
Reeb Graph Computation Based on a Minimal Contouring

Giuseppe Patanè∗

IMATI-CNR

Michela Spagnuolo†

IMATI-CNR

Bianca Falcidieno‡

IMATI-CNR

Abstract

Given a manifold surface M and a continuous function
f : M → R, the Reeb graph of (M, f) is a widely-used high-
level descriptor of M and its usefulness has been demon-
strated for a variety of applications, which range from shape
parameterization and abstraction to deformation and com-
parison.

In this context, we propose a novel computation of the
Reeb graph that is based on the analysis of the iso-contours
solely at saddle points and does not require sampling or
sweeping the image of f . Furthermore, the proposed ap-
proach does not use global sorting steps of the function val-
ues and exploits only a local information on f , without han-
dling it as a whole.

By combining the minimal number of nodes in the Reeb
graph with the use of a small amount of memory foot-
print and temporary data structures, the overall computa-
tion takes O(sn)-time, where n is the number of vertices of
the triangulation of M and s is the number of saddles of f .

Finally, the technique can be easily extended to compute
the Reeb graphs of time-varying functions.

Index Terms: I.3.5 [Computational Geometry and Ob-
ject Modeling]: Boundary representations—Geometric algo-
rithms, languages, and systems−Object hierarchies. Addi-
tional keywords: Reeb graph, Morse theory, shape analysis
and abstraction.

1 Introduction

Differential topology provides a suitable framework for for-
malizing and solving several problems related to shape un-
derstanding through the theoretical link between critical
points, their configuration, and the global properties of the
input surface. In this context, the Reeb graph RG of M with
respect to a scalar function f : M → R, defined on a smooth
surface M, is the quotient space of M×R induced by the re-
lation “ ∼ ” with (p, f(p)) ∼ (q, f(q)) ↔ f(p) = f(q), and
p, q belong to the same connected component of the iso-
contour f−1(f(p)). This relation identifies each connected
component of an iso-contour of f with a single class. Fur-
thermore, Morse theory [19] guarantees that the topological
changes of the iso-contours occur only at the critical points
of f and the Reeb quotient space can be represented by a
graph whose nodes correspond to the critical points and the
arcs code the evolution of homotopic iso-contours.

We remind that the point p ∈ M is called critical if
∇f(p) = 0 and regular otherwise. The scalar function f is
called Morse if it assumes different values at distinct critical

∗Istituto di Matematica Applicata e Tecnologie Informatiche,
Consiglio Nazionale delle Ricerche, Genova - Italy, e-mail:
patane@ge.imati.cnr.it

†e-mail: spagnuolo@ge.imati.cnr.it
‡e-mail: falcidieno@ge.imati.cnr.it

points; if f(p) �= f(q) for any couple of distinct points p, q,
then f is simple. Given a Morse and simple function f ,
the Reeb graph of (M, f) defines a canonical decomposition
of M into cells and encodes its topology [29]. Finally, the
Reeb graph is topologically consistent with M, i.e. if M is
a closed surface, then the number of loops of RG is equal to
the genus of M.

In shape modeling and digital geometry processing, the
usefulness of the Reeb graph has been demonstrated in ap-
plications which include local [25, 38] and global [26, 32]
parameterization; surface encoding [17, 31, 33] and recon-
struction [3]; shape matching [16] and topological noise re-
moval [36].

In the following, we briefly introduce previous work and
discuss the main aims and novelties of our approach.

1.1 Previous work

Several algorithms have been proposed for the computation
of the Reeb graph of closed surfaces, and also for higher
dimensional or time-dependent data. Most of them work
by tracking the evolution of the contours, either with a
suitable sampling of the image of f or with a complete
sweeping process, i.e. contours are traced at each ver-
tex. Let I := [fmin, fmax] be the image interval, where
fmin := minp∈M{f(p)} and fmax := maxp∈M{f(p)} are
the extrema of f .

Sampling-based approaches, such as [31], consider a parti-
tion I := {[fi, fi+1]}k

i=0 of I such that

{
f0 := fmin, fi < fi+1, fk+1 := fmax,⋃k

i=0[fi, fi+1] = [fmin, fmax].

Then, the Reeb graph is built by using the ordered set
Cf (M) := {f−1(fi)}k+1

i=0 of iso-contours together with the
adjacency relations among the corresponding surface strips
{f−1([fi, fi+1])}k

i=0. These approaches usually assume that
the iso-contours do not interpolate critical points; if this
condition is not satisfied, then the corresponding iso-value
is slightly perturbed in such a way that the new iso-contour
passes only through regular points.

A variation [1] of this technique builds on the extension
of the Reeb graph equivalence to strips of triangles rather
than iso-contours. More precisely, two points p,q ∈ M are
considered equivalent if f(p) and f(q) belong to the same
interval t := (fi, fi+1) ∈ I and p, q are within the same
connected component R of the strip f−1(f(t)). In this case,
all the points of R are equivalent in an extended sense and
they identify the same equivalence class; therefore, the nodes
of the induced Extended Reeb graph are representative of
iso-contours or regions. A node may be adjacent to another
node, which identifies a surface strip, or to a set of nodes
representing the boundaries of a connected component of
a strip. We also note that a surface strip might include
several types of critical points; e.g. saddle points together
with maxima and/or minima.

Since an arbitrary partition I of [fmin, fmax] does not
guarantee the topological consistency between M and RG,

(a) n = 200K (b) (c) (d) (e)

Figure 1: (a-b) Shape segmentation achieved by cutting M along the iso-contours of s = 6 saddle points of a function f with m = 1 minimum,
M = 1 maximum. (c) Zoom-in on the iso-contours (also called critical loops) related to the saddle points located in the bottom and body
part of the input surface. (d) Adjacency graph among surface patches: red (resp., yellow) points locate the barycenters of the surface patches
(resp., critical loops). (e) Conversion of A to the Reeb graph RG of (M, f) and achieved by joining the maxima and minima of f to the nodes
of A associated to the surface patches they belong to. In (e), the two terminal arcs of the Reeb graph are related to the extrema of f and they
are located in the upper part of the trident and the finger of the right hand (viewer point of view).

the initial sampling of Image(f) is updated by iteratively
adding a new iso-value αi in each interval (fi, fi+1) whose
strip f−1((fi, fi+1)) has at least one connected compo-
nent of genus equal or greater than one. The iteration
stops when each strip has 0-genus, thus recovering the
consistency between M and RG. The iterative approach is
time-consuming if the image of f does not smoothly vary
and/or M has tiny handles. Furthermore, the choice of
the values fi and αi is arbitrary and does not resemble the
critical points distribution. The iso-level αi is usually set
equal to (fi + fi+1)/2 and Image(f) is uniformly sampled.
Finally, a multi-resolution construction of the Reeb graph
through a dicotomic procedure is described in [16].

Sweeping techniques [6, 7, 8, 17, 23, 24] compute the Reeb
graph, by sweeping the iso-value α from the minimum fmin

to the maximum value fmax of f and studying the evolu-
tion of the corresponding iso-contour f−1(f(α)) to deter-
mine when saddle points are encountered and process them.
More precisely, in [6] the sweeping algorithm initially sorts
the n vertices of the input triangulation by their function
values. Then, the join tree (resp., split tree) is built by
performing a sweep of the vertices from the smallest (resp.,
largest) to the largest (resp., smallest) function value. Fi-
nally, the contour tree is obtained by merging the join and
split tree; this last step requires linear time in the number
of vertices.

Since the iso-contours change whenever the iso-value
passes through the function value at a vertex, the iso-values
are chosen equal to {f(pi)}n

i=1 or set by discretizing the in-
terval [fmin, fmax]. In this class of techniques, the method
described in [17] deals with closed surfaces equipped with the
geodesic distance from a source point and [23] introduces a
multi-resolution data-structure for computing and represent-
ing the contour tree. Recently, [24] has proposed an on-line
algorithm that constructs the Reeb graph while reading the
simplicial elements of the input surface or tetrahedralization.
At each step, the insertion of a new element in M updates
the current approximation of the Reeb graph on the base

of the creation/deletion of connected components of M and
loops of the graph. Finally, we note that [1, 6, 23, 24] guar-
antee the topological consistency between RG and M.

The method discussed in [7] builds on the sweeping ap-
proach but does not sort all the vertices. More precisely, it
identifies the critical points of f , increasingly or decreasingly
sorts them by their function values, and builds the join and
split tree. The join tree is computed by following monotone
descending paths, which connect the critical points of f and
are composed of an ordered sequence of points whose func-
tion values are monotonically decreasing. The split tree is
computed in a symmetric manner.

With the exception of [7, 24] and concerning both the
sampling and sweeping approaches, the computation of the
set of iso-contours {γfi := f−1(fi)}k

i=1 requires to increas-
ingly (or decreasingly) reordering the values of f at the
vertices and initializing the iso-contour computation by
searching one edge [p, q] of M that is intersected by γfi ,
i.e. f(p) < fi < f(q), i = 1, . . . , k. Therefore, this pre-
process takes O(n log n)-time regardless the number of crit-
ical points.

1.2 Overview and contribution

The output of sweeping algorithms explicitly keeps track of
the relations between the regular vertices of the input tri-
angulation of M and the nodes of the Reeb graph RG; in
fact, each regular point pi of (M, f) is associated to a con-
nected component γ of the iso-contour f−1(f(pi)) and γ is
contracted to a node of RG.

On the one hand, coding each vertex of M in the Reeb
graph is mandatory for the construction of a complete skele-
ton [17] and the computation of seed-sets for iso-surfacing
scalar functions [35]. On the other hand, several appli-
cations, which include surface parameterization, texture
mapping, and shape matching, do not need a complete
information associated to the arcs of the Reeb graph. For
instance, a minimal number of nodes and the topological
consistency between the surface and the Reeb graph enable
us to deal with a low number of segmented patches in local

(a) (b) (c)

Figure 2: In (a), 1-star of the vertex pi, (b) iso-contours close to a local maximum, and (c) zoom-in on the two loops (blue and red curve)
related to a saddle point (green point) of multiplicity one.

parameterization [25], reduce the computation time of the
minimal common subgraph [18] in shape comparison [4],
and minimize the number of steps to identify and cut the
topological handles in global parameterization [27].

In this context, we propose a novel computation of the
Reeb graph that is based on a minimal contouring algorithm.
The idea behind our method is to exploit the analysis of the
evolution of the iso-contours only at saddle points without
sampling or sweeping the image of f . Instead of building
an injective correspondence between the vertices of M and
the nodes of the Reeb graph, our algorithm stores only a
minimal information on the behavior of f on M. In fact,
each node of the computed Reeb graph is associated either
with a maximum/minimum of f or with an iso-contour that
corresponds to a saddle point. Each arc is associated with a
region of M that is delimited by the connected components
of the iso-contours corresponding to saddle points. In this
region, the iso-contours related to the regular iso-values of f
are homotopic.

The proposed technique does not use global sorting steps
and exploits only a local information on f (i.e., the behavior
of f on the 1-ring of each vertex, the triangle-triangle ad-
jacency) without handling it as a whole. By combining the
minimal number of nodes with the use of a small amount
of memory footprint and temporary data structures, our ap-
proach takes O(sn)-time, where n (resp., s) is the number of
vertices (resp., saddles) of M (resp., f). If s < log n (e.g., f
is a harmonic function [22] or a Laplacian eigenfunction re-
lated to a small eigenvalue [10, 30, 34]), then the proposed
algorithm outperforms previous work and its computational
cost is competitive with respect to the recent on-line com-
putation proposed in [24].

While building the Reeb graph, we also provide a hierar-
chical shape segmentation into 0-genus patches (i.e., general-
ized cones, cylinders, and shape junctions) and iso-contours,
which code the behavior of f at saddle points. If neces-
sary, we use a persistency-based simplification to pruning
the Reeb graph by eliminating clustered saddles before their
processing. Exploiting only a local information on f also al-
lows us to easily extract the Reeb graph of time-depending
functions. Finally, we discuss the stability of the proposed
approach with respect to topological and geometric noise
(i.e., tiny handles and perturbation of the surface shape).

We point out that the method discussed in [24] is best
suited for the construction of Reeb graphs with respect
to functions whose values have been pre-computed and

streamed with the mesh geometry. The authors state that
the values could be also computed on the fly, but this does
not hold for functions that require the complete shape
such as the integral geodesic distance from source points,
harmonic functions, and Laplacian eigenfunctions. Also, the
great value of Reeb graphs is their parametric nature with
respect to the different choices of f , and the possibility of
changing f to yield different shape descriptions. Therefore,
our method is still relevant as it offers a nearly-optimal
computation also in non-streaming cases. An additional
motivation for using a minimal contouring algorithm is that
the oversampling of the image of f , usually much larger
than the number of iso-values strictly necessary to compute
the Reeb graph, induces a higher computational cost and an
overloaded graph structure with unnecessary regular nodes
(i.e., a set of nodes related to a sequence of homotopic
contours).

The main differences of [7] with respect to our approach
are that we use only the saddle points and do not sort the
corresponding function values. Furthermore, we compute
the links among saddle points by exploiting the adjacency
information among regions of M; on the contrary, using
monotone descending paths, as done in [7], might be
time-consuming and slowly convergent. Since [7] deals with
3D scalar functions, it is more general than our technique.
However, we mention that our approach can be extended to
3D scalar functions by studying the adjacency relations and
the topology (i.e., genus, number of shells) of the volumes
in-between the iso-surfaces of two consecutive function
values at saddle points.

The paper is organized as follows. In Section 2, we de-
scribe the construction of the Reeb graph and in Section 3
we identify a class of scalar functions whose Reeb graphs are
commonly used to address several shape modeling problems.
Section 4 discusses the main novelties and applications of
the proposed approach. Finally, Section 5 outlines possible
extensions and concludes the paper.

2 Building the Reeb graph

The minimal information that we use for the construction
of the Reeb graph is the set of iso-contours traced at sad-
dle points, that provide enough information to compute the
Reeb graph of (M, f).

The proposed approach is sketched by the following steps:

• extraction and classification of the critical points of f

Figure 3: Critical loops related to two saddle points of multiplicity
two; each critical loop is shown with a different color.

as maxima, minima, and saddles (see Section 2.1);

• computation of the iso-contours at saddle points; for
each saddle s ∈ M, we cut M along the loops of
f−1(f(s)) that intersect at s (see Section 2.2). There-
fore, M is decomposed into a set of regions that we will
call shells;

• coding of the adjacency relations among the shells of M
into an adjacency graph A (see Section 2.3);

• conversion of A in the Reeb graph RG of (M, f) by
joining the maxima and minima of f with the nodes
of RG associated to the shells they belong to (see Sec-
tion 2.4).

In the following, we detail the aforementioned steps; Fig-
ure 1 depicts the complete framework.

2.1 Critical points classification

In the discrete setting, we consider a triangular mesh
M := {M, T}, where M := {pi, i = 1, . . . , n} is a set of n
vertices and T is an abstract simplicial complex, which con-
tains the adjacency information. The function f on M is
defined by linearly interpolating the values {f(pi)}n

i=1 of f
at the vertices. In the following, we assume that f is general
(i.e., f(pi) �= f(pj), i �= j); this assumption guarantees that
the iso-contours of f are not degenerate, the classifications
of the critical points is not ambiguous, and the Euler for-
mula applies (c.f., Equation (1)). To this end, we define the
1-star N(i) of the vertex i as the set of vertices incident to i,
i.e. N(i) := {j : (i, j) edge}.

Critical points on triangle meshes have been defined by
Banchoff [2] and the classification of each vertex is done ac-
cording to the values of f on its neighborhood. The ver-
tex pi is a maximum (resp., minimum) if its function value
is higher (resp., lower) than those of its neighborhood. Let

Lk(i) := {j1, . . . , jk ∈ N(i) : (jl, jl+1)
k−1
l=1 edges of M}

be the link (i.e., a clockwise or anticlockwise reordering of
the vertices of N(i)) and

Lk±(i) := {jl ∈ Lk(i) : f(pjl+1) > f(pi) > f(pjl)},
the mixed link of i [22], where l is intended as mod (k + 1).
If the cardinality of Lk±(i) is 2+2mi, then pi is classified as
a saddle of multiplicity mi ≥ 1. Once the vertex-vertex rela-
tion has been extracted, the classification procedure requires
O(n)-time. Figure 2 shows the behavior of the iso-contours
of f when they approach a critical point.

The number of critical points is related to the genus of M
by the Euler formula. If M has e edges, t faces, and b
boundary components, then the genus g of M is given by
g = 1

2
(2 − χ(M) − b), where χ(M) := n− e + t is the Euler

characteristic. For a closed surface M, the identity

χ(M) = minima − saddles + maxima (1)

(a) (b)

Figure 4: (a) Iso-contour β := ∪3
i=1βi of a saddle point s of multi-

plicity two. For the critical loop β1 (resp., β2), the outgoing direc-
tions (n1, n2) (resp., (n3, n4)) are shown. (b) Evaluation of the
sign of f − α around f−1(f(α)).

gives the relation between the critical points of (M, f) and
the genus of M [2, 19]. We explicitly note that the number of
saddles is counted with their multiplicity, i.e.

∑
si saddle mi,

where mi is the multiplicity of the saddle si.

2.2 Iso-contours of f at saddle points

This section details the saddle iso-contouring, which has
already shown accurate and efficient results in different
contexts such as shape segmentation for local parameteriza-
tion [25] and the computation of the topological generators
of arbitrary 3D shapes [27]. As added value, in this paper
we show its capability of handling multiple saddles (see
Figure 3) and noisy surfaces.

Let f : M → R be a general function and pi a saddle
point of multiplicity m such that f(pi) = α. The connected
component β of f−1(α) that contains pi (see Figure 4(a)) is
the union of m+ 1 closed curves β1, . . . , βm+1 that intersect
at pi, i.e. β := ∪m+1

l=1 βl
 pi. In the following of the paper,
we refer to βl as a critical loop related to the saddle pi.
For l = 1, . . . , m + 1 and j2l−1, j2l ∈ Lk±(i), the vectors
n2l−1 := pj2l−1 − pi and n2l := pj2l − pi give the outgoing
directions that originate at pi and used to trace βl. These
vectors are computed during the classification of the vertices
of M as critical points of f .

Starting from pi toward the direction n2l−1, we trace βl

by following the gradient field of f until we come back to pi

along −n2l. At the first step, we consider the edge e of the
triangle t� in the 1-star of pi that is intersected by βl along
the direction n2l−1 (see Figure 5(a-b)); then, we search the
next intersection between βl and the two edges of the trian-
gle adjacent to t� along e. The iteration proceeds by using
the triangle-triangle adjacencies until we draw the critical
loop (see Figure 5(d-f)). We note that we initialize the iso-
contour by searching the intersected edges in the 1-star of pi;
on the contrary, sampling-based [1, 31] and sweeping [6, 17]
approaches perform this search on the whole triangle mesh
because the location of the intersected edges is not known
a-priori .

Slicing M along a given loop βl requires to duplicate its
points and therefore to determine which parts of the trian-
gles intersected by βl are below and above the iso-contour

(a) (b) (c)

(d) (e) (f)

Figure 5: (a) Iso-contours close to a saddle point s; (b) 1-star of s and related critical loops. In (b), the edge e of the triangle t� belonging to the
1-star of s is intersected by the loop βl along the outgoing (resp., incoming) direction n2l−1 (resp., −n2l). The picture also shows the search
of the intersection between βl and the triangle adjacent to t�. (c) Cut of the triangle through a vertex (blue triangles) and re-triangulation of
a quadrilateral face (red triangles): in both cases, the triangles t1 and t2 are used to code the adjacency relations between the corresponding
patches and the iso-contour βl. (d-f) Computation of one of the two critical loops of the iso-contour related to s.

(see Figure 4(b)). Since βl might have a clockwise or an
anti-clockwise orientation, we infer the value around βl by
evaluating the sign of f(pk) − α, where k ∈ Lk(i) and pk

is the vertex that we meet by walking from pj2l−1 to pj2l

along the 1-star of i. If l does not exist, the third vertex pj

of the triangle with edge pipj2l−1 is external to βl; then,
the sign of f − α inside βl is opposite to that of f(pj) − α.

If f has s saddles and mi is the multiplicity of the sad-
dle si, we extract at last s +

∑
sisaddle mi critical loops in

linear time without using a global sorting of the function
values. Figure 3 shows the critical loops related to two sad-
dle points of multiplicity two. To simplify the discussion, in
the following we assume to have simple saddles (i.e., mi = 1)
where f has different values; in this case, we trace 2s critical
loops.

2.3 Adjacency graph

Let s be the number of saddles of the input function f and
suppose that we processed k, k < s, saddles of (M, f). Then,
the slice of M along the corresponding critical loops has
generated c connected components of M. Let s ∈ M be a
saddle point that has not been processed and consider the
two sub-loops β1, β2 of the connected component of the iso-
contour β := f−1(f(s)) = β1 ∪ β2
 s that contains s.

For k = 1, 2, we slice M along βk and store the adja-
cency relations among the triangles intersected by βk (see
Figure 6(a)). Two situations can happen (see Figure 5(c)):
if βk intersects a triangle t passing through one of its ver-
tices, then t is split into two new faces t1, t2 that share a
part of βk. Otherwise, βk splits t into one triangle and one
quadrilateral q; then, q is re-triangulated by subdividing it
along its shortest diagonal and we consider as t2 the trian-
gle of q that is adjacent to βk. In both cases, we store the
adjacency among βk, t1, and t2.

Once we have sliced M along β1 by duplicating its vertices
and edges, we apply the same procedure to β2 and update
the number of connected components of M in O(n)-time.
We note that after this step β1 and β2 are two disjoint curves;

hereinafter, M refers to the cut surface and its shells.
To count and update the number of connected compo-

nents of the sliced surface, we mark each triangle as belong-
ing to a shell of M. To this end, starting from an unmarked
triangle t we visit all the faces that are reachable from t by
using the triangle-triangle adjacencies. The set of visited
triangles gives the shell of M that contains t. The selection
of a non-visited triangle (if any) initializes a new shell whose
construction follows the aforementioned process. Finally, the
count of the number of connected components stops when
all the triangles of M have been visited.

During the iterations, the connected component of M
that contains t2 will change on the base of the shells
generated by cutting M along βk, k = 1, 2, and the loops
related to the saddle points already visited. It is worth
to mention that if t1 belongs to the shell Si and it is
paired, with respect to the same critical loop βk of s, to the
triangle t2 that belongs to the connected component Sj ,
then Si and Sj are adjacent. This relation will be used
to build the arcs of the adjacency graph that code the
evolution of the iso-contours related to the iso-values close
to f(s) (see Figure 6(b)).

Let Ai−1 be the adjacency graph related to the
(i − 1)th-step. When we process the saddle s, we split the
surface patch it belongs to into two or more regions by slic-
ing M along the critical loops related to s. Then, the ad-
jacency relations among these new regions and the previous
ones are coded in Ai by using the triangle-triangle adjacency
with respect to βk. To this end, we update the arcs of Ai−1

that are incident to the critical points that belong to the re-
gion S that includes β1 and β2. As shown in Figure 6(b-c),
we join the barycenters of β1 and β2 with the saddle s and
each visited saddle in S is connected to the barycenter of the
adjacent shells. Clearly, a new shell creates a set of arcs in
the adjacency graph; a loop is generated when all the sad-
dle points which belong to a topological handle have been
processed (see Figure 6(c)).

The iterations proceed until all the saddles of f have been
visited. Since the approach processes one saddle point at

(a) f1 m = 1, M = 1, s = 2 (b) (c) (d)

Figure 6: Shape segmentation and adjacency graph of the torus achieved by cutting the input surface along the iso-contour related to the (a-b)
first and (c) second saddle point of the first non-trivial Laplacian eigenfunction f1; (d) Reeb graph of f1.

each step, it provides a hierarchical family {Ai}s
i=1 of ad-

jacency graphs whose construction is guided by the saddles
location together with the related iso-contours. Then, the
Reeb graph is constructed from the adjacency graph as de-
scribed in Section 2.4 (see Figure 6(d)). Another example is
given in Figure 7(a-e).

2.4 Reeb graph construction and hierarchal segmentation

Once the adjacency graph A := As of (M, f) has been ex-
tracted, we modify A (see Figure 6 and 7) and construct the
Reeb graph as follows.

• If both the two critical loops of two saddle points si

and sj are the boundary components of the same shell,
then si and sj are connected by an arc (see Figure 7(e),
yellow region in the middle part of the bitorus).

• If the two boundary components of a shell are the crit-
ical loops of two saddle points, then the barycenters
of the boundaries are joined together and each one of
them is connected to the corresponding saddle (see Fig-
ure 7(e), tubular regions in the up and bottom part of
the bitorus).

• If the two critical loops of a saddle si and one critical
loop β of a saddle sj belong to the same shell, then si

is connected to the barycenter of β by an arc.

Finally, we need to code in A the minima and maxima
of f that have not been considered by the previous process.
To this end, if pi is an extremum of f , regardless to its
classification as maximum or minimum, the Reeb graph
of (M, f) is achieved by adding one arc from pi to the saddle
which belongs to the same shell of pi. The barycenters of
the connected components of an iso-contour are used only
for embedding the Reeb graph of (M, f) in the 3D space
and visualizing it; however, we can select any other point as
representative of the each connected component.

At each iteration k, k ≤ s, we partition the input surface
into a family of rk patches Rk := {Rk

i }i=1,...,rk such that:

• ⋃rk
i=1 Rk

i = M;

• Rk
i is a connected region, i = 1, . . . , rk;

• Rk ◦
i ∩ Rk ◦

j = ∅, i �= j, with X◦ internal part of X;

• Rk
i �= ∅ has li boundary components {γj}li

j=1.

We note that at the iteration k the genus of each patch
might be greater than zero and the number of boundary
components of each patch is arbitrary. However, at the last
iteration k = s we get that each surface patch has 0-genus.

(a) f1 (b) (c) (d)

(e) (f) f2 (g)

Figure 7: Adjacency graph and segmentation achieved by processing
(a) one, (b) two, (c) three, and (d) four saddle points of a function f1

with m = 1 minima, M = 1 maxima, and s = 4 saddles. (e) Reeb
graph of (M, f1). (f-g) Shape segmentation and adjacency graph of
a function f2 with m = 2 (resp., M = 2 and s = 6) minima (resp.,
maxima and saddles).

Therefore, we decompose M into only three types of primi-
tives, i.e. generalized cones, cylinders, and junctions. More
precisely, a generalized cone is defined as a patch with one
boundary component; in RG, it is associated to a terminal
arc which corresponds to a maximum or a minimum. A
generalized cylinder is identified by a region with two
boundary components; in RG, these boundaries correspond
to the critical loops of two distinct saddle points. The shape
junctions have three or more boundary components. In
Figure 7(e), the yellow patch R, in the middle part of the
bitorus, is a shape junction with four boundary components;
in fact, the two critical loops of each one of the two saddles
are disjoint boundary components of R. We also note that
each saddle point must be duplicated; otherwise, the patch
is not manifold. Finally, Figure 6 and 7(a-e) show the
hierarchy of adjacency graphs and shape segmentations.

If f is a harmonic function with only one maximum and
one minimum, then f has 2g saddle points; in this case, we
have one patch for each extremum, two cylinder-like patches

(a) n = 150K (b)

Figure 8: (a) Shape segmentation and (b) Reeb graph of a 5-genus
surface with a set of non-manifold triangles in the body parts. This
example shows that we are able to deal with non-manifold triangles if
they are not intersected by the iso-contours related to saddle points.

associated to each topological handle of M and (g − 1) re-
gions which join them. Therefore, the segmentation pro-
vided by such a function has 3g+1 patches, which provide a
decomposition of M in a minimal number of 0-genus regions.

3 Hierarchical shape segmentation and choice of f

Even though the proposed computation of the Reeb graph
is independent of f , specific choices require a low computa-
tional cost for the construction of the Reeb graph, provide
better segmentations of M, and can be used to target spe-
cific applications such as quadrilateral remeshing [10], visu-
alization [23], and shape comparison [16]. In fact, each f
provides:

• a different set of saddle points. Then, each saddle is
characterized by a different location on M and shape
of the related iso-contours, which become the boundary
components of the segmentation patches;

• a different number s of saddle points, s ≥ 2g, which
affects the number of patches of the segmentation and
the overall computational cost, i.e. O(sn).

A variety of functions have been used in several applica-
tions, which range from surface remeshing and parameteri-
zation to shape comparison. For instance, the height [13, 31]
and elevation function [15] are the most intuitive and sim-
ple choices for analyzing 3D shapes. The geodesic (resp.,
Euclidean) distance identifies the surface protrusions [14]
by computing the geodesic (resp., Euclidean) distance of
the mesh vertices from selected feature points [11, 15, 20]
(resp., [13, 16]). Curvature-based functions have been fre-
quently used to classify the local shape of 3D surfaces into
planar, parabolic, and elliptic regions. Finally, their sensi-
bility to the noise, small features, and quality of the shape
discretization is reduced by applying a least-squares approx-
imation with polynomial functions [37]) or a multi-scale cur-
vature evaluation [21].

From the perspective of the segmentation, it follows that
the best choice of f is a function which takes into account
the shape of M (e.g., symmetries, protrusions) and has a
low number of critical points. In the following, we briefly
review common choices of f and we focus our attention on
the shape segmentation provided by harmonic functions

(a) f7 m = 3, M = 3, s = 6 (b)

(c) f8 m = 3, M = 3, s = 6 (d)

(e) f13 m = 4, M = 4, s = 8 (f)

Figure 9: (a, c, e) Shape segmentation and (b, d, f) Reeb graph of
the torus induced by three Laplacian eigenfunctions with a different
number s (resp., m, M) of saddle points (resp., minima, maxima).
The black lines show the iso-contours related to the saddle points.

and Laplacian eigenfunctions.

The harmonic function f solves the Laplace equation with
Dirichlet boundary conditions, that is,

Pb1: find f : M → R such that

{
Δf(pi) = 0, i ∈ BC

f(pi) = αi, i ∈ B,

where B ⊂ {1, . . . , n}, BC is the complementary set of B,
and αi ∈ R, i ∈ B. The equations Δf(pi) = 0, i = 1, . . . , n,
can be written in matrix form as Lunf = 0, where

Lun(i, j) :=

⎧⎨
⎩

∑
k∈N(i) w(i, k) if i = j

−w(i, j) if (i, j) is an edge of M
0 otherwise,

(2)
is the un-normalized graph Laplacian matrix, w(i, j) is the
weight associated to the directed edge (i, j), j ∈ N(i),
and N(i) is the 1-star of i. As coefficients w(i, j) we can
select the mean-value [12], cotangent [28], and normalized
cotangent weights [9]. Regardless the choice of the weights,
(Pb1) is equivalent to the sparse linear system L�f� = b,
where f� := (f(pi))i∈{1,...,n}\B is the vector of unknowns, b
is a constant vector related to the boundary conditions,
and L� is achieved by removing the ith-row and ith-column
of Lun, i ∈ B.

The maximum principle states that f has no local
extrema other than at constrained vertices. In the case
that all constrained minima are assigned the same global
minimum value and all constrained maxima are assigned
the same global maximum value, all the constraints will
be guaranteed to be extrema in the resulting field. If the
closed surface M has genus g and we select m minima
and M maxima as boundary conditions, then by applying
the Euler formula (1) we get s = m + M + 2g − 2 saddles
and the corresponding Reeb graph has 2(m + M + g − 1)
critical points. The maximum principle provides the main

Figure 10: Shape segmentation and Reeb graph of a 3-genus surface
with respect to the third Laplacian eigenfunction.

motivation to use harmonic functions for shape segmen-
tation and the Reeb graph construction; in fact, it allows
us to build harmonic functions with a minimal (i.e., one
maximum, one minimum, and 2g saddles) or pre-defined
number of critical points once we have fixed the Dirichlet
boundary conditions. An example is shown in Figure 8.

If there is not a predefined choice of the Dirichlet bound-
ary conditions, then the Laplacian eigenfunctions provide an
alternative to harmonic functions and they still guarantee a
low number of critical points and a smooth behavior on M.
More precisely, we now consider the eigenvalue problem

Pb2: find f : M → R such that Δf = λf, λ ∈ R. (3)

As shown in [30, 34], in the discrete setting (3) is equivalent
to the generalized eigenvalue problem

Lcotf = λBf , f := (f(pi))
n
i=1 ,

where Lcot is the un-normalized graph Laplacian matrix
with cotangent weights and B codes the geometry of M
in terms of the triangles areas. Finally, we mention that
this approximation can be improved by using higher degree
finite elements; for more details on the cubic case, we re-
fer the reader to [30]. Examples are shown in Figure 9
and 10. Finally, another discretization of (Pb2) is to consider
as L the un-normalized Laplacian matrix (2) and compute
the eigensystem associated to the standard eigenvalue prob-
lem Lf = λf [10, 34].

4 Discussion

This section discusses the computational cost and stability
of the proposed approach; we also analyze its degrees of
freedom and the computation of the Reeb graph of time-
varying function.

4.1 Computational cost and stability issues

We note that slicing M along βk, k = 1, 2, (resp., counting
the number of shells) takes linear time in the number of
triangles intersected by βk (resp., of M) and the overall
cost for processing the saddle s is O(k), with k number
of intersected edges. Therefore, the classification of the
critical points of f , the coarse-to-fine structure of surface
patches, the corresponding adjacency graph, and indeed the
Reeb graph, are built in O(sn)-time. Table 1 summarizes
the computational cost of the main steps of the proposed
approach.

Each critical loop γ := f−1(f(pi)) of a saddle vertex with
index i can be abstracted as the ordered list E := {(ek, tk)}k,

(a) (b)

(c) (d)

Figure 11: From (a) to (d): stability of the saddle iso-contouring and
computation of the Reeb graph with respect to an increasing noise
on the surface shape.

where e := (jk, jk+1) is an edge of the input triangula-
tion intersected by γ (i.e., f(pjk) < f(pi) < f(pjk+1) or
f(pjk+1) < f(pi) < f(pjk)) and tk, tk ∈ [0, 1], is the param-
eter that identifies the intersection point tkpjk +(1−tk)pjk+1
between ek and γ. Since the computation of E , the slicing
of the input surface, and the count of the connected com-
ponents uses only the mesh connectivity, equipped with the
function values at the mesh vertices, the overall scheme is
independent of the geometry of M. Finally, the position of
the vertices is used only to compute and visualize the iso-
contours of f from M and the embedding of the Reeb graph.
Figure 11 shows the stability of the saddle iso-contouring
and the computation of the Reeb graph with respect to a
different noise of the surface shape.

4.2 Degrees of freedom

The proposed method does not assume that the critical
points of f are ordered in a specific manner; on the con-
trary, previous work usually requires a global sorting step
of the function values at the mesh vertices and/or at the
critical points.

If we are interested in the hierarchy of the segmented sur-
faces, then several reordering criteria of the critical values

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12: (a-g) Adjacency graphs of a scalar function on the torus
with m = 3 (resp., M = 3, s = 6) minima (resp., maxima, saddles).
(h) Shape decomposition and Reeb graph.

Table 1: The table shows the computational cost of the main steps
of the proposed framework, where n (resp., s and rk) is the number
of vertices (resp., saddle points and shells at the iteration k) of M.

Task At each iterat. k Overall
Critical point classif. O(n) –
Saddle iso-contouring O(n) O(sn)

Adjacency graph O(rk) O(sn)
Reeb graph – O(sn)

are possible. A simple choice is to increasingly (or decreas-
ingly) reorder the function values only at saddle points; this
step requires O(s log s)-time and provides a hierarchy which
follows the variation of f on M. Alternatively, we sort the
saddle points according to their persistency value; as pro-
posed in [5], critical points are paired by visiting M with
respect to the increasing reorder of the values of f and the
importance weight associated to the pair (pi,pj) is mea-
sured as the persistence of pi, pj , that is, |f(pi) − f(pj)|.
Given a threshold ε > 0 we can also consider only the sad-
dle points whose persistency value is grater than ε and use
the corresponding iso-contours to build the Reeb graph. In
this way, we prune the Reeb graph by eliminating clustered
saddle points and irrelevant topological features before their
processing. Other examples are shown in Figure 12 and 13.

4.3 Extension to time-depending functions

We note that our approach easily handles time-depending
functions ft : M → R; in fact, the 1-star of each vertex is
computed once and used to classify the critical points of ft

in linear time, for each time value t. Then, the computation
of the iso-contours and the extraction of the Reeb graph
of (M, ft) follows the procedure previously discussed. An

(a) (b)

(c) (d)

Figure 13: Shape segmentation, iso-contours at saddle points, and
Reeb graph of a surface of genus (a-b) one and (c-d) three.

example is shown in Figure 14.

5 Future work

The common approach for computing the Reeb graph of a
scalar function f : M → R, defined on a surface M, is
to trace the iso-contour of each regular vertex of f . This
choice makes the computational cost of sweeping techniques
proportional to the number of input vertices. By working
directly with the critical points, we proposed an algorithm
whose computational cost O(sn) depends only on the com-
plexity of f in terms of the number s (resp., n) of the sad-
dle points (resp., vertices of M). In all those cases where
s < log n and it is not necessary to provide a complete coding
of all the surface vertices in the Reeb graph, the computa-
tional cost of the proposed algorithm is lower than the cost
of the state-of-the-art techniques. Finally, the assumption
that s is lower than log n is commonly fulfilled (e.g., f is
a harmonic function or a Laplacian eigenfunction) and can
be induced by simplifying clustered critical points or highly
noisy scalar functions [5]. As future work, we plan to extend
the proposed approach to computing the Reeb graph of 3D
scalar function by studying the adjacency relations and the
topology (i.e., genus, number of shells) of the volumes in-
between the iso-surfaces of two consecutive critical function
values.

Acknowledgments Special thanks are given to the anony-
mous reviewers for their comments and suggestions. This
work has been partially supported by the FP6 IST
AIM@SHAPE NoE.

References

[1] M. Attene, S. Biasotti, and M. Spagnuolo. Shape under-
standing by contour-driven retiling. The Visual Computer,
19(2-3):127–138, 2003.

[2] T. Banchoff. Critical points and curvature for embedded
polyhedra. Journal of Differential Geometry, 1:245–256,
1967.

[3] S. Biasotti. Computational Topology Methods for Shape
Modelling Applications. PhD thesis, Università degli Studi
di Genova, May 2004.

[4] S. Biasotti, S. Marini, M. Mortara, G. Patanè, M. Spagnuolo,
and B. Falcidieno. 3D shape matching through topological
structures. In DGCI, pages 194–203, 2003.

[5] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pas-
cucci. A topological hierarchy for functions on triangulated

f1 f1: (1, 1, 2) f2: (4, 4, 8) f3: (4, 3, 7) f4: (3, 3, 6) f5: (3, 3, 6) f5

Figure 14: Iso-contours and Reeb graphs of a time-depending scalar function at different time steps. Each row also shows the number (m, M, s)
of m (resp., M , s) minima (resp., maxima, saddle points).

surfaces. IEEE Transactions on Visualization and Computer
Graphics, 10(4):385–396, 2004.

[6] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees
in all dimensions. Comput. Geom. Theory Appl., 24(2):75–
94, 2003.

[7] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and
optimal output-sensitive construction of contour trees using
monotone paths. Comput. Geom. Theory Appl., 30(2):165–
195, 2005.

[8] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natara-
jan, and V. Pascucci. Loops in Reeb graphs of 2-manifolds.
Discrete Comput. Geom., 32(2):231–244, 2004.

[9] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit
fairing of irregular meshes using diffusion and curvature flow.
In ACM SIGGRAPH 1999, pages 317–324, 1999.

[10] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C.
Hart. Spectral surface quadrangulation. ACM SIGGRAPH
2006, pages 1057–1066, 2006.

[11] A. Elad and R. Kimmel. On bending invariant signatures
for surfaces. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(10):1285–1295, 2003.

[12] M. S. Floater and K. Hormann. Surface parameterization:
a tutorial and survey. In Advances in Multiresolution for
Geometric Modelling, pages 157–186. 2005.

[13] A. Fomenko and T. L. Kunii. Topological Modelling for Vi-
sualization. Springer Verlag, 1997.

[14] R. Gal and D. Cohen-Or. Salient geometric features for par-
tial shape matching and similarity. ACM Transactions on
Graphics, 25(1):130–150, 2006.

[15] R. Gal, A. Shamir, and D. Cohen-Or. Pose-oblivious shape
signature. IEEE Transactions on Visualization and Com-
puter Graphics, 13(2):261–271, 2007.

[16] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii.
Topology matching for fully automatic similarity estimation
of 3D shapes. In ACM SIGGRAPH 2001, pages 203–212,
2001.

[17] F. Lazarus and A. Verroust. Level set diagrams of polyhe-
dral objects. In Proc. of the Symp. on Solid Modeling and
Applications, pages 130–140. ACM, 1999.

[18] B. T. Messmer and H. Bunke. A new algorithm for error-
tolerant subgraph isomorphism detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
20(5):493–504, 1998.

[19] J. Milnor. Morse Theory, volume 51 of Annals of mathemat-
ics studies. Princeton University Press, 1963.

[20] M. Mortara and G. Patanè. Shape-covering for skele-
ton extraction. International Journal of Shape Modelling,
8(2):245–252, 2002.

[21] M. Mortara, G. Patanè, M. Spagnuolo, B. Falcidieno, and
J. Rossignac. Blowing bubbles for multi-scale analysis and
decomposition of triangle meshes. Algorithmica, 38(1):227–
248, 2004.

[22] X. Ni, M. Garland, and J. C. Hart. Fair morse functions
for extracting the topological structure of a surface mesh. In
ACM SIGGRAPH 2004, pages 613–622, 2004.

[23] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. Multi-
resolution computation and presentation of contour trees. In
IASTED Conference on Visualization, Imaging, and Image
Processing, pages 452–290, 2004.

[24] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas.
Robust on-line computation of Reeb graphs: simplicity and
speed. In ACM SIGGRAPH 2007, pages 58.1–58.9, 2007.

[25] G. Patanè, M. Spagnuolo, and B. Falcidieno. Para-graph:
graph-based parameterization of triangle meshes with ar-
bitrary genus. Computer Graphics Forum, 23(4):783–797,
2004.

[26] G. Patanè, M. Spagnuolo, and B. Falcidieno. Families of cut-
graphs for bordered meshes with arbitrary genus. Graphical
Models, 69(2):119–138, 2007.

[27] G. Patanè, M. Spagnuolo, and B. Falcidieno. Topological
generators and cut-graphs of arbitrary triangle meshes. In
Proc. of Shape Modeling and Applications, pages 113–122,
2007.

[28] U. Pinkall and K. Polthier. Computing discrete minimal
surfaces and their conjugates. Experimental Mathematics,
2(1):15–36, 1993.

[29] G. Reeb. Sur les points singuliers d’une forme de pfaff
completement integrable ou d’une fonction numerique. In
Comptes Rendu Acad. Sciences, pages 847–849. Sciences
Park, 1946.

[30] M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-Beltrami
spectra as Shape-DNA of surfaces and solids. Computer-
Aided Design, 38(4):342–366, 2006.

[31] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosian. Surface
coding based on Morse theory. IEEE Computer Graphics
and Applications, 11:66–78, 1991.

[32] D. Steiner and A. Fischer. Cutting 3D freeform objects
with genus-n into single boundary surfaces using topologi-
cal graphs. In Proc. of the Symp. on Solid Modeling and
Applications, pages 336–343, 2002.

[33] S. Takahashi, Y. Shinagawa, and T. L. Kunii. A feature-
based approach for smooth surfaces. In Proc. of the Symp.
on Solid Modeling and Applications, pages 97–110. ACM,
1997.

[34] B. Vallet and B. Levy. Manifold harmonics. To appear in
EUROGRAPHICS, 2008.

[35] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and
D. Schikore. Contour trees and small seed sets for isosurface
traversal. In Proc. of the Symposium on Computational ge-
ometry, pages 212–220. ACM, 1997.

[36] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder. Remov-
ing excess topology from isosurfaces. ACM Transactions on
Graphics, 23(2):190–208, 2004.

[37] T. Zaharia and F. J. Preteux. 3D-shape-based retrieval
within the MPEG-7 framework. In Nonlinear Image Pro-
cessing and Pattern Analysis, volume 4304, pages 133–145,
2001.

[38] E. Zhang, K. Mischaikow, and G. Turk. Feature-based sur-
face parameterization and texture mapping. ACM Transac-
tions on Graphics, 24(1):1–27, 2005.

