the
planarity and closeness, measured in the Euclidean space using
thek-means clustering [Lloyd 1982] and the principal component
analysis [Jolliffe 1986] (PCA, for short). As an alternative, kernel
methods [Cortes and Vapnik 1995] evaluate the correlation among
points with respect to the scalar product induced by a positive-
definite kernel. In this case, the PCA and thek-means algorithm

lead to efficient clustering techniques such as the kernel PCA and
the Voronoi tessellation of the feature space [Schoelkopf and Smola
2002] (Ch.1).

Recently, Gaussian radially symmetric [Co et al. 2003; Janget al.
2004; Weiler et al. 2005] and ellipsoidal [Jang et al. 2006; Hong
et al. 2006] basis functions have been used to approximate 3D
scalar maps. The variance and width parameters of ellipsoidal basis
functions, which are best suited to fit data that is not radially sym-
metric, are computed using the Levenberg-Marquardt optimization
method [Madsen et al. 2004]. In both cases, the centers of thebasis
functions are selected by clustering techniques or an error-driven
scheme, which add the points with the maximum error values as
new centers. The iteration stops when the approximation error is
below a given threshold. As discussed in [Weiler et al. 2005], the
set of centers can be enriched by including the peaks and low fre-
quency regions of the input data.

3 Topology-driven approximation

This section discusses the core of our approach and is organized as
follows. In Section 3.1 and 3.2, we describe how a scalar function
f : P → R is approximated by a maph := g1,P such thatf andh
have the same critical points. We refer toh as theglobal component
of f . The piecewise linear functionh interpolates the values of the
implicit mapg1 : R

3 → R at the vertices ofP andg1 is computed
as a linear combination of globally-supported radial basisfunctions.
The centers of the basis functions are selected through an iterative
procedure, which is guided by the information conveyed by the crit-
ical points off and converges in a low number of steps.

In Section 4, the approximationh of f is improved by adding an
error-driven termg2 to g1 such that the error betweenh + g2,P

andf is below the target approximation accuracy. In this case,g2 is
a linear combination of locally-supported functions and the center
selection is guided by the target approximation accuracy.

3.1 Proposed approach

We formulate the approximation of a piecewise linear scalarfunc-
tionf : P → R, defined on the2-manifold triangle meshP , in such
a way that we preserve its critical points. To this end, we focus our
attention on the following problem.

Problem statement. Find a smooth functiong1 : R
3 → R

with global support such that the piecewise linear function
h := g1,P : P → R, which interpolates the values ofg1 at the ver-
tices ofP (i.e., h(pi) := g1(pi), i = 1, . . . , n), satisfies the fol-
lowing conditions:

1. f andh have exactly the same critical points;

2. h has fair level sets with a regular distribution onP .

Let {pi, i ∈ C} be the set of critical points off . At the levelk = 1

(Figure 3(a,b)), we search a functiong(1) : R
3 → R such that

g(1)(pj) := f(pj), i ∈ I(1) := C ∪ {j ∈ N(i), i ∈ C}, (2)

i.e., we impose thatf andg(1) have the same values at the critical
points off and at the vertices of the corresponding1-stars. In the
following, we assume that the indices are without repetitions.

We computeg(1) using an implicit interpolation scheme. Choosing
a kernelϕ : R

+ → R, g(1) is defined as [Aronszajn 1950; Poggio
and Girosi 1990]

g(1)(p) :=
X

i∈I(1)

αiϕi(p) + π(p), p := (x, y, z), (3)



(a)f (b) (c)f (1) (d) f (2)

n = 60K, 7-genus M = 36, m = 57, s = 105 M = 104, m = 123 M = 83, m = 104
s = 239, r = 1937 s = 199, r = 2701

(e)f (3) (f) f (4) (g) f (5) (h)f (6)

M = 77, m = 97 M = 68, m = 90 M = 48, m = 71 M = 38, m = 39
s = 186, r = 3337 s = 170, r = 3777 s = 131, r = 3936 s = 89, r = 4372

(i) f (7) (j) f (8) (k) h (l) ‖f − h‖∞ = 0.1361 (red)
M = 42, m = 59 M = 37, m = 59
s = 113, r = 4061 s = 108, r = 4083

Figure 3: (a) Color map, level sets, and (b) critical points of a stressfunctionf on a mechanical surfaceP . (c-j) Level sets, number of
critical points, and selected centers of the approximationf (k) of f , k = 1, . . . , 8. From the first (c) to the fourth (f) iteration, the current
approximation off shows evident changes with respect to the previous one; fromthe fifth (g) to the eighth (j) iteration, the shape of the level
sets slightly varies. (k) Final approximationh of f : f andh have the same critical points. Comparing (a) with (k), we seethat h accurately
and smoothly resembles the global behavior off ; the distribution of theL∞-error betweenf andh is shown in (l). See also Figure 4.

that is, a linear combination of the radial basis functions
ϕi(p) := ϕ(‖p − pi‖2), centered at{pi, i ∈ I(1)}, plus a first-
degree polynomialπ(p) := β0 + β1x + β2y + β3z. Common
choices of ϕ are the Gaussianϕ(t) := exp(−t) and the bi-
harmonicϕ(t) :=| t |3 kernel.

The second termπ in (3) is used to fitf over regions ofP where
it is linear. Without loss of generality, we setI(1) = {1, . . . , r1};
then, the coefficients in (3) that uniquely satisfy (2) are the solution
of the following(r1 + 4) × (r1 + 4) square linear system
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ˆ

α1 . . . αr1 β0 β1 β2 β3

˜T
,

with aij := ϕ(‖pi − pj‖2) andpi := (px
i , py

i , pz
i ). The last four

rows of the full matrix in (4) correspond to thenatural additional

constraints

r1X

i=1

αip
x
i = 0,

r1X

i=1

αip
y
i = 0,

r1X

i=1

αip
z
i = 0.

These relations guarantee thatL̃(1) is invertible; in fact, ther1 × r1

sub-matrixA := (aij)i,j is conditionally positive-definite on the
subspace of vectors that are orthogonal to the last four rowsof the
full matrix. Once we have calculatedg(1), the piecewise linear
scalar functionf (1) := g

(1)
P : P → R is a new map that approxi-

matesf (Figure 3(c)).

We explicitly note that the constraints in (2) guarantee that each
critical point of f is also critical forf (1); if f (1) has additional
critical points, then they will be used to build the new approxima-
tion of f . If C(1) are the indices of the critical points off (1), then
Q(1) := {pi, i ∈ C(1), i 6∈ I(1)} can be interpreted as the set of
points where the current approximationf (1) differs from f with
respect to the point of view of the critical points distribution.

At the next stepk = 2, the points inQ(1) are used to improve the
current approximationf (1) of f . More precisely, we calculate the
functiong(2) that satisfies the previous interpolating conditions (2)



(a)r = 4504 sel. centers (b) (c) (d)h⋆ ‖f − h⋆‖∞ = 0.01

Figure 4: (a) Centers used to compute the approximation in Figure 3(k)(i.e., the0.06% of the input vertices). Variation of (b) the number
of critical points and (c) selected centers off (k) at each iteration. (d) Level sets ofh⋆ achieved by summing to the approximationh in
Figure 3(k)1928 locally-supported basis functions.

(a)f : n = 280K, 22-genus (b) ‖f − h‖∞ = 0.068 (red) (c)
M = 20, m = 9, s = 71

Figure 5: (a) Color map, level sets, and number of critical points of a scalar functionf on a22-genus surfaceP . (b) Variation of the number
of critical points and distribution of theL∞-error betweenf andh onP (top). Statistic values are reported in Table 1. (c) Plot of the error
‖f − f (k)‖∞, k = 1, . . . , 15. The final approximationh of f has been computed with2789 centers (i.e., the0.01% of the input vertices).
The level sets ofh and selected centers are shown in the top part of (c).

Algorithm 1 Main steps of the topology-driven approximation.

Require: A scalar functionf : P → R defined on the triangulated
surfaceP .

Ensure: The implicit functiong : R
3 → R such thath := gP has

the same critical pointsC of f .
1: Extract and store the1-star of each vertex ofP .
2: Setk := 0, C(0) := ∅, I(0) = ∅, f (0) := f .
3: while C(k) 6= C do
4: compute the setC(k) of critical points off (k);
5: Q(k) := {i ∈ C(k), i /∈ I(k)};
6: T (k) := {j ∈ N(i), i ∈ Q(k)};
7: I(k+1) := I(k) ∪ Q(k) ∪ T (k);
8: compute g(k+1)(p) :=

P

i∈I(k+1) αiϕi(p) + π(p) such

thatg(k+1)(pi) = f(pi), i ∈ I(k+1) (c.f., Eq. (6));
9: computef (k+1) := g

(k+1)
P ;

10: compute the critical points{pi, i ∈ C(k+1)} of f (k+1);
11: k := k + 1;
12: end while

and the new ones related to the setQ(1), that is,

g(2)(pi) = f(pi), i ∈ I(2) := I(1) ∪Q(1) ∪ T (1),

whereT (1) := {j ∈ N(i), i ∈ Q(1)} (Figure 3(d)). Analogously
to the previous step, we setf (2) := g

(2)
P .

We now describe the general case. Let us suppose that
at the iteration k we have built g(k) : R

3 → R such that

g(k)(pi) = f(pi), i ∈ I(k). Then, we compute the scalar function
f (k) := g

(k)
P and evaluate its set{pi, i ∈ C(k)} of critical points.

At step (k + 1), the points related to the indices ofC(k), and its
1-star vertices, that do not belong toI(k) are added as new con-
straints and we consider the functiong(k+1) such that

g(k+1)(pi) = f(pi), i ∈ I(k+1) := I(k) ∪ Q(k) ∪ T (k),

where the set of indices areQ(k) := {i ∈ C(k), i /∈ I(k)} and
T (k) := {j ∈ N(i), i ∈ Q(k)} (Figure 3(e-j)).

Since at each iterationk the critical points of f (k) include
those of f , f (k) has M + M(k) maxima, m + m(k) min-
ima, ands + s(k) saddle points. Here,m, M , s is the num-
ber of minima, maxima, saddles of(P , f ) and M(k), m(k),
and s(k) are positive integers. The iteration stops when
the critical points of f (k+1) have been already used to
build f (k), i.e. C(k+1) ⊆ I(k). In this case, we have that
M(k + 1) ≡ m(k + 1) ≡ s(k + 1) ≡ 0 and thereforef (k+1) has
the same critical points off . We conclude thatg1 := g(k+1) is
the solution of the problem stated at the beginning of this section
(Figure 3(k-l) and 4). In the worst case, the iterative procedure
involves as many steps as the number of vertices divided by the
average number of points in the1-stars ofP .

Assuming that the scalar functionf (k) is general and Morse, from
the Euler formula (1) we get that the additional critical points satisfy
the “nullity relation” m(k) − s(k) + M(k) = 0. The uniqueness
of each functiong(k) and its smoothness degree are guaranteed by



(a) (b)

(c) (d) (e) (f)

Figure 6: (a,b) Level sets off (k), k = 1, . . . , 12; at each iterationk, the basis functions are centered at the critical points off (k) and not at
the vertices of their1-stars. (c) Evolution of the number of critical points and selected centers; the red, blue, and green colors represent the
number of maxima, minima, and saddle points. (d-f) Different views on the iso-surfaces of the volume-based approximation off .

Table 1: With reference to Figure 5, the table shows the number of
critical points,2-saddles, and selected centers.

It. Max. Min. Sad. 2-Sad. ♯Cent. L∞-err.
1 20 9 71 0 – –
2 30 46 118 4 100 0.0957
3 64 38 144 4 1343 0.0783
4 54 17 113 3 2120 0.0751
5 39 11 92 3 2510 0.0690
6 31 12 85 3 2682 0.0691
7 23 9 74 1 2784 0.0683
8 22 9 73 1 2814 0.0682
9 21 10 73 0 2836 0.0683
10 20 9 71 0 2846 0.0683
...

...
...

...
...

...
...

14 19 9 70 0 2880 0.0682
15 20 9 71 0 – 0.0683

the theory of the Reproducing Kernel Hilbert Spaces and the reg-
ularity of the kernel function [Aronszajn 1950; Poggio and Girosi
1990], respectively. Algorithm 1 summarizes the main stepsof the
iterative procedure.

3.2 Properties of the iterative scheme

Our experiments have shown that iff has close critical points then
a functionf (k) might have saddle points of multiplicity equal to
or greater than two (Figure 4, 5, and Table 1). In fact, imposing

thatf (k) interpolates closef -values at a setR of redundant critical
points results in a low-varying behavior off (k) in a neighborhood
of R and a higher probability of generating multiple saddles in that
region. Our tests have also shown that iff is general then each
approximationf (k) is general; indeed, the nullity relation is satis-
fied at each iteration. For more details on the choice of the basis
functions, we refer the reader to Section 4. As will be discussed
in Section 6, degenerate and redundant critical points withrespect
to their persistence values can be simplified before runningthe ap-
proximation scheme. In this way, we easily handle noisy scalar
functions, which are commonly characterized by very close critical
points with low-persistence values.

As shown in Figure 4(b), 5(b), and 6(c), the number of critical
points of each approximationf (k) increases at the beginning of
the iterations until a maximum is reached. This behavior is due
to the fact that each approximationf (k) is achieved by using few
basis functions, i.e. few interpolating conditions of thef -values.
Then, the number of critical points off (k) starts to decrease until
it converges to the number of critical points off . In fact, at this
stage eachf (k) incorporates the global structure off and the small
discrepancy betweenf (k) and f (k+1), in terms of number and po-
sition of the critical points, forces the insertion of few new centers.
Note that the number of selected centers increases withk.

Even though the computation ofg1 and h := g1,P is fully con-
trolled by the distribution of the critical points, the approximation
error ‖f − f (k)‖∞ rapidly decreases to zero with respect to the
iterationk. In fact, a higher number of interpolating conditions is
used to computef (k) fromf (k−1), k ≥ 1 (Figure 5(c) and Table 1).



(a) (b) (c) (d) (e)

Figure 7: Level sets of (a-c) three functions with a different number
of critical points, and (d,e) two harmonic maps. The parameters
used for their approximation are reported in Table 2 and 3.

Table 2: Given the bitorusP in Figure 7(a-d) with a differ-
ent numbern of vertices, we computed four scalar functionsfi,
i = 1, . . . , 4, with an increasing number of critical points. The ta-
ble shows the numberk1 of iterations andr1 basis functions used to
compute the corresponding approximations. The number of centers
and iterations slightly vary with respect to the growth ofn.
f1 : (M = 1, m = 1, s = 4) f2 : (M = 11, m = 12, s = 25)
f3 : (M = 31, m = 35, s = 68) f4 : (M = 3, m = 3, s = 6)

f1 f2 f3 f4

n k1 r1 k1 r1 k1 r1 k1 r1

766 4 90 3 169 4 256 3 142
3070 3 134 6 329 4 310 4 196
12286 5 222 6 506 5 469 5 324
49150 5 358 10 967 5 601 8 542

As reported in Figure 7 and Tables 2, 3, the number of iterations and
selected centers is slightly affected by a different sampling density
of the input surface and/or the choice of a different kernel function.
This difference becomes minimal while increasing the number of
vertices ofP . Assuming that the surfaceM underlying the trian-
gle meshP is smooth, the functionh := gP is a piecewise linear
approximation of the restrictiong|M of g toM.

4 Error-driven approximation

This section discusses how the topology-driven scheme can be im-
proved using locally-supported basis functions (Section 4.1). Then,
we use the selected centers to define a least-squares approximation
without (Section 4.2) or with constraints on the critical points of the
input function (Section 4.3). These two variants guaranteethe ro-
bustness of the approximation against noise. Finally (Section 4.4),
we estimate the approximation error.

4.1 From topology- to error-driven function approxi-
mation

Let us suppose that the approximationh := gP of f has been com-
puted using the topology-driven scheme discussed in Section 3. We
now improve the approximationh of f by adding tog1 an error-
driven termg2 such that the error betweenh + g2,P andf is below
the target approximation accuracy. In this case,g2 is a linear combi-
nation of locally-supported radial basis functions [Wendland 1995]
and the center selection is guided by the target accuracy. There-
fore,f2 captures those local details off previously neglected.

First of all, we construct the family of nested spaces{Vk}q
k=1 (Sec-

tion 3.1) such that

Vk := span{x, y, z, 1} ⊕ span
n

ϕi, i ∈ I(k)
o

,

Table 3: Given the torus in Figure 7(e) with a different numbern
of vertices, the table shows the numberk1 (resp.,k2) of iterations
andr1 (resp.,r2) basis functions used to compute the approxima-
tions of the same scalar function using the Gaussian (resp.,bi-
harmonic) kernel. Fixing the kernel, the number of centers and
iterations slightly vary with respect to the growth ofn.

Kernel function
ϕ(t) := exp(−t) ϕ(t) := |t|3

n k1 r1 k2 r2

400 4 110 3 86
1600 4 162 4 267
3600 4 187 5 400
6400 6 242 5 518
10K 5 293 6 640
40K 7 517 7 1148
160K 11 990 7 1546

(a)f : n = 15K, 1-genus (b)h

(c) (d)

Figure 8: (a) Input functionf and (b) its approximationh. (c)
L∞-error betweenf andh, and selected centers. (d) Iso-surfaces
of g at saddles; here, we used the0.028% and0.05% of globally-
and locally-supported radial basis functions.

Vk ⊆ Vk+1, g(k) ∈ Vk. The notation span{ϕi, i ∈ I} refers to
the linear space generated by the basis functionsϕi, i ∈ I. In-
deed, each approximationf (k) of f has a number of critical points
greater thanf and is associated to the implicit mapg(k). At the last
iterationq, we have that the map

g1(p) := g(q)(p) :=
X

i∈I

αiϕi(p)+β0 +β1x+β2y +β3z, (5)

I := I(q), is the superposition of(r + 4) basis functions.

The coefficientsα := (αi)i∈I ∈ R
r, β := (βi)

3
i=0 ∈ R

4, are the
solutions of the linear system

L̃σ = b̃, σ :=

»
α
β

–

∈ R
(r+4)×1, (L̃ := L̃

(q)), (6)

with b̃ := [(f(pi))i∈I , 0, 0, 0, 0]T ∈ R
(r+4)×1.

Assuming that the indices inI are{1, . . . , r} and according to (4),
the coefficient matrix is

L̃ :=

2

4

A P 1

PT 0 0

1T 0 0

3

5 ∈ Glr+4(R), A := (ϕ(‖pi−pj‖2))
j∈I
i∈I ,



(a)

(b)

Figure 9: (a,b) Given the height functionsfx, fy , and fz on P
with respect to the coordinates axis, we visualize the corresponding
approximationshx, hy, andhz as a new surfaceQ. Its regularity
confirms that the scheme generates smooth approximations. In (b),
a larger discrepancy betweenP andQ highlights a larger error
between the input and the approximated functions.

P ∈ R
r×3 is the matrix whose columns are the(x, y, z)-

coordinates of the points inB := {pi}i∈I , and1 ∈ R
r×1 is the

constant vector whose entries are equal to one. Since the approx-
imation error betweenf andh on the set of points corresponding
to I is zero, we consider the points ofP where the error is greater
than a given thresholdǫ > 0, i.e.A := {i : |f(pi) − h(pi)| ≥ ǫ},
and we useA to updateg1. To this end, it is sufficient to compute
the new function

g(p) :=
X

i∈I

αiϕi(p)

| {z }

g1(p) glob. supp.

+
X

i∈A

αiφi(p)

| {z }

g2(p) loc. supp.

, p ∈ R
3, (7)

that satisfies the interpolating conditionsg(pi) = f(pi),
i ∈ I ∪ A. To defineg2, we also impose that it is zero at the
points ofB := {pi}i∈I and at the vertices of the corresponding
1-stars. As error measure to defineA, we can also use the local
distances defined in [Biasotti et al. 2007; Edelsbrunner et al. 2004].
Analogously, the piecewise linear approximationsg1,P and g2,P

toP provide theglobal andlocal component off .

Even though the critical points off andf1 are the same, those of
h := f1 + f2 andf might be different; in fact, summingf2 to f1

can add or cancel some of the critical points off1. To avoid this
case, at each iteration we use thef2-values at its critical points and
at the vertices of the corresponding1-stars as interpolating con-
straints. In our tests, this situation never happened and itis related
to special configurations of the critical points.

(a) (b)

(c) (d)

Figure 10: (a) Level sets of (a) the magnitudef of an energy field
generated by twelve sources distributed on the earth surfaceP and
(b) its approximationh := gP . (c,d) Iso-surfaces ofg that repre-
sent the behavior off around the earth surface. The functiong
has been computed with the2.52% and 31.41% of globally- and
locally- supported basis functions (‖f − h‖∞ = 0.081).

In (7), the new basis functions{φi}i∈A are chosen with
compact support; in our implementation, we have selected
φ(t) := (1 − t)4(4t + 1) ∈ C2([0, 1]) [Wendland 1995] as sparse
kernel (i.e.,φi(p) := φ (‖p − pi‖2/σi)) and the supportσi has
been set equal to the averaged radius of the2-star of the vertexpi.
Finally, choosingǫ := 0 provides the highest approximation ac-
curacy; in fact,g interpolates all thef -values, using only a small
number of globally-supported radial basis functions (Figure 8).

At each iteration, the evaluation of the critical points off (k) takes
linear time; in fact, the1-star structure ofP is calculated at the
first step to initialize the set of centers in (2) and, once stored, it is
used at the next steps without any additional overhead. Any approx-
imation g(k), k ≤ q, is a linear combination ofrk basis functions
{ϕj}j∈I(k) andL̃(k) is the corresponding(rk + 4) × (rk + 4) co-

efficient matrix in (4). Then, for the construction ofL̃(k+1) we

calculate only the new elements{ϕ(‖ pi − pj ‖2)}j∈I(k+1)

i∈Q(k) and

insert them iñL(k). Modeling the local details off with compactly-
supported basis functions requires to insert inL̃ a sparse sub-
matrix, thus guaranteeing the scalability of the proposed approach
with respect to the number of vertices ofP and without creating a
bottleneck for the solution of the associated linear system. In Fig-
ure 9, we used the approximation scheme to reconstruct the surface
geometry of two shapes using the height function with respect to
the coordinate axes. The results in Figure 10 and 11 highlight the
smoothness of our scheme.

If we assume thatf is computed by sampling an implicit function
v : R

3 → R on the surfaceP , then we expect that the approxima-
tion error betweenv and the topology- and/or error-driven approx-
imation g will be low as long as we are close to the surface. To
verify this remark, in Figure 12 the surfaceP has been normalized
in such a way that the main diagonal of its bounding box has unitary
length and thev-values belong to the interval[0, 1]. Until the sam-



(a) (b) (c)
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Figure 11: Given the functionf in (a), we computed four noisy maps (b-e, left and middle). Eachfi is achieved by summing tof a Gaussian
noisedgn with mean zero and standard deviation one, i.e.fi := f + δidgn, i = 1, . . . , 4 (right). Here,δi decreases to zero while increasingi.
Each column shows the critical points, the level sets offi, and the approximated functionhi. The red boxes in (b,c) show that the level sets
of h1, h2 are smoother than those off1, f2, thus confirming that the approximation smooths the noise ofeachfi. The red box in (c) shows a
set of clustered critical points that disappear in (d). In (f), eachhi resembles the behavior off and‖f − hi‖∞ ≤ 0.01, i = 1, . . . , 4.

ple points fall inside the unitary sphere centered at the barycenter
of P , the discrepancy between the corresponding values ofv andg
is lower than0.1. Moving far from the surface wheref is known
increases the approximation error. Maintaining the overall structure
of the proposed approach, the accuracy of the approximationof v
aroundP can be improved by using additional interpolating con-
straints or ana-priori information on the underlying phenomenon.

4.2 Least-squares function approximation

Once the centersB := {pi := (px
i , py

i , pz
i )}i∈I of the globally-

supported basis functions have been identified throughout the
topology-driven scheme, we can also compute the best approxima-
tion of f with respect to the least-squares error betweengP andf .
To this end, we search the function

g(p) :=
X

i∈I

αiϕi(p) + β0 + β1x + β2y + β3z, p ∈ R
3, (8)

that minimizes the least-squares error

E(g) := ‖gP − f‖2
2 :=

nX

i=1

|g(pi) − f(pi)|2. (9)

To compute the unknowns(αi)i∈I ∪ {β0, β1, β2, β3} in (8), let us
introduce the followingn × (r + 4) matrix

L :=

2

6
6
4

a11 a12 . . . a1r 1 px
1 py

1 pz
1

a21 a22 . . . a2r 1 px
2 py

2 pz
2

...
...

...
...

...
...

...
...

an1 an2 . . . anr 1 px
n py

n pz
n

3

7
7
5

(10)

with coefficients{aij := ϕ(‖pi − pj‖2)}j=1,...,r
i=1,...,n and the vectors

σ :=
ˆ

α1 . . . αr β0 β1 β2 β3

˜T ∈ R
(r+4)×1,

b :=
ˆ

f(p1) . . . f(pn)
˜T ∈ R

n×1.

The functional in (9) can now be rewritten asE(g) = ‖Lσ − b‖2
2

and its minimum is attained at the solutionσ of the normal equa-
tion LT Lσ = LT b; i.e., σ = L†b, with L† := (LT L)−1L pseu-
doinverse ofL. Assuming thatn is large, we do not construct the

n × (r + 4) matrixL but we store only the(r + 4) × (r + 4) co-
efficient matrixLT L and the right-hand vectorLT b. Then, the
solutionσ of the corresponding linear system is computed using
direct or iterative solvers without explicitly storing thepseudoin-
verseL†. An example of least-squares approximation of a noisy
scalar function is shown in Figure 13.

4.3 Function approximation with least-squares con-
straints on the set of critical points

Let us suppose thatB := {pi, i ∈ I} is the set of centers which
guarantee that the functiong in (8) has the same critical points
of f . In particular, we have thatg(pi) = f(pi), i ∈ I. Using
the set of basis functions{ϕi(p) := ϕ(‖p − pi‖2)}i∈I centered
at the points ofB, we can attenuate the previous interpolating con-
ditions by imposing thatg approximates all thef -values but with
a greater accuracy on the values off at its critical points. This is
equivalent to search the functiong that minimizes the functional

E(g) :=
X

i∈I

|g(pi)−f(pi)|2+ǫ
X

i∈IC

|g(pi)−f(pi)|2, ǫ ≥ 0,

(11)
whereIC is the complementary ofI andǫ is a trade-off between
the two terms ofE(g). Note that ifǫ = 0 then we get the solution
to our initial problem (i.e.,gP andf have the same critical points).
If ǫ = 1, theng is the least-squares solution of (9). Therefore,ǫ
is the trade-off between preserving all the critical pointsof f and
minimizing the least-squares error over all thef -values. As shown
in Figure 13, the constrained least-squares formulation provides a
smooth approximation while controlling the final distribution of the
critical points.

To compute the minimum of the functional in (11), we observe
that E(g) = ‖L1σ − b1‖2

2 + ǫ‖L2σ − b2‖2
2, whereL1, L2 are

the sub-matrices ofL in (10) whose rows correspond to the indices
in I andIC , respectively. Analogously,b1 andb2 are the sub-
vectors ofb whose entries correspond to the indices inI andIC .
Indeed, we rewriteE(g) as

E(g) =

˛
˛
˛
˛

˛
˛
˛
˛

»
L1

ǫ1/2L2

–

σ −
»

b1

ǫ1/2b2

–˛
˛
˛
˛

˛
˛
˛
˛

2

2

,



v(x, y, z) = x − y2 + z2 v(x, y, z) := x2 + y2 + z3 v(x, y, z) = x + log(1 + y2) − z

Figure 12: Evolution of theL∞-error between a volume-based functionv(x, y, z) and its approximationg(x, y, z) computed by using the
values ofv on a surfaceP . The iso-surfaces are related tog. The plots show the maximumL∞-error (y-axis) betweenv andg on the points
of a set of spheres centered at the barycenter ofP and with increasing radii (x-axis).

Table 4: Computational cost of the main steps of the proposed
framework;r and n is the number of basis functions and vertices
of P at the iterationk. Finally, d is the number of new basis func-
tions that have been added with respect to the previous iteration.

Task k = 1 k ≥ 2
Critical point class. O(n) O(1)
Matrix constr./updates O(r2/2) O(nd/2)
Sol. linear system O(r2) O(r2)
Computation ofh O(rn) O(rn)
Morse Complex simpl. O((M + m + s)n) –
Least sq./Constrain. O(r2) –

whose normal equation∇E = 0 is

ˆ
LT

1 ǫ1/2LT
2

˜
»

L1

ǫ1/2L2

–

σ =
h

L
T
1 ǫ1/2

L
T
2

i »
b1

ǫ1/2b2

–

;

i.e., “

L
T
1 L1 + ǫLT

2 L2

”

σ = L
T
1 b1 + ǫLT

2 b2. (12)

As ǫ tends to zero, the interpolating conditionsg(pi) := f(pi),
i ∈ I, dominate the value ofE(g) in (11); therefore, the least-
squares solutiong is forced to interpolate the values{f(pi)}i∈I .
As a consequence, the critical points ofgP will be the same or
close to those off . By increasingǫ, we reduce the approxima-
tion error‖gP − f‖2 and accept a local discrepancy between the
critical points ofgP andf . The least-squares scheme and smooth
basis functions guarantee that this discrepancy is associated to a
low number of critical points. We expect that reducingǫ the criti-
cal points ofgP become closer to those off . To select the trade-
off ǫ between smoothness and approximation accuracy, statistical
and heuristic methods (e.g.,L-curve) have been extensively dis-
cussed in [Hansen and O’Leary 1993; Wahba 1990]. Figure 13(c)
shows the typicalL-curve associated to the functionalE(g) with
respect to different choices ofǫ. The optimal thresholdǫ that min-
imizesE(g) gives the best compromise between smoothness and
least-squares error. For more details on theL-curve, we refer the
reader to [Hansen and O’Leary 1993].

4.4 Error estimation for the interpolating and least-
squares approximation

Let us now consider the error estimation for the interpolating
case. Since thef -values are known onP , we estimate the er-
ror ‖gP − f‖2. Using the notation in Section 4.3 and assuming

thatg is such thatgP andf have the same critical points, we have
gP(pi) = f(pi), i ∈ I and

E(g) : = ‖gP − f‖2
2 =

nX

i=1

|gP(pi) − f(pi)|2

=
X

i∈IC

|gP (pi) − f(pi)|2 = ‖L1σ − b1‖2
2.

From (6),σ = L̃−1b̃ and the error isE(g) := ‖L1L̃
−1b̃ − b1‖2

2.
Finally, for the least-squares case (12) we have that

E(g) = ‖Lσ − b‖2
2

= ‖L(LT
1 L1 + ǫLT

2 L2)
−1(LT

1 b1 + ǫLT
2 b2) − b‖2

2.

Since the remarks in Section 4.2 and 4.3 are independent of the ker-
nel and its support, the previous discussion also applies tothe vol-
umetric approximation achieved as superposition of both locally-
and globally-supported basis functions (Section 4.1). Table 4 sum-
marizes the computational cost of the proposed framework.

5 Properties of the volume- and surface-
based approximation

In Section 5.1 and 5.2, we present the main properties of the volu-
metric functiong and the piecewise linear functiongP .

5.1 Properties of the volume-based approximation g

We first discuss the computation of the gradient field and the crit-
ical points of the approximationg : D ⊆ R

3 → R of f : P → R.
Then, we show that the harmonic kernel provides a smooth mapg
in the interior ofP , whose values are a subset of the image off .

Gradient field and upper bound to the energy of g. Without
loss of generality, we assume that the implicit representation g is
still of the form (5). In fact, we can rewrite (7) as (5) by renam-
ing its terms and separating the indices related to the globally-
and compactly-supported basis functions. Indeed, in the follow-
ing it is not necessary to distinguish between globally- andlocally-
supported kernels, which are treated in the same manner. Deriv-
ing (7), we compute the gradient ofg as

∇g(p) =
X

i∈I

αiϕ
′

i(p)
p − pi

‖p − pi‖2
+ (β1, β2, β3), (13)



(a) (b) (c) (d)

(e) ǫ = 0.7 (f) ǫ = 0.8 (g) (h)

Figure 13: (a,b) Critical points and level sets of a noisy functionf . (c) Variation (y-axis) of the least-squares errorE(gǫ) in (11) with respect
to several values of the thresholdǫ (x-axis). Here,g has been computed using only the maxima and minima as interpolating constraints. (d)
Variation (y-axis) of the critical points ofhǫ := gǫ,P with respect toǫ (x-axis). The red, blue, and black curve shows the number of maxima,
minima, and saddles ofhǫ, respectively. (e,f) Level sets of two approximations corresponding to different thresholds. Level sets of (g) the
least-squares (9) and (h) constrained least-squares (11) approximation. In (h), we used the thresholdǫ which minimizesE(gǫ).

whereϕ
′

is the derivative of the kernel functionϕ. From (13), we
estimate the energy‖∇g‖2 as follows:

‖∇g(p)‖2 ≤
˛
˛
˛
˛
˛

˛
˛
˛
˛
˛

X

i∈I

αiϕ
′

i(p)
p − pi

‖p − pi‖2

˛
˛
˛
˛
˛

˛
˛
˛
˛
˛
2

+ ‖β‖2

≤
X

i∈I

|αi||ϕ
′

i(p)| + ‖β‖2

≤ C‖α‖1 + ‖β‖2 ≤ C
√

r‖α‖2 + ‖β‖2,

whereC := supt∈R+{ϕ′

(t)}, α := (αi)i∈I , andβ := (βi)
3
i=1.

Note thatC is finite for most of the kernel functions such as the
Gaussian kernel and compactly supported kernels. Using therela-
tion in (6), the previous upper bound becomes

‖∇g(p)‖2 ≤ √
rλmax(L̃

−1)‖b̃‖2 ≤ √
rλ−1

min(L̃)‖b̃‖2.

Therefore, the bound to the gradient norm is proportional tothe in-
verse of the minimum eigenvalue of the coefficient matrixL̃ and to
the norm‖b̃‖2. In Section 3.1, each basis function has been cen-
tered at a point ofP . However, if we are interested in analyzing the
derivatives ofg on P , it is sufficient to center the basis functions
at the pointsci := pi + δn(pi), i ∈ I, close to the vertices ofP
and in the normal directionn(pi). Here, the offset valueδ is pro-
portional to the bounding box ofP [Morse et al. 2001; Shen et al.
2004; Turk and O’Brien 2002].

Special choice: volume-based harmonic approximation. The
harmonicity and the minimization of the Dirichlet energy are the
most natural ways to characterize the smoothness of an approxima-
tion. In this context, the maximum principle of harmonic maps is
easily applied to our approach. In fact, the values ofg in the interior
of P are fully determined by its boundary conditions, which are se-
lected among thef -values. Using the kernel functionϕ(t) := 1/t
of the 3D Laplacian operator in (3) and during the subsequentit-
erations, we get that each basis elementϕi(p) is harmonic. Since
the functionϕi(p) := ‖p − pi‖−1

2 is not defined atpi, the har-
monic kernel is centered at the offset pointsci previously intro-

duced. In particular,g is harmonic (i.e.,∆g = 0) in D := R
3\B,

with B := {ci}i∈I , as superposition of harmonic functions.

From the construction ofg, it follows thatg : D → R is the unique
solution of the Laplace equation∆g(p) = 0, p ∈ D, with Dirich-
let boundary conditionsg(pi) = f(pi), i ∈ I. Once the boundary
constraints have been fixed, the functiong minimizes the Dirichlet
energy

R

D
‖∇g(p)‖2

2dp. We conclude that the topology-driven ap-
proximationg is a smooth function which minimizes the Dirichlet
energy and interpolates the minimal number off -values necessary
to guarantee thatf andgP have the same critical points. In partic-
ular, we expect thatg has a low number of critical points.

Analysis of the critical points of g. To compute the critical
points of g we can proceed in two ways. A first approach is to
sample the functiong at the nodes of a voxelizationV of the vol-
ume around the input surfaceP . According to [Gerstner and Pa-
jarola 2000], the nodes ofV are classified as regular or critical on
the basis of the number of connected components of the simplified
edge graph. In this case, the function values at the nodes arelin-
early interpolated on each tetrahedron. Alternative approaches are
discussed in [Weber et al. 2002; Weber et al. 2007].

A second choice is to classify the nodes of the grid using the
values of the gradient field [Hart 1998]. From (13), it follows
that p ∈ R

3, p /∈ B := {pi}i∈I , is critical for g if and only if
P

i∈I αiϕ
′

i(p) p−pi

‖p−pi‖2
+ (β1, β2, β3) = 0. The discrepancy be-

tween the smoothness ofg and the discreteness of the voxel grid
implies that the values of∇g at the nodes of the grid will not
be null. Indeed, we replace the previous condition with an ap-
proximate version‖∇g(p)‖2 ≈ 0; the thresholdδ used to ver-
ify that ‖∇g(p)‖2 ≤ δ is defined on the basis of the values
{‖∇g(p)‖2}p∈V . As shown in Figure 14, the smoothness of the
basis functions guarantees a low number of critical points of g.



Figure 14: The smoothness properties of the approximation guar-
antees a low number of critical points (black dots).

5.2 Properties of the surface-based approximation gP

We now provide a global and a local upper bound to the approx-
imation of h := gP to f , also analyzing the critical points ofgP .

Upper bound to the approximation of h := gP to f on P .
Without loss of generality, we omit the linear term in (8). While
in Section 4.4 we have evaluated the least-squares approxima-
tion error ‖gP − f‖2, we now derive an upper bound to the er-
ror ǫk := |g(pk) − f(pk)|, k = 1, . . . , n. Sinceg interpolates the
f -values{f(pk)}k∈I , we get thatǫk = 0, k ∈ I. Let j ∈ I be an
index such that0 6= f(pj) =

P

i∈I αiϕi(pj) andk 6∈ I. Using

the identityf(pk) = f(pk)
f(pj)

P

i∈I αiϕi(pj) and the upper bound

C := supt∈R+{|ϕ(t)|} to the kernelϕ, from (6) we have that
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whereI⋆ = {j ∈ I, f(pj) 6= 0}. Indeed, the approximation error
is bounded byλmin(L̃) and‖b‖2.

Upper bound to the approximation of h := gP to f on trian-
gles. Let us consider the triangleΓ := (pi,pj ,pk) of P and as-
sume thatg interpolates thef -values at the vertices ofΓ; therefore,
the following relations holdf(ps) = g(ps) =

P

l∈I αlϕl(ps),
s = i, j, k. The piecewise linear approximation off on the tri-
angle Γ is defined asf(p) := λ1f(pi) + λ2f(pj) + λ3f(pk),

(a)n = 2K (b) (c) (d)

(e)f⋆ n = 8K (f) h (g) f⋆ n = 32K

(h) h (i) f⋆ n = 128K (j) h

(k)

Figure 15: (a,c) Critical points and (b,d) level sets of a noisy func-
tion f (m = 28, M = 32, s = 64) and its topology-driven approx-
imationh := gP (m = 4, M = 4, s = 12). Level sets and critical
points of (e,g,i) the linear interpolationf⋆ and (f,h,j) approxima-
tion h := gP⋆ on (k) several tessellationsP⋆ of P .

p ∈ Γ, with barycentric coordinatesλ1, λ2, λ3. Then,

|g(p) − f(p)| =
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Indeed, the upper bound to the approximation error betweengP
andf on a triangleΓ whereg interpolates thef -values at the ver-
tices, is proportional toλ−1

min(L̃) and to‖b̃‖2.

Analysis of the critical points of gP . Assuming that we have
computedg as described in Section 3, we evaluate its value at each
point of P and not only at its vertices. Indeed, we compute the
critical points of the piecewise linear function that interpolates the
values ofg at the vertices of an over-tessellationP⋆ of the sur-
faceP . To this end, a new surfaceP⋆ is generated by subdividing



(a)n = 60K (b)

(c) (d) (e)

Figure 16: (a) Level sets and critical points of a noisy map (m = 380, M = 390, s = 768). Topology-driven approximation achieved
using (b, d) all the simplified critical points (m = 55, M = 61, s = 114) and (c, e) only the simplified maxima and minima (m = 51,
M = 55, s = 104) as interpolating constraints. In both cases, the shape of the level sets and iso-surfaces are almost the same.

(a) (P , f), g = 7 (b) f (c) h := gP (d) h (e)g

Figure 17: Level sets and critical points of (a,b) a noisy mapf with m = 1426 minima,M = 1550 maxima,s = 2988 saddles and (c,d) its
smoothed approximationh := gP of f . Here,h hasm = 28 minima,M = 25 maxima, ands = 65 saddles. Inh, the critical points off
with low-persistence have been smoothed out by the topology-driven approximation and theL∞-error betweenf andh is below0.001. (e)
Iso-surfaces ofg. Note that the level sets in (c) and the iso-surfaces in (e) smoothly resemble the noisy level sets in (a).

each trianglet of P into four sub-triangles by joining the mid-point
of each edge oft. Then, we study the evolution of the critical points
of the piecewise linear functionsgP , gP⋆ , andf⋆. The scalar func-
tion f⋆ : P⋆ → R is computed extendingf fromP toP⋆ using the
linear interpolation of thef -values; ifp is a refined vertex ofP⋆

and corresponds to the midpoint of the edge(i, j) of P , then we
definef⋆(p) := (f(pi) + f(pj))/2. By applying several times
the previous scheme, we recursively tessellateP⋆ and update the
corresponding mapf⋆.

Figure 15 shows the evolution of the critical points of the above ap-
proximations on the same surface with different tessellations. Iff
has a low number of critical points, then the number of critical
points off⋆ andgP⋆ slightly increases with respect tof . If f has
a high number of critical points, then the number of criticalpoints
of both f⋆ andgP⋆ remains of the same order and is almost the
same. This means that extendingf to the volume aroundP using
a smooth functiong resembles the number of critical points of the
piecewise linear case. The difference between the number ofcrit-
ical points off⋆, gP andf is mainly due to the over-tessellation
of the surfaceP . In fact, over-tessellatingP rapidly increases the
number of vertices ofP⋆ and the probability of generating discrete
critical points when we consider the piecewise linear approxima-
tion gP⋆ . Comparing (e,f), (g,h), (i,j) in Figure 15, the additional
critical points have a low variation of the persistence values; in fact,
they belong to the refined1- or 2-star of a point that is critical at the
previous resolution. For each tessellation and for bothf⋆ andh,
the shape and variation of the level sets is almost the same.

Applying the Loop subdivision to the input surfaceP increases the
number of vertices of the subdivided surfaceP⋆ and improves its
smoothness. Our tests have shown that a higher smoothness ofP
produces a lower number of critical points ofgP⋆ with respect to
the over-tessellation. Examples of stability of the approximation
scheme with respect to noise are shown in Figure 16 and 17.

6 Applications

This section presents three applications of the proposed frame-
work. In Section 6.1, we introduce a simple method for enhanc-
ing the visualization of the behavior off through the iso-surfaces
Σi := {p ∈ R

3 : g(p) = f(pi)}, i ∈ C. In Section 6.2, we dis-
cuss how a function with a large number of clustered criticalpoints
can be approximated by simplifying those that are redundantfor the
description off . Then, Section 6.3 discusses possible variations in
the approximation and degenerate cases.

6.1 From surface- to volume-based scalar functions:
an enhanced visualization approach

The volume-based approximation off allows us to approxi-
mate f on the volumeV around P , while preserving key-
elements for its description such as the distribution of itscrit-
ical points and the related function values. To this end,
we consider the set{f(pi), i ∈ C} as representative func-
tion values to visualizeg and trace the related iso-surfaces



(f1, f2) (h1, h2)

(a) (b) (c) (d) (e) (f) (g) (h)
f : (5, 5, 8) h (10, 13, 21) (8, 12, 18) (7, 13, 18) (7, 11, 16) (6, 10, 14) (6, 8, 12)

(i) (j) (k) (l) (m) (n) (o) (p)
(5, 7, 10) (5, 6, 9) (10, 5, 7) (11, 5, 6) (5, 6, 9) (5, 6, 9) (7, 7, 12) (5, 6, 9)

Figure 18: (a) Level sets of two mapsf1, f2 and (b) their approximationsh1, h2 defined on a torus and a sphere. (c-p) Level sets and critical
points(M, m, s) of the approximations generated by the iterative scheme. TheL∞-error between(f1, f2) and(h1, h2) is 0.087.

(a) (b)

Figure 19: Integral lines of∇g, whereg is the volumetric approxi-
mation of the mapsf1, f2 in Figure 18(a): the starting positions of
the integral lines are the (a) red and (b) black circles.

Σi := {p ∈ R
3 : g(p) = f(pi)}, i ∈ C (Figure 8 and 10). These

iso-surfaces and those related to the critical iso-values of g [Weber
et al. 2007] are useful to inspect the behavior ofg on the volume sur-
rounding the input shape and enhance the analysis off . As shown
in Figure 10(c,d), the smoothness of the iso-surfaces confirms the
regularity ofg around and onP . Note that the functiong is inde-
pendent of the resolution ofP and the voxel gridV. Furthermore,
its global support allows us to compute the value of the function at
each point of the volume aroundP and the approximation accuracy
is higher at those points which are closer toP . Isosurfacing [Bajaj
and Schikore 1998; Stander and Hart 1997; Gerstner and Pajarola
2000; Lorensen and Cline 1987] and volumetric rendering tech-
niques [Fujishiro et al. 2000; Gyulassy et al. 2007; Pascucci et al.
2004; Weber et al. 2007] are used to guarantee that the extracted
iso-surfaces have the same topological structure as the original and
to enhance the exploration of the properties ofg aroundP .

The proposed approximation strategy can also be used to correlate
different phenomena, each represented by a scalar functionon the
same or on different surfaces. Let us suppose that we know the
measurements of a phenomenon on two or more surfaces. These
functions might show a common behavior on the regions of differ-
ent surfaces, changes in their relations, or a similar behavior with
respect to a comparison measure [Biasotti et al. 2007; Edelsbrun-
ner et al. 2004]. More precisely, letfi : Pi → R be a scalar
function defined on a2-manifold triangle meshPi, i = 1, . . . , l.
To apply our approximation scheme, we search a smooth func-
tion g : R

3 → R with global support such thatgPi
has exactly

the same critical points offi, i = 1, . . . , l. To compute such a
function, we proceed as done in Section 3; the only difference is
that at the iteration(k + 1) the approximationg(k+1) is a linear
combination of the radial basis functions centered at each critical
point of the scalar functionsg(k)

Pi
, i = 1, . . . , l, and at the vertices

of the corresponding1-star (Figure 18(a-p)). Therefore, the criti-
cal points of eachfi contribute to define auniquevolumetric ap-
proximationg, which is used to compute global descriptors of the
interaction among the{fi}l

i=1 such as integral lines, particles, and
ribbons of∇g (Figure 19 and 20). Note that∇g is computed by
analytically deriving the implicit function (7).

6.2 Approximating f with simplified critical points

The topology-driven approximation guarantees thatgP has the
same critical points off , which correspond to the nodes of their
Morse complexes and are joined by flow lines of steepest as-
cent/descent (Figure 21). Finally, we expect that the arcs of the
complex ofh are smoother than those off . Whenever the scalar
functionf has a large number of critical points associated to a low
variation of thef -values, it is useful to simplify them and com-
pute a smooth approximation off with a lower number of criti-
cal points. To this end, [Bremer et al. 2004] defines a topologi-
cal hierarchy forf that is constructed by performing a progressive
simplification of the Morse complexF of f through the cancella-
tion of pairs of critical points. The importance weight associated to
the pair(pi,pj) is measured as thepersistence|f(pi) − f(pj)|
of pi, pj . The local updates of the complex are performed by
iteratively removing those pairs with the lowest persistence and
reconnecting the neighbors of the removed nodes. Each node re-
moval affects the number and configuration of the critical points
of F without changingf or modifying the gradient behavior in the
neighborhoods of the cancelled pairs of critical points. Therefore,
at the end of the simplification we get a hierarchy forf where each
Morse complexF(k) is not associated to a corresponding scalar
functionf (k) onP . Theǫ-simplification[Edelsbrunner et al. 2006]
replacesf with a new functionh such thath has the same points of
persistence off higher than a given thresholdǫ and theL∞-error
betweenf andh is lower thanǫ.

In this context, the idea is to buildh by using only the critical points
of f that describe its global behavior and neglecting those thatare
redundant. To this end, we use the persistence-based simplification
to identify the set of critical points which guide the implicit approx-



Figure 20: Iso-surfaces of the volumetric approximation of two scalarfunctions defined on two nested spheres.

Table 5: Timings (s:ms) related to the main steps of the proposed
framework; i.e., the center selection, the construction ofthe volu-
metric approximationg of f , and the computation of theh := gP .
Tests are performed on a Pentium IV 2.80 GHz.

Test ♯Vert. ♯Cent. ♯Iter. Cent. sel.&g h
Fig. 1 60K 1011 16 4.18 2.01
Fig. 3, 4 60K 4472 9 4.02 0.80
Fig. 5 280K 2789 16 8.41 2.56
Fig. 6 310K 3613 13 24.58 10.23
Fig. 10 125K 1231 11 6.01 2.46
Fig. 23 65K 975 7 8.01 2.12

imation off (Section 3.1). In some cases, it might happen that we
get a functionh whose set of critical pointsstrictly includes the
preserved maxima, minima, and saddles off . In fact, let us sup-
pose that the persistence-based simplification discards the critical
point p ∈ P of f and that it becomes a critical point off (k) at the
iterationk. Sincef (k+1) interpolates thef -values atp and at the
points of its one star,p is a critical point of the final approxima-
tion h of f . The smoothness of the solution guarantees the rein-
sertion of a low number of simplified critical points off in h. To
avoid this reinsertion, we can proceed as discussed in Section 4.1.
Our tests (Figures 1(e-f), 16, 17, 22, 23(d), and 24) have shown that
the number and distribution of the critical points ofh still reflect
those off and theL∞-error betweenf andh is low. The error
can be further reduced by adding the error-driven term basedon
compactly-supported radial basis functions; the number ofselected
centers at each iterationk is maintained low by using thef -values
at the extrema of eachf (k) as interpolating conditions.

6.3 Scalar functions approximation with weak con-
straints and treatment of degenerate cases

Since the global structure off is reconstructed by a linear combi-
nation of globally-supported basis functions, we must ensure that
each matrixL̃(k), k ≤ q, still fits the available main memory. To
address this issue, we devise two main strategies. Iff has a huge
number of critical points, which appear clustered into one or more
regions, then they are simplified (Section 6.2) before running the
approximation scheme. If the critical points have a high persis-
tency, then a strong increase of the simplification rate might delete
points that are important to reconstruct the global structure off . In
this case, we use a low number of globally-supported basis func-
tions by centering locally-supported basis functions at the vertices
of the1-star of each critical point. More precisely, at each iteration
we consider asI(k+1) := I(k) ∪ Q(k), thus neglecting the func-
tion values at the vertices of the1-star of the indices inQ(k), that
is, the setT (k) := {j ∈ N(i), i ∈ Q(k)} (Figure 6).

(a)f (b) h

(c) f (d) h

Figure 21: Morse complex of (a,c) the inputf and (b,d) the approx-
imate functionh := gP , whereg is the topology-driven approxi-
mation. In both examples, the complexes have a similar structure,
include a few number of paths with different shape, and the arcs of
the Morse complex ofh are smoother than those off .

If f is not general, then the Euler formula and the nullity relation
are not satisfied. A strict inequality in the definition of themax-
ima, minima, and saddles implies that the pointsR belonging to
the edges along whichf is not general are not critical. However, at
a given iterationk thef -values atR become interpolating condi-
tions if a point ofR belongs to the1-star of a critical point off (k).
We also note that we can force the approximation to interpolate
the f -values along the edges wheref is not general by consider-
ing a weak inequality in the definition of the critical points. Even
though the Euler formula forf (k) is not necessarily satisfied, the
stop criterion remains unchanged and the stop is usually reached in
few iterations (Figure 25 and 26).

To guarantee thatf and its approximation share the same global
behavior without having the same critical points, the regularity of
the convergence suggests to stop the iterations when the number of
critical points in the hierarchy and the centers of the basisfunctions
slightly vary between two consecutive iterations. Regardless the
regularity off and the sampling density ofP , the tests presented
throughout the paper show that the iterative scheme requires few it-
erations to converge and the selected centers are a small percentage
of the number of input points. Timings are reported in Table 5.



(a) (b) (c) (d) (e) (f)

Figure 22: (a) Morse complex of a functionf on a3-genus surfaceP ; f hasM = 327 maxima,m = 57 minima, ands = 388 saddles.
(b) The picture shows the critical points that have been maintained in those regions (yellow boxes) where they are clustered. The simplification
step has selected174 maxima,26 minima, and204 saddles, i.e. the57% of the input critical points. (c) Level sets and color map off and
(d) of the approximated functionh; the L∞-error betweenf andh is 0.023. (e) Zoom-in on the Morse complex off and the level sets ofh
in the bottom part ofP . (f) The iso-surfaces of the volume-based approximation ofg reflect the spherical behavior off onP .

(a)f (b) f (c) h (d) h⋆ (e)h⋆

Figure 23: (a) Critical points and (b) level sets of an electrostatic charge f measured on a molecular surface. The functionf has been
simulated by placing random charges on the molecular surface. (c) Level sets of the approximated scalar functionh built by maintaining all
the critical points off ; ‖f − h‖∞ = 0.019. (d) Simplified setS of critical points; few points have been maintained in the bottom part of the
molecule due to a low variation of thef -values on this region. (e) Level sets of the scalar functionh⋆ built onS . Since‖f − h⋆‖∞ = 0.023,
we conclude that the removal of clustered and redundant critical points did not affect the point-wise approximation off .

(a) (b) (c) (d)

Figure 24: (a) Morse complex of a mapf with M := 60 max-
ima, m := 63 minima, ands := 125 saddles. The simpli-
fication has selected the39% of the critical points off (i.e.,
M := 23, m := 24 minima, ands := 49). Level sets of (b)f
and (c) the approximated functionh; ‖f − h‖∞ = 0.081. (d) Iso-
surfaces of the volumetric approximation off .

7 Future work

The paper has investigated how the critical points of a givenfunc-
tion f can be used to compute smooth approximations off with
the same critical points. The proposed topology- and error-driven
approximation scheme enables to describe and analyze more func-

tions concurrently defined on several surfaces, as well as their corre-
lation and redundancy. We have demonstrated our method on both
synthetic and real data, which include computer graphics, topo-
graphic, mechanical, and biomolecular surfaces as well as measure-
ments of the electrostatic charge, mathematical and stressfunctions.
We plan to extend the proposed framework to time-depending and
three-dimensional scalar functions. For multi-dimensional func-
tions defined on2-manifold surfaces, the approximation scheme
remains unchanged; in this case, we treat each component off sep-
arately. Then, the visualization can be addressed by fixing anum-
ber of variables and drawing the iso-surfaces with respect to the
remaining free parameters, applying a multi-dimensional scaling,
or using state-of-the-art techniques developed for the visualization
of multi-dimensional data.
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(a) (b)

Figure 25: (a) Height functionf with respect to thez-axis on a
vulcano rim and (b) its smooth approximationh. Both f and h
are not general; the evolution of the critical ponts is:f (1): , M =
154, m = 91, s = 232, r = 2720; f (2): M = 155, m = 91, s =
237, r = 2754; f (3): M = 155, m = 91, s = 244, r = 2768.
From the fourth step on, the critical points of the current approxi-
mation remains unchanged and the iterative procedure stops.

(a) (b) (c) (d)
(23, 6, 7) (13, 10, 23) (10, 9, 19) (8, 5, 13)

(e) (f) (g) (h)
(7, 5, 12) (6, 5, 11) r = 309

Figure 26: (a) Scalar functionf with five1-stars wheref is not
general: one is visible in the bottom-left part of the torus (see
also the red region in (h)). (b-f) Approximating functionsf (k),
k = 1, . . . , 5 and critical points(M, m, s); (g) selected centers;
(h) zoom-in on the region wheref andh := f (5) are not general.
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