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Abstract This paper proposes a framework for selecting thedescriptors, the comparison method, and the indexing tech-
Laplacian eigenvalues of 3D shapes that are more relevaniques [11]. Even though several methods for shape compar-
for shape characterization and classification. We dematestr ison have been proposed [15,52], only few methodologies
the redundancy of the information coded by the shape speaddress the issue of identifying descriptions that capghae
trum and discuss the shape characterization capability athape features shared by a class of models [31,36]. In this
the selected eigenvalues. The feature selection metheds uscontext, we propose a novel approach for shape character-
to demonstrate our claim are the AdaBoost algorithm andkzation and classification based on the relevant informatio
Support Vector Machine. The efficiency of the selection iscoded by the Laplacian spectrum of 3D shapes represented
shown by comparing the results of the selected eigenvalues point clouds.

on shape characterization and classification with those re-

'?ted_ to the firsk eigenvalues, by yarym@ over the car- a descriptive and large feature vector, which characterize
dinality of the spectr_um. Our expenmer_wts, Whlch have beetghe input shape and has been applied to shape matching due
perfo.rmed on 3D objects repre;entgd e|ther.as tngngleeﬂes{b its isometry-invariance, robustness to local noise anats

or point clouds, show that working directly with point claud pling, shape-intrinsic definition, and multi-scale orgami

provides classification results that are comparable with "Sion. The first use of the Laplacian spectrum for shape match-

spect to those related to_ §urface—based representatibns. an was proposed in [48], where two shapes are compared by
nally, we discuss the stability of the computation of thelaap measuring the Euclidean distance between the vectors de-
cian spectrum to matrix perturbations.

The spectrum of the Laplace-Beltrami operator provides

fined by the first 50 eigenvalues with smaller magnitude.

Keywords Shape characterizatiorfeature selection While there is an evidence of the close relation among
shape classificationpoint clouds Laplacian spectrum shape features and eigenvalues, the best way to use the spec-
trum for shape characterization has not been identifiediyét [
Inspired by the earlier work presented in [30,54], the idea
behind the proposed approach is to consider the Laplacian
eigenvalues, of either triangle meshes or point clouds, as

Shape classification and retrieval are crucial tools in orgaShaPe descriptors and identify the most relevant informa-
nizing and interacting with databases of 3D models and iftio" coded in the spectrum, capable of best characterizing

getting a picture on the knowledge, or semantics, underlyt-he most relevant features of a given class of 3D objects.

ing the models. The performance of classification and re] his information is then used for classification.
trieval strongly depends on the effectiveness of the shape These goals are achieved by exploiting the properties of

the feature selection and the classification capabiliti¢se

1 Introduction

CNR-IMATI AdaBoost algorithm [20] and Support Vector Machine [12,
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Genova, Italy 23]. Then, the selected features are assessed with appropri
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is more relevant to characterize the intra-class simylanitd ~ with respect to the light field descriptor [16]. Other classi
discriminate among different classes. fiers based on semi-supervised learning, dimensionality re

Even if AdaBoost and Support Vector Machines are wellduction, and probability have been successfully exploited
known algorithms for feature selection, our work is the firstfor shape classification. For instance, in [25] Support &ect
attempt at the identification of those sub-parts of the shapklachine is used to cluster 3D models with respect to seman-
spectrum that discriminate among different classes of modic information. In [26,42], shape classifiers are obtaiasd
els. More precisely, our final aim is to select a subset of linear combination of individual classifiers and using-hon
eigenvalues, which represents each class by means of thdgeear dimensionality reduction. In [51], relevant lochbpe
features that characterize the class members and thasare dilescriptors are selected through a multivariate Gausssan d
criminative with respect to non-member 3D objects. tribution and collected to define a priority-driven search f

In [35], we have shown that statistical methods are apshape retrieval.
propriate to correlate subsets of the spectrum to classes of
3D shapes and to have a grasp on the semantics captured by
the eigenvalues. Starting from these results, we now verify
that this statement also applies to point clouds and that the
eigenvalues selected by the AdaBoost algorithm and Sup- . ) _ )
port Vector Machines effectively characterize the memberE oint sets and pomt-bqsed shape des.cnptamnt-sampled )
of a given class of 3D objects. Furthermore, we prove tha?urfaces, ggnerated e|thgr bY scanning real 3D ObJ,eCtS with
working directly with point clouds provides classification ‘,’pt'ca' dev_|ces or sampling implicit anld paramgtnc func-
results that are comparable with respect to those related fipns, are discrete models of surface; with an arbitrarygen
surface-based representations. and a generally high number of points. Point sets became

Since the graph Laplacian of a point cloud convergesan alternative to polygonal meshes, due to the simplicity of

to the Laplace-Beltrami operator of the underlying mani-deaIIng with complex 3D shapes as point clouds and using

fold, we compute the corresponding eigenvalues without adgomts as rendering primitives [28,46,49,57]. The lack of

plying the mesh Laplacian discretization based on Cotangonnectivity and the atomic definition of point clouds pro-

gent and FEM weights. Our intuition is that feature selec-vIde a built-in multi-scale surface representation 4B}

tion based on the eigenvalues of the graph Laplacian of th%VOIdIng to process the connectivity of polygonal meshes.
input point cloud corresponds to feature selection based on Point sets are widely used for ray tracing [2], surface re-
the geometric structure of the underlying manifold. In thisconstruction [39,56], sampling [3], simplification [44kg
case, the computation of the Laplacian eigenvalues is basagentation [6], spectral analysis [41], machine learning [9
on manifold learning techniques [7] and is robust to the geo53], progressive rendering and streaming [19]. In this con-
metric/topological noise in the point cloud. For instartbe,  text, only few methodologies address the comparison oftpoin
topological noise might be introduced when the local shapelouds, without explicitly computing the underlying mesh
at a point is recovered using itsnearest neighbor. connectivity. For instance, in [34] point clouds are congolar

The paper is organized as follows. Sect. 2 briefly recallsising the histograms of pairwise diffusion, geodesic, and
previous work on shape comparison and Sect. 3 introducesirvature weighted distances. Even though other compari-
the spectral analysis for surfaces. Then, Sect. 4 presants tson methods based on mesh representations of 3D shapes
proposed feature selection approach, the data set uséfor tmight be extended to point clouds, a low attention has been
experiments, the AdaBoost algorithm, Support Vector Mapayed to this problem.
chines, and the comparison with previous work. Sect. 5 dis-
cusses the characterization and the classification catpeshil
of the selected eigenvalues. Finally, Sect. 6 providesrajos
remarks on results and outlines future work.

In [50], the eigenvectors corresponding to the Laplacian
eigenvalues of smaller magnitude are used to define a shape
representation that is invariant to isometric transforamest.
Then, these signatures are compared using a modification
of the D2-distribution [43], which is based on a set of his-
tograms that capture the variation of distances amonggoint
2 Related work within a set of spherical cells centered at the origin & a
dimensional space. In [38Local Linear Embeddingare
constructed on eigenspaces of affinity matrices and matched
by using theExpectation-Maximizatioframework. Instead

of using the spectrum itself, in [27] non-rigid objects are
Feature selectionThe AdaBoost algorithm [21], which is a matched using spectral embeddings, which are derived from
statistical tool for feature extraction from 2D images [54] the eigenvectors of affinity matrices computed considering
has been used [30] to select relevant views of 3D objectgeodesic distances.

In the following, we review previous work on feature selec-
tion, spectral and point-based shape descriptors.
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3 Spectral descriptors of 3D shapes new weights. Therefore, the new Laplacian matrix that re-
places (1) is built in two phases as follows

Given an input surface#, theLaplacian spectrunof .Z is W)

defined as the set of solutios, f) of the followingeigen- I:(i, )= { TGJ pj € S,

value problem 0 else

find f:.# — R suchthatAf =Af, A €R, _1E(ij) =1
L(i,0) = § S, Lom P E s

whereA is the Laplace-Beltrami operator. The intuition be- 0 else

hind spectral shape comparison is that the Laplacian eigen- . o .
values are meaningful for the description of the input sur/n this case, in the limit of large sampled points and small

face.# due to their intrinsic definition and invariance with Scales the eigenvectors of the new Laplacian matrix con-
respect to isometric transformations. verge to those of the Laplace-Beltrami operatorsgn An

In the discrete setting, we approximate the surfa¢e alternative discretization of the Laplacian matrix is désed

with a point cloud# and the Laplace-Beltrami operator IN [32]. We remind that the vectdr, h # 0, is aneigenvec-
with a sparse matrix. More precisely, a point-based reprel©" Of L related to thesigenvaluel if and only if Lh = Ah.
sentation of a surfaceZ is a finite set of points sam-  Finally, we assume that the eigenvalu@ds)i_; have been
pled on.. The surface underlying is commonly es-  increasingly reordered.

timated using thenoving least-squard8, 4,33] and thém-
plicit [1] approximationsGiven a point set” := {p;}i ,
in thek-nearest neighbor grapld of &7 each poinp; € &

Is associated with it& nearest points i, which consti- In the following, we provide an estimation of the localiza-

. . . k . .
tutte trtf.nelghbﬁur%‘.d_ {plsf}f’%‘.l (?[f_p]'c' Fort(_jen?e point tion of the eigenvalues with respect to the different normal
Sets, this graph provides sutficient information to alOprox'izations; some of them generalize well-known bounds de-
imate the local geometric and topological structure 4f

ith hing the whol . h o of rived in the context of graph theory [17,40]. Then, we focus
wit c_)ut meshing t 1e whole point set. The computatiofof |, stability of their computation.
requiresO(nlogn) time [5].

According to [7,8,18], on the point clou® := {p;}{' ;
thenormalized graph Laplacian matrix,k:= (Ln((i, j)){“j:l
is defined as '

3.1 Eigenvalue localization and perturbation analysis

Eigenvalue localizatioriTo bound the eigenvalues of the Lapla-
cian matrix, we remind that for any matrixthe following
relation holds

. roooi=h max{| A |, A € spectrungA)}
Lor(i,j) := q =W(i,])/ai pj € Ap,,

n n
0 else <min{ max AGi,j) |+, max Al j .
o loi—pi |12 (1) - {i—l,...,n{JZj_| ( J) |} j—l,...,n{izil ( J) |}}
W(i,j) = exp(—%) , . _ _
aii=Yjc W(i, j). Therefore, applying the last relation to the normalizeghgra
: Laplacian we get that
Starting from this discretization and following the grapb+ n
ory terminology, we introduce different normalizations of max { Z| Lne(i, ) |}
the graph Laplacian matrix by rewriting the normalized drap =Len (1=
Laplacian matrix agn, = D~1(D —W) = D~ 1Lyp, where
Lun := D —W is the un-normalized graph Laplacian ma- i_mlf}_)(n{| Lar (i, i) | +§_ | Lnr(is ) |}
trix andw is the weight matrix, whose elements &véi, j) o 17
if (i,j) is an edge of¢ and zero otherwise. As detailed in = 2.
Sect. 3.1, the symmetry &f;, is important to guarantee the - . .
stable computation of its eigenvalues with respect to pertu In a S|m|lar way, we derl\{e the following bound for the un-
bations of the Laplacian matrix and the input surface. Fi_normahzed graph Laplacian

nally, we recall that the matricds,, andLy, are positive

semidefinite. An-1(Lun) = in’llaxn{| d(i) | +§_ |W(i, ) |}
To reduce the dependency of the Laplacian eigenmaps T 171

representation from the density of the data points, in [29] = 2ijfl1&Xn{d(i)},

the Gaussian weights are normalized with an estimate of the
point density and the Laplacian matrix is updated with thesevhered(i) := ¥ [W(i, j)|.
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Fig. 1 Variation {y-axis) of the first 100 Laplacian eigenvaluesakis) of the un-normalized graph Laplacian of point clobdbnging to different
classes of the SHREC 2010 data set. Deformed shapes witlesedifsampling density share an analogous variation aféhesponding spectra.

Perturbation analysisin the following, we identify the prop- new problem

erties of the Laplacian matrix that mainly influence the com- A A A

putation of the spectrum and guarantee a low conditioninél‘+ EEx(e) =A(e)x(e), x(0)=x, A(Q)=A. (2
number of the corresponding eigenvalues. Assuming that thene size of the derivative df(¢) indicates the variation that

sampling density of the input surface is coherent with the) (&) undergoes when the matiixis perturbed in the direc-
shape details that must discriminate similar shapes, our eXon (E, ¢). By differentiating (2), we obtain

periments have shown that the spectrum of the graph Lapla-

cian is not strongly affected by the noise and shape sam-  (L-+€E)X'(¢) +Ex(g) = A'(e)x(e) + A ()X (¢),

pling. For instance, in Figure 1 resampled and almost isoéndthereforex/(O)+Ex:/\’(O)X+/\x’(0). Let us take the
metrically deformed surfaces have an almost identical-spe?nner product of both members of this last equation with the
trum.

left eigenvectoy associated witA (i.e.,y"L = AyT); then,
To this end, we focus our attention on the stability of thewe get

eigenvalue computation with respect to perturbations ef th T

Laplacian matrix by distinguishing between symmetric/un-y’(g) — ¥ EX’ and|2/(0) |< HE||2HXH2HYH2 _ HE”Z’ 3)

symmetric structures and single/multiple eigenvalues:élo Tx | (X.y)2| a(A)

p_reusely,.we. show that each e|g_e.nvalue ofasymmetr|c I_Tap\ll%th a(h) = |(xY)al < 1. Note that the previous expres-

cian matrixL is always well-conditioned. Iif is un-symmetric =~ | T IX2llyllz = ) ' _

(e.g., the un-normalized graph Laplacian matrix), then welonis defined if is a simple eigenvalue; in fact, under this

have experimentally verified that the un-symmetric struc

assumption the left and right eigenvectors cannot be orthog

ture does not necessarily imply the eigenvalue sensibilitMal- Then, theconditioning numbenf the simple eigen-
If L has an eigenvalug of multiplicity m, m> 2, then a valueA of L is defined as

perturbatiore to L might produce a change of ordeF in condA) = IXIl21ly]l2 _ 1 >1 @)
A and this amplification becomes more and more evident Y2 a(A) T

wh|le-|ncreasmg the rr_1ullt|pI|C|ty-of the eigenvalue. and it is independent of the normalization of the left and
~ Since any self-adjoint matrik can be expressed as a right eigenvectors. IK is the matrix whose columns are the
linear combinatiorl. = 3 ; Aixix{ of its eigenvalues and right eigenvectors of, then the rows of T := X~ are the

eigenvectorg (A, xi) }{L;, perturbations ot are strictly re-  |eft eigenvectors of. andYTX = | with I identity matrix. It
lated to changes of its spectrum. Given an arbitrary matriXollows that(x,y)» = 1 and

L € R™" and indicating withL" its transpose, we recall
that the nonzero vectors€ R" that satisfyLx = Ax and ~ €ONdA) = [[x]|2[lyl|2
x'L = AxT are defined respectively as thight and left < IXlI2IYT |2
eigenvectoref L related to the eigenvalue It follows that 1

_ ) : < X2l X772
the left eigenvector of related to the eigenvaluk is the _
right eigenvector of.™ with respect tol. = Ka(X);

Chosen any matri, we perturb the matrix by eE, i.e., the conditioning number,(X) of the eigenvector ma-
with € — 0, and compute the eigenpdi (¢),x(¢)) of the  trix X is an upper bound for the conditioning number of each
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Fig. 2 Plotofa(Ai) :=| X[ yi |, wherex; andy; are the left and right eigenvector related to the same eigeew; of the normalized graph Laplacian;
in this test, we considered the first 200 eigenfunctions ath @icture shows a zoom-in on the scalar product of the frgti@envectors. In (a)
and (b), the minimum of a(A;) }; is 0.0036 and 012, respectively. From this example, we see that the mmw®tric structure of the Laplacian
matrix does not imply the eigenvalue sensibility.

eigenvalue. In particular, X is an orthogonal matrix (e.d.,  with g polynomial of degre@ — my. Then, a perturbation in

is symmetric) then corfd ) = 1, VA € spectrunfL). There- L of sizee results in a change qf_ (A) of orderO(¢) and

fore, each eigenvalue of the un-normalized graph Laplacian o(e) L

matrix is always well-conditioned. Under the assumption A =A™ =" A =A+0(g™).

that a(A)

This relation implies that a perturbatian:= 10" pro-

duces a change of order10in A¢ and this amplification

we get|A’(0)] < ﬁ and the upper bound is attained with bgc.omes more and more evi_dentwhile ingreasing the multi-

E :— yTx. Rewriting the relation (3) as pI|C|_ty of thg elgenvalue._ln th|§ case, the elge_nspﬁgkea_s-
sociated withA, has multiple dimension and different eigen-

(A(e) —A) ~¢g||E|].condA), €—0, vectors can be selected as basisgf.

[1X[l2= [lyll2= 1 and[|E[|2 = 1,

shows that a perturbation of ordein L produces an amount  Normalization of the Laplacian spectrum for shape compar-

€||Ell2condA) of variation inA. Therefore, if conf}) is  ison For triangulated surfaces, the FEM Laplacian eigen-

large or equal to one thehis ill- or well- conditioned, re-  values become invariant to shape scales by normalizing the

spectively. spectrum of the input shape with its area. For point clouds,
Since the normalized graph Laplacian is not symmetricyescaling the points of? by a factora the entries of the

we compute the left and right eigenvectorslodssociated - un-normalized graph Laplacian mattis of the new point

with A and estimate its conditioning according to (4). Fig- cloud 2:= {api)! L/naZ,g»

e = ', satisfy the relatiorLiY = L
ure 2 shows the variation of the conditioning number of the_ yocq the time component is rescaled froto t/a2. A
first 200 eigenvalues of the un-symmetric Laplacian matrix; .- - discussion applies to the normalized graph Lapla-

with mean-value weights. From this example, it follows that

) af d iV imol cian matrix. Therefore, we guarantee the invariance of the
an un-symmetric structure f does not necessarily imply Laplacian spectrum with respect to shape rescaling by nor-

the elg_env_alue sen5|l_3|I|ty. Since the _un-no_rmallzed graplﬂwalizing each point cloud before computing its Laplacian
Laplacian is symmetric, the left and right eigenvectors areeigenvalues

the same and corid) = 1; indeed, the computation of the

. . To measure the variation of the eigenvalues between the
eigenvalues is always stable.

reference point cloud” and its deformation?”’, let us in-
dicate withA := (A))K; andA” := (X)X ; the vector of the

M_ultlple I._apl_aman eigenvaluesf A is an eigenvalue dt first k eigenvalues of# and 7, respectively. Then, we
with multiplicity my, then we are not guaranteed that its left .
measure the normalized error between these spectra as

and right eigenvectors are not orthogonal and the previous
discussion does not apply. In this case, the characterist&, = ||A — A'[|e/||A [|oo-

polynomialp, of L is written as ] .
Even though the Laplacian spectrum characterizes geomet-

pL(A) :=detfL—Al)=(A —A)™q(A), q(Ak) #0, ric and topological features of 3D shapes in a way that is
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four el o TR g P A FRA A W ded f el @ 7 thus improving the efficiency or data storage and process-

ing [23]. In our approach, eigenvalues are considered rel-
evant whether they can be used to discriminate among the
3D models of a given class and other shapes that do not be-
not unique, previous work [48,55] has also shown that théong to such a class. In this way, the selection of the rele-
spectrum is capable of distinguishing dissimilar shapes. vant eigenvalues is transformed into a binary classificatio
problem as follows. Each model of a given class is repre-
sented by a subset of eigenvalues selected from the corre-
4 Feature selection for shape characterization and sponding spectrum. Then, a binary classification function,
classification based on the selected eigenvalues, is defined such that it re-
turns ‘true” if an unknown query model is attributed to the
In the literature, few works tackle the problem of similar- given class and f'alse’ otherwise. The selected eigenval-
ity by using the shape spectrum. Starting from the goodies represent the shape features that are shared by the class
retrieval results in [48], we investigate whether the selecmembers and maximize the discrimination with respect to
tion of a particular set of Laplacian eigenvalues is capathe non-member models.
ble of characterizing a specific class of shapes and improve Experiments have been performed by using two data sets
the classification performance. Furthermore, the prakiéit from the SHape Retrieval Contésthe SHREC 2007 [22,
cost needed to compute the complete spectrum and the r87] and the SHREC 2010 [13,14] data sets. The SHREC
dundancy of the extracted information stress the impoganc2007 data set (Figure 3) contains 400 watertight triangle
of identifying relevantinformation from the shape speotru  meshes grouped into 20 classes, with 20 models per class.
Indeed, our work investigates the problem of selecting &he main differences among shapes of different classes are
bunch of eigenvalues that characterize the members of |acalized at coarse features; e.g., cups, chairs, or spring
given class of shapes and that maximize the classificatioQther classes share similar coarse features and differ just
performance among several classes of shapes. To this ergr details; e.g., humans, teddy bears, and armadillo&isn t
we investigate the utility of the AdaBoost algorithm (Sdcl) case, we have considered both polygonal meshes and point
and the Support Vector Machine technique (Sect. 4.2) aslouds uniformly sampled from the model surfaces.
methods for spectral feature selection and classificafiba. The SHREC 2010 data set contains 728 models, which
shape characterization capabilities of the selected flesitu are represented as triangle meshes and are grouped into 13
are shown through the comparison with the traditional apclasses (Figure 4). Note that these meshes are not necessar-
proach based on the filseigenvalues of smaller magnitude, jly watertight or manifold. Members of each class are ob-
by varyingk on the cardinality of the computed spectrumtained through transformations of different strength (flee
(Sect. 4.3). grees) of the class representative model: the higher the de-
In general, feature selection addresses the problem of
finding the most compact and informative set of features, ! http://www.aimatshape.net/event/SHREC/

spring| @) A

o
armadillo| ;

Fig. 3 SHREC 2007 data set.
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Fig. 5 Transformations of the human shape used in the tests (shogtneingth 5, left to right): null, isometry, topology, sding, local scale,
scale, holes, micro holes, noise, shot noise. Image egttdicim [13,14].

gree, the stronger the transformation. The transformatiorof the data set. Among the shape features shared by the class
are (Figure 5): null transformation, isometry (non-rigitdla members, we consider the selected eigenvalues as the class
almost inelastic deformations), topology (welding of shap descriptions that maximize the distance among models of
vertices resulting in different triangulation), micro beland  different classes.
big holes, global and local scaling, additive Gaussianeois  In our experiments, the weak classiftgr classifies the
shot noise, down-sampling (less than 25% of the originathapeZ? by using thekth eigenvalues of its spectrum and it
points), partial occlusion, and mixed transformationf®&  is defined as
ently from SHREC 2007, the classes of the SHREC 2010
data set are strongly overlapped. Each shape of the SHRE&G(Z?) = { ! 1 MaXpee- d( . %) < 0.
otherwise

2010 data set has been represented as a point cloud; then,
the eigenvalues of the corresponding un-normalized grapiwhereE™" is the set of positive exampleg, (22, %) is the
Lapalcian matrix (Sect. 3) have been computed. absolute value of the difference between kiteeigenvalue

of the models? and %, andd := max, gcp+ (%, 2),

is a real number that is associated with the set of positive
4.1 The AdaBoost algorithm examples and represents the maximum distance between

and2. In the following, we outline the AdaBoost algorithm
The AdaBoost algorithm [20] is a supervised machine learnused by the proposed approach.
ing method for binary classification. It is based on a set of
positive and negative examples and exploits a set of weak
classifiers to generate a binary classification functiaost

Input examples (£1,y1),...,(Pm,Ym), whereZ; € D
andy; €Y ={+1,-1},i= 1,...,m

o e . . — Initialization :
classifier) that maximizes the margin between positive and
negative examples. The weak classifiers are simple classifi- .. .— __~ 1 it ZcE", wp = 1 otherwise
cation functions not necessarily accurate and stable,fout e T 2ET 2[E|

ficiently computable [20]. The algorithm iteratively sefec

the more appropriate weak classifiers and generates a-classi
fication function based on the combination of the selected
classifiers. This function is capable of classifying an un-
known query as belonging to the class of positive or negative
examples and it is computed by minimizing the classifica-
tion error.

In the proposed approach, each shapewhich is rep-
resented as a triangle mesh or a point cloud, is coded by its
Laplacian spectrum and a weak classifier is defined for each
eigenvalue. In this context, the AdaBoost algorithm select
the eigenvalues whose weak classifiers maximize the mar- < T )

where|E*| and|E~ | are the number of positive and neg-
ative examples, respectively.
lteration: fort=1,...,T,
— train the weak classifiers by using the weigivs;
— select the weak classifier producing the lowest clas-
sification error;.
— Update of the weights w1 = %wt,ie*atht(%’)yi,
ar = %Iogl%ft andZ; is a normalization factor such
thatw ; ranges in0,1].
Strong classifiet

gin between positive and negative examples. Furthermore, S= Sign Z\atht (5)

the selected eigenvalues are combined to generate an effec- =

tive strong classifier. The algorithm takes as input the set of positive and negative
For shape classification, each class is used in turn as posxamples{%1,y1), . .., (%m,Ym), WhereZ; is a model of

itive example and a subset of the remaining models is corthe considered data set apde {+1,—1} is the label rep-

sidered as negative example (Sect. 5). In this way, we obtairesenting a positive and negative example, respectively. A

a set of relevant eigenvalues, which characterizes eash claaBoost iteratively trains the weak classifiers associaiéiul w
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Fig. 6 Eigenvalues of the Laplacian spectrum selected throughob@sBap iterations using (a) the AdaBoost algorithm andh@first Laplacian
eigenvalues. Thg—axis of (a,b) represents the number of times the eigenvhlares been selected. Tke axis in (a,b) represents the eigenvalue
indices and the value & respectively.

the eigenvalues repeatedly Thiterations. During these it- analogous results by using a fast greedy algorithm based on
erations, the algorithm maintains a set of weights over theveak classifiers. Moreover, SVMs require to solve a quadrati
positive and negative examples. In particwar, represents  programming problem, while the AdaBoost algorithm is based
the weight of the example?; at the iteratiort. Once the on linear programming. Finally, the experiments have been
weights have been initialized at the first step, they are itperformed using the Python toolbox PyRIL

eratively updated on the basis of the incorrectly classified

examples. In particular, at each iteration the weak classifi

that produces the minimum classification error is selected

and the error is used to update the weights of the input ex¢-3 The firsk eigenvalues approach

amples. Then, the weights of misclassified examples are in-

creased and the weights of the correctly classified exampld8 [48], the firstk eigenvalues with smaller magnitude are

are reduced. This strategy forces the algorithm to focug onlused as shape descriptor to compute 3D shapes represented
on hard examples. as triangle meshes. A typical classification scheme that ex-

ploits the firstk eigenvalues is based on the distance

4.2 The Support Vector Machine ~ .

Besides AdaBoost, Support Vector Machines (SVMs) [12,

23] are effective approaches for pattern classification angetween the query and the clas€, wheres is the spec-
feature selection. Basically, SVMs belong to the categéry oyrym subsequence defined sis= (1,....k) C (1, ..., Knax)
kernel methods, which generate nonlinear decision boundgith k., the cardinality of the spectrum, aug is the dis-

aries among classes of patterns through methods designgghce between the query modednd the clas€ with respect

for linear classifiers. SVMs can also be exploited for featur 1o 5, A general definition for the query-class classification
selection through the Recursive Feature Elimination (RFE}cheme

algorithm [10, 23]. This method iteratively removes featur

that correspond to components of the SVM weight vector  _ — .

that are smallest in absolute value; such features provideaaH c C= argéQE‘dS(q’C)v 7
lower contribution to the classification and are therefere r

moved [24]. The RFE method involves three main steps: (iJrhe average classification erre [0, 1] is computed as the
train the classifier; (ii) compute the ranking criterion 8@ number of wrongly classified queries divided by the total
features; (iif) remove the feature with smallest ranking cr number of queries. Based on Eq. (6) and Eq. (7), theKirst

terion. approach selects the spectrum subsequetied minimizes
The main difference between SVMs and AdaBoost isthe classification errag.

that the former relies on the definition of the most appropri-
ate kernel to maximize the margin, while the latter achieves 2 nttp://sourceforge.net/projects/pyml/
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T T T T o T | e 5 Shape characterization and classification
45 [ Sem - 9
40 [= - = -1#8& , Themostrelevantfeatures thatcharacterize a class oéshap
3B - =1 K é can be captured by a properly selected subset of their Lapla-
%30 [~ — =l K % cian eigenvalues. As discussed in Sect. 4, a binary classifie
E5 __ —{M™s 2 based on a set of eigenvalues can be used to discriminate
S20F = - -_ - s ; among the members of the given class and the remaining
15 —™ 3 E shapes of the input data set. The set of eigenvalues that max-
10 [ == = —{ 2 2 imizesthe margin between class members and non-members
5 :“_ _ . _ 1 represents the features shared by the class models. To iden-
0 It L |t bl LI | | tify and validate the most representative subset of thed-apl
012345678 910111213141516171819 cian spectrum, the Bootstrap Cross-Validation assessment
o methodology has been applied by splitting the data set into
@) training and validation set. The training set is used toctele
T T T T T T 10 the relevant features and the validation set is used tossses
45 = -l E the classification performance.
40 — = — g The Bootstrap methodology is a general random resam-
35 = — . 7 é pling with replacement and it has been used to generate dif-
%30 = = s : = =1 B % ferent training and validation sets for Cross-Validatitm.
225 - = - — s o our experiments on shape characterization (Sect. 5.1) and
£2 E_ - —_— {4 g classification (Sect. 5.2), the training set is obtainedugh
15 = B - = _= Sl § the Bootstrap _strategy by randomly sampling a subset of
10 = -_- = = 4|, =z shapes of a given class and the same number of models
- - — ml among the remaining models.
0
012345678 91011213141516171819 5.1 Shape characterization
Class Index
(b) The eigenvalues that characterize the shape features of a
[ T N O N L O O IO O N IO () O [ " given class are obtained by applying the AdaBoost strong
r Tl ° classifier in Eq. (5) or the firstclassifier described in Eq. (7),
o al N 2 which are trained on the positive and negative examples of
A B Bl K 2 the training set. The training process selects the set ef rel
g el B 18 ¢ 2 vanteigenvalues that maximize the margin between positive
7: - 10 ° fg and negative examples. Different iterations of the Boafstr
B2~ |F# & method produce different training sets used for selectieg t
15 - 113 E eigenvalues. Each training set contains some represagati
10 = 1Hz2 * ofa given class and very few representatives of the other
5 -1H1 classes; some classes might not be represented at allsIn thi
Ol laba L L LI LI Ll b bbb L L g way, the selected eigenvalues mainly depend on the class

01234567 8 910111213141516171819

Class Index

(©

members. The eigenvalues that are selected several times
within all the Bootstrap iterations are those that best-char
acterize the class of shapes.

Figure 6(a) shows the eigenvalues selected by AdaBoost
for the SHREC 2007 class of humans through 10 Bootstrap
iterations. In this experiment, all the models have been uni
have been selected within 10 iterations of Bootstrap Cviadislation. formly :eglfﬁh?.d ?51(?5 V.ertlcesl and fcf)rFeEal\(;thShalpe_WE have
The color bar provides the map between colors and numbered-se compute enrs eigenvalues o aplacian ma-

tions. Thex— andy—axis represent the class index and the spectrunirix [48,55]. Since several eigenvalues are never selected
bin, respectively. (e.g., the eigenvalues with indices between 100 and 150),

we conclude that they are less discriminative for the char-

acterization of the class of humans. Those eigenvalues that
have been selected just once (e.g., the eigenvalues with in-
dices between 200 and 400) depend on the specific training

Fig. 7 Selected eigenvalues using (a) the AdaBoost algorithnthé)
Support Vector Machine, and (c) the fitseigenvalues. Each column
of the heat-map matrix represents a SHREC 2007 class. The abl
each matrix element represents the number of times the \gilyes
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Fig. 8 Selected eigenvalues related to the point sets of the (filstrm) SHREC 2007 and (second column) SHREC 2010 data siéftsrespect

to (a,b) the AdaBoost algorithm, (b,c) Support Vector Maehiand (e,f) the firsk eigenvalues. In all cases, the shapes are representednas poi

clouds. Each column of the heat-map matrices representape stlass. The color of each matrix element represents tideruof times the
eigenvalues have been selected within 10 iterations of tiwedrap Cross-Validation. The color bar at right side efgictures is the map between
colors and number of selections. Thke andy—axis represent the class index and the spectrum bin, résggct
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set generated by the corresponding Bootstrap iteration and SHREC 2007 SHREC 2010
they are not used for shape characterization. Other eigenva AdaBoost Mesgll?KV Po”g-go“d Po”ggc’“d
ues have been selected several times within the 10 Bootstrap— stk 0.26 0.29 0.19
iterations (e.g., several eigenvalues with indices betwke RFE 0.32 0.31 0.31
and 50) and their persistence suggests that they chawcteri SVM 0.26 0.26 0.23
the class of humans. First 10 eigs 0.27 0.30 0.30
First 20 eigs 0.27 0.30 0.28
An analogous experiment has been performed by us-[ First 30 eigs 0.27 0.31 0.28
ing the classifier based on the fikseigenvalues defined by | First 40 eigs 0.28 0.32 0.28
Eq. (7). For each class of shapes the valu& isf selected First 50 eigs 0.28 0.32 0.28

during the training phase. Figure 6(b) shows that the satlect o
value fork changes at each Bootstrap iteration. This meanTabIe 1 Classification error on the SHREC 2007 and SHREC 2010
g p ) Jata sets, whose shapes have been represented as triaspksraad

that the sequences based on the firstgenvalues strongly point clouds with 10K points, respectively. Positive exdgsponsists
depends on the training set; indeed, such sequences are lesthe 25% of the class population.

representative for the class of human shapes. These experi-

ments also show that (i) a set of selected eigenvalues is suit

able to characterize the most relevant shape featuresiand (icient to characterize class members and detailed features
features that are not individually relevant may become releare necessary to improve the results.

vant in the context of others [23].

Figure 7 corresponds to a heat-map matrix, which show
the selected features associated with each class of the SHR

2007 data set through 10 iterations of the Bootstrap Cross: . .
L : he eigenvalues selected to characterize relevant shape fe
Validation. Each column of the matrix represents a class o

the data set and the spectrum has been discretized into 5%res can also be exploited for classification. To this ered, w
P will use the AdaBoost Strong Classifier, the Support Vector

bins, each of them representing 10 eigenvalues. The CO'WI

associated with each entry represents the largest number FChine’ the Recursive Feature Elimination, and the classi
: yrep arg fier (7) for classification within the Bootstrap Cross-Valiidn
times _that ‘F.ﬂ least one eigenvalue belongmg o the_ oMM & amework. For each Bootstrap iteration, a training and a
fnpa(\)no:l:gbbelgfvzzi ?(?Ii?ssaer:zizgz gpodng]ﬁusrkdbee:)?:ri gu“rlss7 tr\wlgllidation set are generated. According to the charaeteriz
ppINng . : -9 (%?on experiments, the training set is used for selecting rel
shows the results obtained with the AdaBoost algorithm af-

ter 20 iterations over a spectrum consisting of 500 ei envaFvant eigenvalues and the shapes of the validation set are
b 9 9 classified using the AdaBoost Strong Classifier or theKirst

ues. Since several matrix elements have a dark color, espe- " .
. : T eigenvalues. The classifier performances are evaluatéd wit
cially corresponding to small bin indices, we conclude that

. ) .. respect to classification accuracy (i.e., the lower is ths-cl
for all the data set classes, AdaBoost is capable of identify ..~ . . . o
. _ ) sification error, the higher is the accuracy) and stabilisy (
ing a set of eigenvalues that characterize the shape feature . o
Small changes in the training data do not lead to large cteange
shared by the class members. Moreover, the average number, . o
. . ) In the resulting classifier).
of selected eigenvalues for each class is 9. This means that a .
In our experiments, we have used both a small set of

very small number of eigenvalues (about the 2% of the input

. .Vpositive examples (Table 1) consisting of the 25% of the
spectrum) characterize the shape features shared by a gi << nopulation (5 and 14 shapes from the SHREC2007 and
class. Figure 7(b,c) summarizes the results obtained tdth t Pop P

Support Vector Machine and the fikseigenvalues approach S.HRECZON data sets, respe_ct!vely) and a large set of posi-
. tive examples (Table 2) consisting of the 75% of the class
by varyingk between 1 and 500.

population (15 and 42 shapes from the SHREC2007 and
Similar experiments have been performed on the SHRESHREC2010 data sets, respectively) and the same number
2007 and SHREC 2010 data sets, whose shapes are rag-negative examples. Tables 1 and 2 summarize the clas-
resented as point clouds with 10K points. Figure 8 showsification error with respect to the eigenvalues selected by
the characterization capability of the AdaBoost algorithmthe AdaBoost algorithm, the RFE approach, and the Kirst
and Support Vector Machine on point clouds; furthermoregigenvalues approach (first three rows). Furthermore, we in
the results with respect to the firsteigenvalues is analo- clude the classification performances of the SVM classifier
gous to the corresponding experiment on triangle mesheand the first 106- 20— 30— 40 and 50 eigenvalues for all the
In this case, the eigenvalues that characterize the shape feclasses of the input data set. The Gaussian kernel has been
tures shared by the class members have been selected amasgd for both the SVM and RFE; the kernel width and the
eigenvalues of both low and high magnitude. This behaviosoft-margin parameter have been selected through the boot-
means that coarse features coded by point clouds are not sstrap resampling method.

2 Shape classification
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