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What’s in an Image ?
Towards the Computation of the “Best” View of an Object

Abstract There are many possible 2D views of a given
3D object and most people would agree that some views
are more aesthetic and/or more “informative” than oth-
ers. Thus, it would be very useful, in many applications,
to be able to automatically compute these “best” views.
Although all measures of the quality of a view will ul-
timately be subjective, hence difficult to quantify, we
propose some general principles which may be used to
address this challenge. In particular, we describe a num-
ber of different ways to measure the goodness of a view,
and show how to optimize these measures by reducing
the size of the search space.

Keywords Visualization · View entropy · Scene
composition

1 Introduction

The real world consists of three-dimensional objects. The
human visual system, however, is limited by optics to
view only their two-dimensional images. Stereo vision
and perspective only partially overcome this limitation.
Thus, a significant component of the geometric infor-
mation about a 3D object is lost during the viewing
transformation. This unfortunate fact is also reflected
in traditional computer graphics applications, where we
commonly see rendered 2D images. Although all the in-
formation about the 3D shape is known a-priori (i.e., be-
fore the image rendering), much is lost when the shape is
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projected onto the image plane, and the amount of pre-
served information depends on the eye (camera) position
relative to the shape in that particular view.

In this paper, we focus on the quantification and mea-
surement of the visual information present in an image
of a 3D object with the aim of finding optimal, or nearly-
optimal, views. It should be emphasized that the notion
of the goodness of a view may depend on the particular
visual task or application. For example, in an illustrated
manual of work tools, people may prefer views where the
tool is drawn in the typical position, as used by the ma-
chine operator. Object recognition tasks performed by
a robot may require a totally different view to achieve
best performance. Nonetheless, we believe that there ex-
ists some common basis for all these visual problems.

Answering these questions presents a significant chal-
lenge in the field of visualization and shape understand-
ing. A solution would be useful in several applications
such as automatic camera positioning in CAD, thumb-
nail generation for large 3D databases, automatic scene
composition, technical illustration, and object recogni-
tion.

In this paper we propose the following methodology:
define a view descriptor which attaches a score to a view
of the object, taking into account its visible geometry
(Section 3). Then, compute the value of this descriptor
for a small number of candidate views (Section 4). We
consider the view with the highest score to be the most
informative. We describe a number of such descriptors,
and show how to optimize them efficiently over the view-
ing sphere. We compare the views generated by these
descriptors and discuss their performance (Section 5 and
6).

2 Previous work

The question “What is a good view of an object ?” dates
back to the Greeks and Romans, who proposed some
simple rules of thumb, e.g. the golden ratio, the rule of
thirds, the rule of fifths, etc [13].
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In the 1930s, the mathematician Birkhoff [5,6] tried
to quantify the notion of an object’s beauty. He defined
the beauty B of an object as B = O/C, where O is order
and C is complexity. He tested this formula on simple
geometric figures, but was unable to provide a general
notion of order and complexity.

In the computer vision community, good views are
presumed to be ones that make an object more readily
recognizable by humans. Many automatic object recog-
nition techniques in vision and robotics are based on the-
ories from human visual perception. Currently, there are
two main competing theories: Marr [18] and Biederman
[4] describe a theory of “recognition-by-components” (or
“structural description”), maintaining that human vision
represents objects as 3D entities consisting of 3D compo-
nents, and this representation is viewpoint-independent.
The second theory is “multiple-view description” (Bülthoff
et al. [8], Koenderink [16]), stating that the object is best
represented and processed as a set of 2D images from dif-
ferent viewpoints, connected in a so-called aspect graph.
This is a graph defined such that the vertices correspond
to equivalence classes of views and edges join one view
with another if the two differ by a single visual event. Un-
fortunately, the complexity of the aspect graph for line
drawings containing n lines has been shown to be O(n6),
which is quite prohibitive. Weinshall and Werman [27]
give a theoretical proof of equivalence between view sta-
bility and view likelihood for a given aspect and show
that this view can be computed from the aspect’s auto-
correlation matrix using Principal Components Analysis
(PCA) [14].

Tarr and Kriegman [25] have conducted psychophys-
ical experiments investigating the influence of the aspect
of an object on the quality of recognition. The experi-
ments reveal that humans are indeed sensitive to certain
types of visual events captured by the aspect graphs.
One interesting consequence of other psychophysical ex-
periments is that for many models, there exist a small
number of views which seem to be preferred by most
people. Palmer et al. [21] and Blanz et al. [7] call these
views ”canonical views” and show that they often corre-
spond to the classical “three-quarter view” of the object.
According to Blanz et al. [7], canonical views are stable,
and expose as many salient and significant features as
possible.

In the field of computer graphics, Gooch et al [13] try
to use the results of Blanz et al [7] to perform automatic
scene composition, where finding the viewpoint is one of
the three stages of the composition process (i.e., image
format, viewpoint, and shape layout). They start from
the three-quarter view (determined manually) and then
optimize it to find the most stable view, where stabil-
ity means to eliminate coincident silhouette lines. More
specifically, they maximize the sum of squared distances
between all silhouette midpoints, ignoring silhouette vis-
ibility.

Probably the first attempt to compute good views in
computer graphics was made by Kamada and Kawai [15].
They treat objects drawn in wire-frame in an orthogonal
projection. A degenerate projection is one for which an
edge is projected to a point, or a polygon is projected to
a line. The objective is to minimize such degeneracies,
and the optimal viewpoint is called “general position”.
The complexity of the analytical solution is O(n3 log n),
but this does not take occlusions into account. The work
of Gómez et al. [12] is similar in spirit to [15], incorpo-
rating perspective projections. Various “niceness” crite-
ria are defined: regularity, simplicity, minimum crossing,
and monotonic projections. Barral et al. [2] add coeffi-
cients to the formulae of [15] to cope with perspective
projection, and introduce other heuristic balance coeffi-
cients, but admit that it is difficult to determine optimal
weights for the different components.

Plemenos and Benayada [22] introduce the term “vis-
ible projected area”. They assume that a good view is
that which maximizes the number of visible triangles and
the visible projected surface area. These two measures
are weighted and summed to an objective function and
the optimal value is heuristically searched for by hierar-
chically subdividing the viewing sphere surrounding the
scene. This measure does not take into account at all the
amount of invisible (occluded) surface area.

Vázquez et al. [26] extend the measure of Plemenos
and Benayada [22] to operate on a per-face basis. This
gives more detailed information on the view. A “proba-
bility” is associated with each face, defined as the frac-
tion of its visible projected area relative to the total vis-
ible projected area. These probabilities are then com-
bined using the information-theoretic entropy function.
The cost function, called viewpoint entropy, is defined to
be the entropy of this distribution. Hence, a good view
is one for whom the faces are exposed as uniformly as
possible. Note, however, that this cost function does not
either take into account the behaviour of the occluded
surfaces. Additionally, Stoev and Straßer [24] point out
that the method of Vázquez et al. generates “flat” views
for scenes where all the normals point in similar direc-
tions (e.g., digital terrain models). As a result, the good
view direction (maximal viewpoint entropy) typically is
vertical; so although the number of visible triangles and
the projected area are maximized, most of depth infor-
mation is lost. Their proposed workaround is to add to
the cost function another (weighted) term which mea-
sures the maximal depth in the frame.

In the field of robotics, Arbel and Ferrie [1] and Roberts
and Marshall [23] attempt to find good views that sim-
plify object recognition. The approach in [1] is based on a
learning process for entropy maps on the viewing sphere,
where each entropy value indicates the expected ambigu-
ity of recognition. During the recognition process, these
maps are navigated in order to minimize the chance of
expected ambiguities. Roberts and Marshall [23] select a
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Fig. 1 Four top-ranking (left to right) views among candi-
date views according to the surface area entropy descriptor.
Black dots indicate a three-quarter view (otherwise it is a
normal-clustered view).

minimal number of views that allow adequate represen-
tation for every face of the object.

3 View descriptors

In this section, we describe a number of ways to measure
the goodness of a view of an object. The objective func-
tion that measures this is called a view descriptor, and
the best view is that which maximizes this function. Our
descriptors are based on the following principles.

The first principle is to exploit an accepted measure
of geometric complexity for a 3D shape. This could be
based on various features in the shape, its surface area,
its curvature destribution, etc, and is obviously view-
independent. The view descriptor would then assign to a
view a score which is the contribution to the complexity
from the portion of the shape which is visible in that view
(see paragraphs on Surface area entropy, Visibility ratio
and Curvature entropy). So, in effect, the best view is
that which exposes as much of the geometric complexity
of the object as possible.

The second principle is to define descriptors which
are based on inherently view-dependent features. Exam-
ples are object silhouettes and critical points (see para-
graphs Silhouette entropy and Topological complexity).
Here again we would like to expose as much of these
features as possible.

A third principle is to build a descriptor which, in-
stead of assigning values to the primitive elements of
the 3D model (e.g., vertices, faces, and edges), assigns

Fig. 2 Four top-ranking (left to right) views among candi-
date views according to the visibility ratio descriptor.

values to larger portions of the model which have some
semantic meaning. Such portions of the model may be
obtained from segmentation algorithms (see paragraph
Surface entropy of semantic parts). This affords a higher
level visual appreciation of the model.

Surface area entropy. The first descriptor that we ex-
amined measures geometric complexity of an object as
its surface area. Each face is assigned a “probability” —
the fraction of its visible projected area relative to the to-
tal visible projected area and the descriptor value is the
entropy of this distribution. We computed these prob-
abilities at image precision by rendering each face with
a distinct colour, and counting the number of pixels of
each colour. This is essentially the “viewpoint entropy”
method proposed by Vázquez et al. [26]. The ranking of
some views by this descriptor are shown in Figure 1. In
this figure, and those related to the other descriptors,
we restrict our attention to a small number of candidate
views generated by a filtering procedure, as described in
Section 4.

Visibility ratio. The previous descriptor did not take into
account the behavior of the invisible portions of the sur-
face, so it might prefer a view of the object in which most
of its surface area is occluded. A descriptor which does
take this into account is the ratio between the 3D surface
area that is visible in the image, and the total 3D surface
area. This seeks to expose as much of the surface area as
possible. The ranking of some views by this descriptor
are shown in Figure 2.
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Fig. 3 Four top-ranking (left to right) views among can-
didate views according to the curvature entropy descriptor.
Black dots indicate a three-quarter view (otherwise it is a
normal-clustered view).

Curvature entropy. Surface area is a very simple measure
of shape complexity. A more sophisticated one, as pro-
posed by Page et al [20], is the entropy of the Gaussian
curvature distribution over the entire surface of the ob-
ject. We define the curvature entropy descriptor to be
the entropy of the curvature distribution over the visible
portion of the surface. The curvature at a vertex v is es-
timated by the standard angle-deficit approximation, as
in [20]:

C(v) =
2π − ∑

i θi

3
∑

i Ai
(1)

where θi and Ai are the apex angles and areas in
the one ring of triangles incident on v, respectively. The
ranking of some views by this descriptor are shown in
Figure 3.

The previous descriptors were based on view inde-
pendent measures of shape complexity. We now define
descriptors which are inherently view-dependent.

Silhouette length. Silhouettes (sometime called “occlud-
ing contours”) seem to provide an accurate and compact
depiction of the shape of a 3D model, and, for this rea-
son, are often used in non-photorealistic rendering. Sil-
houettes are also view-dependent. A simple version of
this descriptor measures the total length of all silhou-
ette edges in the image plane. Since this cannot be done
reliably in image space, we computed the visible silhou-
ette edges in object space analytically and calculated the
length of their projected versions. The ranking of some
views by this descriptor are shown in Figure 4.

Fig. 4 Four top-ranking (left to right) views among candi-
date views according to the silhouette length descriptor. Black
dots indicate a three-quarter view (otherwise it is a normal-
clustered view).

Silhouette entropy. A more sophisticated silhouette-based
descriptor uses silhouette entropy instead of total length,
where the entropy of a curve is defined as the entropy
of its curvature distribution, as proposed by Page et al
[20]. In the discrete version, we compute the entropy of
all turning angles between adjacent silhouette edges. In
some cases, spurious silhouette edge crossings can make
the result quite unstable. The ranking of some views by
this descriptor are shown in Figure 5.

Topological complexity. Another approach was motivated
by the fact that the critical points of a 3D surface are
highly informative. These may be considered features of
the surface. Assuming that the boundary of the object
is a smooth closed manifold surface S in R

3, we may
use the height function hn along any direction n and
compute the number of its critical points (i.e., minima,
maxima, and saddles) on S. A classical theorem from dif-
ferential topology [19] states that the alternate sum of
the number of minima, maxima, and saddles is constant,
and is related to the Euler characteristic χ of S, namely:

maxima − saddles + minima = 2(1 − g) = χ, (2)

where g is the genus of S. However the total number of
critical points (maxima+saddles+minima) depends on
the direction n, this quantity could be useful for dis-
criminating among different view directions (when used
as n). The direction that maximizes this number seems
to be the most informative. The result (2) is valid not
only for Morse functions on the surface, but also for C0

functions, using the extension proposed in [3]. Therefore,
it can be applied even if the height function has degen-
erate critical points. The ranking of some views by this
descriptor are shown in Figure 6.
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Fig. 5 Four top-ranking (left to right) views among can-
didate views according to the silhouette entropy descriptor.
Black dots indicate a three-quarter view (otherwise it is a
normal-clustered view).

Surface entropy of semantic parts. It is possible to apply
the surface area entropy method to geometric elements
larger than the primitive elements (e.g. vertices, faces)
of a 3D mesh. One way to achieve this is to use semanti-
cally important segments of the model. The probability
of each segment is defined to be the visible projected area
of this segment relative to the visible projected area of
the entire model. There exist many mesh segmentation
algorithms and the descriptor will depend critically on
the segmentation method. In our experiments, we used
the method proposed by Dey et al. [9], which seems to
be able to identify parts of the model which are seman-
tically meaningful (e.g. nose, ears, neck, etc for a head
model). The ranking of some views by this descriptor are
shown in Figure 7.

4 Sampling the view space

Given a view descriptor measuring the “goodness” of a
view as a function of viewing direction, the problem is
then to find the global, or even local, maximum of this
function over the viewing sphere. Since the search space
is a continuum containing an infinite number of points,
we have used two different strategies to reduce the search
to an exhaustive search on a small but reasonable set of
candidate views. In this section, we describe two methods
to generate these candidate views.

For many inputs, nature dictates an “up” direction,
which should be respected in any view, certainly in the
best one. So, for example, an animal should not be ren-
dered upside down, rather standing on its feet. Noticing
that the best view has a degree of freedom of 2D rotation
in the image plane (since this will not change the value
of any of the descriptors), it is possible to exploit this de-

Fig. 6 Four top-ranking (left to right) views among candi-
date views according to the topological complexity descriptor.
Black dots indicate a three-quarter view (otherwise it is a
normal-clustered view).

gree of freedom to cause all views to have the correct 2D
orientation after the optimal view has been computed.

Three-quarter views. Palmer et al. [21] experimentally
observed the existence of what they call “canonical views”
of an object. These are views that most humans prefer to
look at the object from, and they seem to be quite well
defined in practice. Inspired by the structural descrip-
tion theories, Blanz et al. [7] state that these canoni-
cal views are typically “three-quarter views” of the ob-
jects. Gestalt psychologists explain that this is a view
where the front, top, and side of the object are simulta-
neously visible. This also explains why these views are
preferred by humans: we simply prefer to see simulta-
neously all three dimensions of the shape. In particular,
Marr [18] states that the object’s “primary axis of elon-
gation” should be clearly visible.

We use three-quarter views as candidate views. We
start by approximating the shape by an oriented box,
thus establishing a local Cartesian frame defined by the
three axes of the box. Three-quarter views then corre-
spond to the vectors whose components are the eight
combinations of (±1,±1,±1) in this coordinate system.
As pointed out by Weinshall and Werman [27], these
views are the most stable views of the box approximat-
ing the object, thus hopefully a good approximation for
stable views of the object itself.

To compute an approximating box for the object, we
use the three principle directions generated by PCA of
the object geometry, relative to the centroid of the point
cloud. The PCA method has some nice properties, such
as robustness and stability; furthermore, it has been suc-
cessfully used in computer graphics for object matching
and aligning and normalization purposes (e.g., see [10,
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Fig. 7 Four top-ranking (left to right) views among candi-
date views according to the surface entropy of semantic parts
descriptor. Black dots indicate a three-quarter view (other-
wise it is a normal-clustered view).

11]). Finally, we note that the eight vectors are computed
ignoring occlusion, which will be taken into account later
by the descriptors.

Normal clustering. Another way to compute candidate
views of an object is to detect clusters in the set of ver-
tex normals. Again we ignore occlusions. This effectively
defines the “sides” of the object to be those directions
that a large number of normals point towards. This is
motivated by the assumption that the more the normals
point in some direction, the more the object’s surface is
visible from that direction. More precisely, for each ver-
tex v we approximate its unit normal by averaging the
normal vectors of the triangles incident on v; each normal
vector defines a point on the unit sphere (i.e., the Gauss
map). Then, we cluster the points on the unit sphere us-
ing an iterative version of PCA [14], thus achieving a set
of clusters. An interesting view is defined as the center
of mass of these points (or equivalently, normal vectors)
of each cluster. The resulting view directions seem to be
quite stable.

5 Experimental Results

To compare the performance of the various descriptors,
we applied them to a set of 3D objects which seem to
be representative. For each object we computed a rela-
tively small number of candidate views based on the two
methods described in Section 4 and for each such view,
computed the value of the various descriptors described

in Section 3, and ranked them in decreasing order (from
left to right), as depicted in Figures 1 – 7. The objective
was to see whether those views which ranked highest ac-
cording to some descriptors were indeed those which are
most informative to a human observer.

The three-quarter view and normal clustering sam-
ple the view space by considering the geometry and nor-
mals respectively. The main difference between these two
methods is the number of candidates generated. This is
constant (i.e., eight) for the first method and essentially
unbounded for the second method. In practice, we choose
the 15 to 30 most significant clusters to emerge from the
PCA. Three-quarter views are marked by a black dot in
Figures 1 – 7. It seems that all the view descriptors prefer
mostly the normal clustered views over the three-quarter
views.

6 Conclusions and Discussion

The problem of finding a good view for an object seems
to be quite difficult. It is becoming painfully obvious that
there is no panacea. No one descriptor does a perfect
job. It is probably possible to improve the descriptors
described here and fine-tune them a little more, but we
do not believe that this will be significant. However, since
each descriptor does a reasonably good job on a majority
of inputs, we are confident that it is possible to combine
them to amplify the advantage that each has. Possible
combinations are linear, where the optimal weights will
have to be determined by some learning process, or non-
linear, e.g. by a voting process.

Once the descriptors have been decided on, an ef-
ficient algorithm must compute the view on the unit
sphere which optimizes this measure. At first glance,
this seems to be a difficult problem, since there exists
a continuum of possible viewpoints. A gradient-descent
optimization over the viewing sphere could work, but it
would be very slow and not guarantee a global maxi-
mum. Hence we reduce the problem to a search over a
(possibly large but) finite set of candidate viewpoints
but, consequently, we might miss the best view. It would
be useful to be able to prove that the particular mea-
sure we use can be maximal only at the candidate views.
As we have shown, possible candidates are three-quarter
views or normals, but it is not obvious that the optimal
view must indeed be one of these.

A very recent paper by Lee et al. [17] defines the
most informative view as that which maximizes the visi-
ble saliency of an object. The saliency is defined using a
multiscale curvature measure. A gradient-descent algo-
rithm is used to optimize this measure over the viewing
sphere. Using a multiscale measure (as opposed to sin-
gle scale) seems to be useful, and it might be possible
to enhance our descriptors to accommodate this type of
information as well.
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