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Abstract This paper proposes a framework for selecting the
Laplacian eigenvalues of 3D shapes that are more relevant
for shape characterization and classification. We demonstrate
the redundancy of the information coded by the shape spec-
trum and discuss the shape characterization capability of
the selected eigenvalues. The feature selection methods used
to demonstrate our claim are the AdaBoost algorithm and
Support Vector Machine. The efficiency of the selection is
shown by comparing the results of the selected eigenvalues
on shape characterization and classification with those re-
lated to the firstk eigenvalues, by varyingk over the car-
dinality of the spectrum. Our experiments, which have been
performed on 3D objects represented either as triangle meshes
or point clouds, show that working directly with point clouds
provides classification results that are comparable with re-
spect to those related to surface-based representations. Fi-
nally, we discuss the stability of the computation of the Lapla-
cian spectrum to matrix perturbations.

Keywords Shape characterization· feature selection·
shape classification· point clouds· Laplacian spectrum

1 Introduction

Shape classification and retrieval are crucial tools in orga-
nizing and interacting with databases of 3D models and in
getting a picture on the knowledge, or semantics, underly-
ing the models. The performance of classification and re-
trieval strongly depends on the effectiveness of the shape
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descriptors, the comparison method, and the indexing tech-
niques [11]. Even though several methods for shape compar-
ison have been proposed [15,52], only few methodologies
address the issue of identifying descriptions that capturethe
shape features shared by a class of models [31,36]. In this
context, we propose a novel approach for shape character-
ization and classification based on the relevant information
coded by the Laplacian spectrum of 3D shapes represented
as point clouds.

The spectrum of the Laplace-Beltrami operator provides
a descriptive and large feature vector, which characterizes
the input shape and has been applied to shape matching due
to its isometry-invariance, robustness to local noise and sam-
pling, shape-intrinsic definition, and multi-scale organiza-
tion. The first use of the Laplacian spectrum for shape match-
ing was proposed in [48], where two shapes are compared by
measuring the Euclidean distance between the vectors de-
fined by the first 50 eigenvalues with smaller magnitude.

While there is an evidence of the close relation among
shape features and eigenvalues, the best way to use the spec-
trum for shape characterization has not been identified yet [47].
Inspired by the earlier work presented in [30,54], the idea
behind the proposed approach is to consider the Laplacian
eigenvalues, of either triangle meshes or point clouds, as
shape descriptors and identify the most relevant informa-
tion coded in the spectrum, capable of best characterizing
the most relevant features of a given class of 3D objects.
This information is then used for classification.

These goals are achieved by exploiting the properties of
the feature selection and the classification capabilities of the
AdaBoost algorithm [20] and Support Vector Machine [12,
23]. Then, the selected features are assessed with appropri-
ate Bootstrap and Cross-Validation techniques. The resultof
the study is a new approach capable of automatically associ-
ating to classes of 3D objects the subset of the spectrum that
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is more relevant to characterize the intra-class similarity and
discriminate among different classes.

Even if AdaBoost and Support Vector Machines are well-
known algorithms for feature selection, our work is the first
attempt at the identification of those sub-parts of the shape
spectrum that discriminate among different classes of mod-
els. More precisely, our final aim is to select a subset of
eigenvalues, which represents each class by means of those
features that characterize the class members and that are dis-
criminative with respect to non-member 3D objects.

In [35], we have shown that statistical methods are ap-
propriate to correlate subsets of the spectrum to classes of
3D shapes and to have a grasp on the semantics captured by
the eigenvalues. Starting from these results, we now verify
that this statement also applies to point clouds and that the
eigenvalues selected by the AdaBoost algorithm and Sup-
port Vector Machines effectively characterize the members
of a given class of 3D objects. Furthermore, we prove that
working directly with point clouds provides classification
results that are comparable with respect to those related to
surface-based representations.

Since the graph Laplacian of a point cloud converges
to the Laplace-Beltrami operator of the underlying mani-
fold, we compute the corresponding eigenvalues without ap-
plying the mesh Laplacian discretization based on cotan-
gent and FEM weights. Our intuition is that feature selec-
tion based on the eigenvalues of the graph Laplacian of the
input point cloud corresponds to feature selection based on
the geometric structure of the underlying manifold. In this
case, the computation of the Laplacian eigenvalues is based
on manifold learning techniques [7] and is robust to the geo-
metric/topological noise in the point cloud. For instance,the
topological noise might be introduced when the local shape
at a point is recovered using itsk-nearest neighbor.

The paper is organized as follows. Sect. 2 briefly recalls
previous work on shape comparison and Sect. 3 introduces
the spectral analysis for surfaces. Then, Sect. 4 presents the
proposed feature selection approach, the data set used for the
experiments, the AdaBoost algorithm, Support Vector Ma-
chines, and the comparison with previous work. Sect. 5 dis-
cusses the characterization and the classification capabilities
of the selected eigenvalues. Finally, Sect. 6 provides closing
remarks on results and outlines future work.

2 Related work

In the following, we review previous work on feature selec-
tion, spectral and point-based shape descriptors.

Feature selectionThe AdaBoost algorithm [21], which is a
statistical tool for feature extraction from 2D images [54],
has been used [30] to select relevant views of 3D objects

with respect to the light field descriptor [16]. Other classi-
fiers based on semi-supervised learning, dimensionality re-
duction, and probability have been successfully exploited
for shape classification. For instance, in [25] Support Vector
Machine is used to cluster 3D models with respect to seman-
tic information. In [26,42], shape classifiers are obtainedas
a linear combination of individual classifiers and using non-
linear dimensionality reduction. In [51], relevant local shape
descriptors are selected through a multivariate Gaussian dis-
tribution and collected to define a priority-driven search for
shape retrieval.

Point sets and point-based shape descriptorsPoint-sampled
surfaces, generated either by scanning real 3D objects with
optical devices or sampling implicit and parametric func-
tions, are discrete models of surfaces with an arbitrary genus
and a generally high number of points. Point sets became
an alternative to polygonal meshes, due to the simplicity of
dealing with complex 3D shapes as point clouds and using
points as rendering primitives [28,46,49,57]. The lack of
connectivity and the atomic definition of point clouds pro-
vide a built-in multi-scale surface representation [45], thus
avoiding to process the connectivity of polygonal meshes.

Point sets are widely used for ray tracing [2], surface re-
construction [39,56], sampling [3], simplification [44], seg-
mentation [6], spectral analysis [41], machine learning [9,
53], progressive rendering and streaming [19]. In this con-
text, only few methodologies address the comparison of point
clouds, without explicitly computing the underlying mesh
connectivity. For instance, in [34] point clouds are compared
using the histograms of pairwise diffusion, geodesic, and
curvature weighted distances. Even though other compari-
son methods based on mesh representations of 3D shapes
might be extended to point clouds, a low attention has been
payed to this problem.

In [50], the eigenvectors corresponding to the Laplacian
eigenvalues of smaller magnitude are used to define a shape
representation that is invariant to isometric transformations.
Then, these signatures are compared using a modification
of the D2-distribution [43], which is based on a set of his-
tograms that capture the variation of distances among points
within a set of spherical cells centered at the origin of ak-
dimensional space. In [38],Local Linear Embeddingsare
constructed on eigenspaces of affinity matrices and matched
by using theExpectation-Maximizationframework. Instead
of using the spectrum itself, in [27] non-rigid objects are
matched using spectral embeddings, which are derived from
the eigenvectors of affinity matrices computed considering
geodesic distances.
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3 Spectral descriptors of 3D shapes

Given an input surfaceM , theLaplacian spectrumof M is
defined as the set of solutions(λ , f ) of the followingeigen-
value problem:

find f : M → R such that∆ f = λ f , λ ∈ R,

where∆ is the Laplace-Beltrami operator. The intuition be-
hind spectral shape comparison is that the Laplacian eigen-
values are meaningful for the description of the input sur-
faceM due to their intrinsic definition and invariance with
respect to isometric transformations.

In the discrete setting, we approximate the surfaceM

with a point cloudP and the Laplace-Beltrami operator
with a sparse matrix. More precisely, a point-based repre-
sentation of a surfaceM is a finite setP of points sam-
pled onM . The surfaceM underlyingP is commonly es-
timated using themoving least-squares[3,4,33] and theim-
plicit [1] approximations. Given a point setP := {pi}

n
i=1,

in thek-nearest neighbor graphG of P each pointpi ∈ P

is associated with itsk nearest points inP, which consti-
tute theneighbourNpi := {p js}

k
s=1 of pi . For dense point

sets, this graph provides sufficient information to approx-
imate the local geometric and topological structure ofM

without meshing the whole point set. The computation ofG

requiresO(nlogn) time [5].
According to [7,8,18], on the point cloudP := {pi}

n
i=1

thenormalized graph Laplacian matrix Lnr := (Lnr(i, j))n
i, j=1

is defined as

Lnr(i, j) :=







1 i = j,
−W(i, j)/αi p j ∈ Npi ,
0 else,

{

W(i, j) := exp
(

−
‖pi−p j‖

2
2

h2

)

,

αi := ∑ j∈Npi
W(i, j).

(1)

Starting from this discretization and following the graph the-
ory terminology, we introduce different normalizations of
the graph Laplacian matrix by rewriting the normalized graph
Laplacian matrix asLnr = D−1(D−W) = D−1Lun, where
Lun := D−W is the un-normalized graph Laplacian ma-
trix andW is the weight matrix, whose elements areW(i, j)
if (i, j) is an edge ofG and zero otherwise. As detailed in
Sect. 3.1, the symmetry ofLun is important to guarantee the
stable computation of its eigenvalues with respect to pertur-
bations of the Laplacian matrix and the input surface. Fi-
nally, we recall that the matricesLnr and Lun are positive
semidefinite.

To reduce the dependency of the Laplacian eigenmaps
representation from the density of the data points, in [29]
the Gaussian weights are normalized with an estimate of the
point density and the Laplacian matrix is updated with these

new weights. Therefore, the new Laplacian matrix that re-
places (1) is built in two phases as follows

L̃(i, j) :=

{

W(i, j)
αiα j

p j ∈ Npi ,

0 else,

L(i, j) :=











−1 i = j,
L̃(i, j)

∑k∈Npi
L̃(i,k)

pi ∈ Npi ,

0 else.

In this case, in the limit of large sampled points and small
scales the eigenvectors of the new Laplacian matrix con-
verge to those of the Laplace-Beltrami operator onP. An
alternative discretization of the Laplacian matrix is described
in [32]. We remind that the vectorh, h 6= 0, is aneigenvec-
tor of L related to theeigenvalueλ if and only if Lh = λh.
Finally, we assume that the eigenvalues(λi)

n
i=1 have been

increasingly reordered.

3.1 Eigenvalue localization and perturbation analysis

In the following, we provide an estimation of the localiza-
tion of the eigenvalues with respect to the different normal-
izations; some of them generalize well-known bounds de-
rived in the context of graph theory [17,40]. Then, we focus
on the stability of their computation.

Eigenvalue localizationTo bound the eigenvalues of the Lapla-
cian matrix, we remind that for any matrixA the following
relation holds

max{| λ |, λ ∈ spectrum(A)}

≤ min

{

max
i=1,...,n

{

n

∑
j=1

| A(i, j) |

}

, max
j=1,...,n

{

n

∑
i=1

| A(i, j) |

}}

.

Therefore, applying the last relation to the normalized graph
Laplacian we get that

max
i=1,...,n

{

n

∑
j=1

| Lnr(i, j) |

}

= max
i=1,...,n

{

| Lnr(i, i) | +∑
j 6=i

| Lnr(i, j) |

}

= 2.

In a similar way, we derive the following bound for the un-
normalized graph Laplacian

λn−1(Lun) = max
i=1,...,n

{

| d(i) | +∑
j 6=i

|W(i, j) |

}

= 2 max
i=1,...,n

{d(i)},

whered(i) := ∑ j 6=i |W(i, j)|.
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Fig. 1 Variation (y-axis) of the first 100 Laplacian eigenvalues (x-axis) of the un-normalized graph Laplacian of point cloudsbelonging to different
classes of the SHREC 2010 data set. Deformed shapes with a different sampling density share an analogous variation of thecorresponding spectra.

Perturbation analysisIn the following, we identify the prop-
erties of the Laplacian matrix that mainly influence the com-
putation of the spectrum and guarantee a low conditioning
number of the corresponding eigenvalues. Assuming that the
sampling density of the input surface is coherent with the
shape details that must discriminate similar shapes, our ex-
periments have shown that the spectrum of the graph Lapla-
cian is not strongly affected by the noise and shape sam-
pling. For instance, in Figure 1 resampled and almost iso-
metrically deformed surfaces have an almost identical spec-
trum.

To this end, we focus our attention on the stability of the
eigenvalue computation with respect to perturbations of the
Laplacian matrix by distinguishing between symmetric/un-
symmetric structures and single/multiple eigenvalues. More
precisely, we show that each eigenvalue of a symmetric Lapla-
cian matrixL is always well-conditioned. IfL is un-symmetric
(e.g., the un-normalized graph Laplacian matrix), then we
have experimentally verified that the un-symmetric struc-
ture does not necessarily imply the eigenvalue sensibility.
If L has an eigenvalueλ of multiplicity m, m≥ 2, then a
perturbationε to L might produce a change of orderεm in
λ and this amplification becomes more and more evident
while increasing the multiplicity of the eigenvalue.

Since any self-adjoint matrixL can be expressed as a
linear combinationL = ∑n

i=1 λixixT
i of its eigenvalues and

eigenvectors{(λi ,xi)}
n
i=1, perturbations ofL are strictly re-

lated to changes of its spectrum. Given an arbitrary matrix
L ∈ R

n×n and indicating withLT its transpose, we recall
that the nonzero vectorsx ∈ R

n that satisfyLx = λx and
xTL = λxT are defined respectively as theright and left
eigenvectorsof L related to the eigenvalueλ . It follows that
the left eigenvector ofL related to the eigenvalueλ is the
right eigenvector ofLT with respect toλ .

Chosen any matrixE, we perturb the matrixL by εE,
with ε → 0, and compute the eigenpair(λ (ε),x(ε)) of the

new problem

(L+ εE)x(ε) = λ (ε)x(ε), x(0) = x, λ (0) = λ . (2)

The size of the derivative ofλ (ε) indicates the variation that
λ (ε) undergoes when the matrixL is perturbed in the direc-
tion (E,ε). By differentiating (2), we obtain

(L+ εE)x′(ε)+Ex(ε) = λ ′(ε)x(ε)+ λ (ε)x′(ε),

and thereforeLx′(0)+Ex = λ ′(0)x+λx′(0). Let us take the
inner product of both members of this last equation with the
left eigenvectory associated withλ (i.e.,yTL = λyT ); then,
we get

λ ′(0) =
yTEx
yTx

, and| λ ′(0) |≤ ‖E‖2
‖x‖2‖y‖2

| 〈x,y〉2 |
=

‖E‖2

α(λ )
, (3)

with α(λ ) := |〈x,y〉2|
‖x‖2‖y‖2

≤ 1. Note that the previous expres-

sion is defined ifλ is a simple eigenvalue; in fact, under this
assumption the left and right eigenvectors cannot be orthog-
onal. Then, theconditioning numberof the simple eigen-
valueλ of L is defined as

cond(λ ) :=
‖x‖2‖y‖2

| 〈x,y〉2 |
=

1
α(λ )

≥ 1, (4)

and it is independent of the normalization of the left and
right eigenvectors. IfX is the matrix whose columns are the
right eigenvectors ofL, then the rows ofYT := X−1 are the
left eigenvectors ofL andYTX = I with I identity matrix. It
follows that〈x,y〉2 = 1 and

cond(λ ) = ‖x‖2‖y‖2

≤ ‖X‖2‖Y
T‖2

≤ ‖X‖2‖X−1‖2

= κ2(X);

i.e., the conditioning numberκ2(X) of the eigenvector ma-
trix X is an upper bound for the conditioning number of each
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(a) (b)

Fig. 2 Plot ofα(λi) :=| xT
i yi |, wherexi andyi are the left and right eigenvector related to the same eigenvalueλi of the normalized graph Laplacian;

in this test, we considered the first 200 eigenfunctions and each picture shows a zoom-in on the scalar product of the first 30 eigenvectors. In (a)
and (b), the minimum of{α(λi)}i is 0.0036 and 0.0012, respectively. From this example, we see that the un-symmetric structure of the Laplacian
matrix does not imply the eigenvalue sensibility.

eigenvalue. In particular, ifX is an orthogonal matrix (e.g.,L
is symmetric) then cond(λ ) = 1, ∀λ ∈ spectrum(L). There-
fore, each eigenvalue of the un-normalized graph Laplacian
matrix is always well-conditioned. Under the assumption
that

‖x‖2 = ‖y‖2 = 1 and‖E‖2 = 1,

we get|λ ′(0)| ≤ 1
|yTx| and the upper bound is attained with

E := yTx. Rewriting the relation (3) as

(λ (ε)−λ ) ≈ ε‖E‖2cond(λ ), ε → 0,

shows that a perturbation of orderε in L produces an amount
ε‖E‖2cond(λ ) of variation in λ . Therefore, if cond(λ ) is
large or equal to one thenλ is ill- or well- conditioned, re-
spectively.

Since the normalized graph Laplacian is not symmetric,
we compute the left and right eigenvectors ofL associated
with λ and estimate its conditioning according to (4). Fig-
ure 2 shows the variation of the conditioning number of the
first 200 eigenvalues of the un-symmetric Laplacian matrix
with mean-value weights. From this example, it follows that
an un-symmetric structure ofL does not necessarily imply
the eigenvalue sensibility. Since the un-normalized graph
Laplacian is symmetric, the left and right eigenvectors are
the same and cond(λ ) = 1; indeed, the computation of the
eigenvalues is always stable.

Multiple Laplacian eigenvaluesIf λk is an eigenvalue ofL
with multiplicity mk, then we are not guaranteed that its left
and right eigenvectors are not orthogonal and the previous
discussion does not apply. In this case, the characteristic
polynomialpL of L is written as

pL(λ ) := det(L−λ I) = (λ −λk)
mkq(λ ), q(λk) 6= 0,

with q polynomial of degreen−mk. Then, a perturbation in
L of sizeε results in a change ofpL(λ ) of orderO(ε) and

(λ −λk)
mk =

O(ε)

q(λ )
↔ λ = λk +O(ε

1
mk ).

This relation implies that a perturbationε := 10−mk pro-
duces a change of order 0.1 in λk and this amplification
becomes more and more evident while increasing the multi-
plicity of the eigenvalue. In this case, the eigenspaceFλk

as-
sociated withλk has multiple dimension and different eigen-
vectors can be selected as basis ofFλk

.

Normalization of the Laplacian spectrum for shape compar-
ison For triangulated surfaces, the FEM Laplacian eigen-
values become invariant to shape scales by normalizing the
spectrum of the input shape with its area. For point clouds,
rescaling the points ofP by a factorα the entries of the
un-normalized graph Laplacian matrixLt,D

un of the new point

cloud Q := {αpi}
n
i=1 satisfy the relationLt,Q

un = Lt/α2,P
un ;

indeed, the time component is rescaled fromt to t/α2. A
similar discussion applies to the normalized graph Lapla-
cian matrix. Therefore, we guarantee the invariance of the
Laplacian spectrum with respect to shape rescaling by nor-
malizing each point cloud before computing its Laplacian
eigenvalues.

To measure the variation of the eigenvalues between the
reference point cloudP and its deformationP

′
, let us in-

dicate withλ := (λi)
k
i=1 andλ ′

:= (λ ′

i )
k
i=1 the vector of the

first k eigenvalues ofP and P
′
, respectively. Then, we

measure the normalized error between these spectra as

E∞ := ‖λ −λ
′
‖∞/‖λ‖∞.

Even though the Laplacian spectrum characterizes geomet-
ric and topological features of 3D shapes in a way that is
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Fig. 3 SHREC 2007 data set.

not unique, previous work [48,55] has also shown that the
spectrum is capable of distinguishing dissimilar shapes.

4 Feature selection for shape characterization and
classification

In the literature, few works tackle the problem of similar-
ity by using the shape spectrum. Starting from the good
retrieval results in [48], we investigate whether the selec-
tion of a particular set of Laplacian eigenvalues is capa-
ble of characterizing a specific class of shapes and improve
the classification performance. Furthermore, the prohibitive
cost needed to compute the complete spectrum and the re-
dundancy of the extracted information stress the importance
of identifying relevant information from the shape spectrum.
Indeed, our work investigates the problem of selecting a
bunch of eigenvalues that characterize the members of a
given class of shapes and that maximize the classification
performance among several classes of shapes. To this end,
we investigate the utility of the AdaBoost algorithm (Sect.4.1)
and the Support Vector Machine technique (Sect. 4.2) as
methods for spectral feature selection and classification.The
shape characterization capabilities of the selected features
are shown through the comparison with the traditional ap-
proach based on the firstk eigenvalues of smaller magnitude,
by varyingk on the cardinality of the computed spectrum
(Sect. 4.3).

In general, feature selection addresses the problem of
finding the most compact and informative set of features,

Fig. 4 Representatives of the 13 classes of the SHREC 2010 data set.

thus improving the efficiency or data storage and process-
ing [23]. In our approach, eigenvalues are considered rel-
evant whether they can be used to discriminate among the
3D models of a given class and other shapes that do not be-
long to such a class. In this way, the selection of the rele-
vant eigenvalues is transformed into a binary classification
problem as follows. Each model of a given class is repre-
sented by a subset of eigenvalues selected from the corre-
sponding spectrum. Then, a binary classification function,
based on the selected eigenvalues, is defined such that it re-
turns “true” if an unknown query model is attributed to the
given class and “f alse” otherwise. The selected eigenval-
ues represent the shape features that are shared by the class
members and maximize the discrimination with respect to
the non-member models.

Experiments have been performed by using two data sets
from the SHape Retrieval Contest1: the SHREC 2007 [22,
37] and the SHREC 2010 [13,14] data sets. The SHREC
2007 data set (Figure 3) contains 400 watertight triangle
meshes grouped into 20 classes, with 20 models per class.
The main differences among shapes of different classes are
localized at coarse features; e.g., cups, chairs, or springs.
Other classes share similar coarse features and differ just
for details; e.g., humans, teddy bears, and armadillos. In this
case, we have considered both polygonal meshes and point
clouds uniformly sampled from the model surfaces.

The SHREC 2010 data set contains 728 models, which
are represented as triangle meshes and are grouped into 13
classes (Figure 4). Note that these meshes are not necessar-
ily watertight or manifold. Members of each class are ob-
tained through transformations of different strength (fivede-
grees) of the class representative model: the higher the de-

1 http://www.aimatshape.net/event/SHREC/
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Fig. 5 Transformations of the human shape used in the tests (shown in strength 5, left to right): null, isometry, topology, sampling, local scale,
scale, holes, micro holes, noise, shot noise. Image extracted from [13,14].

gree, the stronger the transformation. The transformations
are (Figure 5): null transformation, isometry (non-rigid and
almost inelastic deformations), topology (welding of shape
vertices resulting in different triangulation), micro holes and
big holes, global and local scaling, additive Gaussian noise,
shot noise, down-sampling (less than 25% of the original
points), partial occlusion, and mixed transformation. Differ-
ently from SHREC 2007, the classes of the SHREC 2010
data set are strongly overlapped. Each shape of the SHREC
2010 data set has been represented as a point cloud; then,
the eigenvalues of the corresponding un-normalized graph
Lapalcian matrix (Sect. 3) have been computed.

4.1 The AdaBoost algorithm

The AdaBoost algorithm [20] is a supervised machine learn-
ing method for binary classification. It is based on a set of
positive and negative examples and exploits a set of weak
classifiers to generate a binary classification function (strong
classifier) that maximizes the margin between positive and
negative examples. The weak classifiers are simple classifi-
cation functions not necessarily accurate and stable, but ef-
ficiently computable [20]. The algorithm iteratively selects
the more appropriate weak classifiers and generates a classi-
fication function based on the combination of the selected
classifiers. This function is capable of classifying an un-
known query as belonging to the class of positive or negative
examples and it is computed by minimizing the classifica-
tion error.

In the proposed approach, each shapeP, which is rep-
resented as a triangle mesh or a point cloud, is coded by its
Laplacian spectrum and a weak classifier is defined for each
eigenvalue. In this context, the AdaBoost algorithm selects
the eigenvalues whose weak classifiers maximize the mar-
gin between positive and negative examples. Furthermore,
the selected eigenvalues are combined to generate an effec-
tive strong classifier.

For shape classification, each class is used in turn as pos-
itive example and a subset of the remaining models is con-
sidered as negative example (Sect. 5). In this way, we obtain
a set of relevant eigenvalues, which characterizes each class

of the data set. Among the shape features shared by the class
members, we consider the selected eigenvalues as the class
descriptions that maximize the distance among models of
different classes.

In our experiments, the weak classifierhk classifies the
shapeP by using thekth eigenvalues of its spectrum and it
is defined as

hk(P) =

{

1 maxR∈E+ dk(P,R) ≤ δ ,

−1 otherwise,

whereE+ is the set of positive examples,dk(P,R) is the
absolute value of the difference between thekth eigenvalue
of the modelsP andR, andδ := maxR,Q∈E+ dk(R,Q),
is a real number that is associated with the set of positive
examples and represents the maximum distance betweenR

andQ. In the following, we outline the AdaBoost algorithm
used by the proposed approach.

– Input examples: (P1,y1), . . . ,(Pm,ym), wherePi ∈ D
andyi ∈Y = {+1,−1}, i = 1, . . . ,m.

– Initialization :

w0,i :=
1

2|E+|
if P ∈ E+, w0,i :=

1
2|E−|

otherwise,

where|E+| and|E−| are the number of positive and neg-
ative examples, respectively.

– Iteration : for t = 1, . . . ,T,
– train the weak classifiers by using the weightswt,i ;
– select the weak classifierht producing the lowest clas-

sification errorεt .
– Update of the weights: wt+1,i = 1

Zt
wt,ie−αtht(P)yi ,

αt = 1
2 log 1−εt

εt
andZt is a normalization factor such

thatwt,i ranges in[0,1].
– Strong classifier:

S= Sign

(

T

∑
t=1

αtht

)

. (5)

The algorithm takes as input the set of positive and negative
examples,(P1,y1), . . . ,(Pm,ym), wherePi is a model of
the considered data set andyi ∈ {+1,−1} is the label rep-
resenting a positive and negative example, respectively. Ad-
aBoost iteratively trains the weak classifiers associated with
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(a) (b)

Fig. 6 Eigenvalues of the Laplacian spectrum selected through 10 Bootstrap iterations using (a) the AdaBoost algorithm and (b) the first Laplacian
eigenvalues. They−axis of (a,b) represents the number of times the eigenvalueshave been selected. Thex−axis in (a,b) represents the eigenvalue
indices and the value ofk, respectively.

the eigenvalues repeatedly inT iterations. During these it-
erations, the algorithm maintains a set of weights over the
positive and negative examples. In particular,wt,i represents
the weight of the examplePi at the iterationt. Once the
weights have been initialized at the first step, they are it-
eratively updated on the basis of the incorrectly classified
examples. In particular, at each iteration the weak classifier
that produces the minimum classification error is selected
and the error is used to update the weights of the input ex-
amples. Then, the weights of misclassified examples are in-
creased and the weights of the correctly classified examples
are reduced. This strategy forces the algorithm to focus only
on hard examples.

4.2 The Support Vector Machine

Besides AdaBoost, Support Vector Machines (SVMs) [12,
23] are effective approaches for pattern classification and
feature selection. Basically, SVMs belong to the category of
kernel methods, which generate nonlinear decision bound-
aries among classes of patterns through methods designed
for linear classifiers. SVMs can also be exploited for feature
selection through the Recursive Feature Elimination (RFE)
algorithm [10,23]. This method iteratively removes features
that correspond to components of the SVM weight vector
that are smallest in absolute value; such features provide a
lower contribution to the classification and are therefore re-
moved [24]. The RFE method involves three main steps: (i)
train the classifier; (ii) compute the ranking criterion forall
features; (iii) remove the feature with smallest ranking cri-
terion.

The main difference between SVMs and AdaBoost is
that the former relies on the definition of the most appropri-
ate kernel to maximize the margin, while the latter achieves

analogous results by using a fast greedy algorithm based on
weak classifiers. Moreover, SVMs require to solve a quadratic
programmingproblem, while the AdaBoost algorithm is based
on linear programming. Finally, the experiments have been
performed using the Python toolbox PyML2.

4.3 The firstk eigenvalues approach

In [48], the firstk eigenvalues with smaller magnitude are
used as shape descriptor to compute 3D shapes represented
as triangle meshes. A typical classification scheme that ex-
ploits the firstk eigenvalues is based on the distance

d̃s(q,C) = min
m∈C

ds(q,m), (6)

between the queryq and the classC, wheres is the spec-
trum subsequence defined ass := (1, . . . ,k) ⊆ (1, . . . ,kmax)
with kmax the cardinality of the spectrum, andds is the dis-
tance between the query modelqand the classC with respect
to s. A general definition for the query-class classification
scheme

q 7→C ⇐⇒ C = argmin
C∈D

d̃s(q,C), (7)

The average classification errorε ∈ [0,1] is computed as the
number of wrongly classified queries divided by the total
number of queries. Based on Eq. (6) and Eq. (7), the firstk
approach selects the spectrum subsequences that minimizes
the classification errorε.

2 http://sourceforge.net/projects/pyml/
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(a)

(b)

(c)

Fig. 7 Selected eigenvalues using (a) the AdaBoost algorithm, (b)the
Support Vector Machine, and (c) the firstk eigenvalues. Each column
of the heat-map matrix represents a SHREC 2007 class. The color of
each matrix element represents the number of times the eigenvalues
have been selected within 10 iterations of Bootstrap Cross-Validation.
The color bar provides the map between colors and number of selec-
tions. Thex− andy−axis represent the class index and the spectrum
bin, respectively.

5 Shape characterization and classification

The most relevant features that characterize a class of shapes
can be captured by a properly selected subset of their Lapla-
cian eigenvalues. As discussed in Sect. 4, a binary classifier
based on a set of eigenvalues can be used to discriminate
among the members of the given class and the remaining
shapes of the input data set. The set of eigenvalues that max-
imizes the margin between class members and non-members
represents the features shared by the class models. To iden-
tify and validate the most representative subset of the Lapla-
cian spectrum, the Bootstrap Cross-Validation assessment
methodology has been applied by splitting the data set into
training and validation set. The training set is used to select
the relevant features and the validation set is used to assess
the classification performance.

The Bootstrap methodology is a general random resam-
pling with replacement and it has been used to generate dif-
ferent training and validation sets for Cross-Validation.In
our experiments on shape characterization (Sect. 5.1) and
classification (Sect. 5.2), the training set is obtained through
the Bootstrap strategy by randomly sampling a subset of
shapes of a given class and the same number of models
among the remaining models.

5.1 Shape characterization

The eigenvalues that characterize the shape features of a
given class are obtained by applying the AdaBoost strong
classifier in Eq. (5) or the firstsclassifier described in Eq. (7),
which are trained on the positive and negative examples of
the training set. The training process selects the set of rele-
vant eigenvalues that maximize the margin between positive
and negative examples. Different iterations of the Bootstrap
method produce different training sets used for selecting the
eigenvalues. Each training set contains some representatives
of a given class and very few representatives of the other
classes; some classes might not be represented at all. In this
way, the selected eigenvalues mainly depend on the class
members. The eigenvalues that are selected several times
within all the Bootstrap iterations are those that best char-
acterize the class of shapes.

Figure 6(a) shows the eigenvalues selected by AdaBoost
for the SHREC 2007 class of humans through 10 Bootstrap
iterations. In this experiment, all the models have been uni-
formly remeshed to 10K vertices and for each shape we have
computed the first 500 eigenvalues of FEM Laplacian ma-
trix [48,55]. Since several eigenvalues are never selected
(e.g., the eigenvalues with indices between 100 and 150),
we conclude that they are less discriminative for the char-
acterization of the class of humans. Those eigenvalues that
have been selected just once (e.g., the eigenvalues with in-
dices between 200 and 400) depend on the specific training
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Selected eigenvalues related to the point sets of the (first column) SHREC 2007 and (second column) SHREC 2010 data sets, with respect
to (a,b) the AdaBoost algorithm, (b,c) Support Vector Machine, and (e,f) the firstk eigenvalues. In all cases, the shapes are represented as point
clouds. Each column of the heat-map matrices represents a shape class. The color of each matrix element represents the number of times the
eigenvalues have been selected within 10 iterations of the Bootstrap Cross-Validation. The color bar at right side of the pictures is the map between
colors and number of selections. Thex− andy−axis represent the class index and the spectrum bin, respectively.
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set generated by the corresponding Bootstrap iteration and
they are not used for shape characterization. Other eigenval-
ues have been selected several times within the 10 Bootstrap
iterations (e.g., several eigenvalues with indices between 0
and 50) and their persistence suggests that they characterize
the class of humans.

An analogous experiment has been performed by us-
ing the classifier based on the firstk eigenvalues defined by
Eq. (7). For each class of shapes the value ofk is selected
during the training phase. Figure 6(b) shows that the selected
value fork changes at each Bootstrap iteration. This means
that the sequences based on the firstk eigenvalues strongly
depends on the training set; indeed, such sequences are less
representative for the class of human shapes. These experi-
ments also show that (i) a set of selected eigenvalues is suit-
able to characterize the most relevant shape features and (ii)
features that are not individually relevant may become rele-
vant in the context of others [23].

Figure 7 corresponds to a heat-map matrix, which shows
the selected features associated with each class of the SHREC
2007 data set through 10 iterations of the Bootstrap Cross-
Validation. Each column of the matrix represents a class of
the data set and the spectrum has been discretized into 50
bins, each of them representing 10 eigenvalues. The color
associated with each entry represents the largest number of
times that at least one eigenvalue belonging to the corre-
sponding bin has been selected and the side bar gives the
mapping between colors and selections’ number. Figure 7(a)
shows the results obtained with the AdaBoost algorithm af-
ter 20 iterations over a spectrum consisting of 500 eigenval-
ues. Since several matrix elements have a dark color, espe-
cially corresponding to small bin indices, we conclude that,
for all the data set classes, AdaBoost is capable of identify-
ing a set of eigenvalues that characterize the shape features
shared by the class members. Moreover, the average number
of selected eigenvalues for each class is 9. This means that a
very small number of eigenvalues (about the 2% of the input
spectrum) characterize the shape features shared by a given
class. Figure 7(b,c) summarizes the results obtained with the
Support Vector Machine and the firstk eigenvalues approach
by varyingk between 1 and 500.

Similar experiments have been performed on the SHREC
2007 and SHREC 2010 data sets, whose shapes are rep-
resented as point clouds with 10K points. Figure 8 shows
the characterization capability of the AdaBoost algorithm
and Support Vector Machine on point clouds; furthermore,
the results with respect to the firstk eigenvalues is analo-
gous to the corresponding experiment on triangle meshes.
In this case, the eigenvalues that characterize the shape fea-
tures shared by the class members have been selected among
eigenvalues of both low and high magnitude. This behavior
means that coarse features coded by point clouds are not suf-

SHREC 2007 SHREC 2010
Mesh 10KV Point Cloud Point Cloud

AdaBoost 0.17 0.21 0.27
First k 0.26 0.29 0.19
RFE 0.32 0.31 0.31

SVM 0.26 0.26 0.23
First 10 eigs 0.27 0.30 0.30
First 20 eigs 0.27 0.30 0.28
First 30 eigs 0.27 0.31 0.28
First 40 eigs 0.28 0.32 0.28
First 50 eigs 0.28 0.32 0.28

Table 1 Classification error on the SHREC 2007 and SHREC 2010
data sets, whose shapes have been represented as triangle meshes and
point clouds with 10K points, respectively. Positive examples consists
of the 25% of the class population.

ficient to characterize class members and detailed features
are necessary to improve the results.

5.2 Shape classification

The eigenvalues selected to characterize relevant shape fea-
tures can also be exploited for classification. To this end, we
will use the AdaBoost Strong Classifier, the Support Vector
Machine, the Recursive Feature Elimination, and the classi-
fier (7) for classification within the Bootstrap Cross-Validation
framework. For each Bootstrap iteration, a training and a
validation set are generated. According to the characteriza-
tion experiments, the training set is used for selecting rel-
evant eigenvalues and the shapes of the validation set are
classified using the AdaBoost Strong Classifier or the firstk
eigenvalues. The classifier performances are evaluated with
respect to classification accuracy (i.e., the lower is the clas-
sification error, the higher is the accuracy) and stability (i.e.,
small changes in the training data do not lead to large changes
in the resulting classifier).

In our experiments, we have used both a small set of
positive examples (Table 1) consisting of the 25% of the
class population (5 and 14 shapes from the SHREC2007 and
SHREC2010 data sets, respectively) and a large set of posi-
tive examples (Table 2) consisting of the 75% of the class
population (15 and 42 shapes from the SHREC2007 and
SHREC2010 data sets, respectively) and the same number
of negative examples. Tables 1 and 2 summarize the clas-
sification error with respect to the eigenvalues selected by
the AdaBoost algorithm, the RFE approach, and the firstk
eigenvalues approach (first three rows). Furthermore, we in-
clude the classification performances of the SVM classifier
and the first 10−20−30−40 and 50 eigenvalues for all the
classes of the input data set. The Gaussian kernel has been
used for both the SVM and RFE; the kernel width and the
soft-margin parameter have been selected through the boot-
strap resampling method.
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SHREC 2007 SHREC 2010
Mesh 10KV Point Cloud Point Cloud

AdaBoost 0.17 0.20 0.29
First k 0.17 0.22 0.13
RFE 0.24 0.22 0.24

SVM 0.19 0.18 0.16
First 10 eigs 0.19 0.24 0.21
First 20 eigs 0.18 0.23 0.19
First 30 eigs 0.19 0.23 0.19
First 40 eigs 0.19 0.23 0.19
First 50 eigs 0.19 0.24 0.20

Table 2 Classification error on the SHREC 2007 and SHREC 2010
data sets, whose shapes have been represented as triangle meshes and
point clouds with 10K points, respectively. Positive examples consists
of the 75% of the class population.

The AdaBoost Strong Classifier yields good performance
both on the triangle meshes and the point clouds of the SHREC
2007 data set, especially with a small training set (Table 1).
Moreover, the stability of the selected eigenvalues guaran-
tee that the strong classifier exploits the eigenvalues that
characterize the most persistent shape features of the class
(Figs. 7 and 8). Indeed, the classifier uses almost the same
selected features for all the iterations of the Bootstrap Cross-
Validation. The bad performance obtained for the SHREC2010
data set is due to the fact that each class consist of several
modifications of the same shape model and many classes are
overlapped. Indeed, AdaBoost is not capable of discriminat-
ing among them. Finally, we notice that the selection pro-
cess based on the shape classes improves the classification
performances obtained with the firstk Laplacian eigenval-
ues especially with a small number of examples. In fact, at
each iteration the AdaBoost algorithm selects the features
capable of improving the classification performance; on the
contrary, the RFE method eliminates the features that are
less influent in the classification process. This behavior ex-
plains why the RFE decreases the performance of the SVM
classifier.

6 Conclusions and future work

In this paper, we have shown that for a given class of 3D
shapes it is possible to select a subset of the Laplacian eigen-
values that characterize the most relevant shape features shared
by the class members. To run the feature selection and shape
classification, which apply to 3D shapes represented as tri-
angle meshes and point clouds, a small set of positive and
negative examples is generally needed as training set. As fu-
ture work, we will investigate how the selected eigenvalues
can be exploited for the definition of more effective tools for
shape similarity and classification.
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