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Abstract

In this paper we propose a method for the automatic ex-
traction and annotation of the animation control skeleton of
virtual humans, which relies on an a-priori knowledge of
the human anatomy. The method is based on a segmenta-
tion of the virtual human shape into semantically meaning-
ful features, like arms or legs, and on an automatic location
and labeling of joints of the control skeleton. The method
is particularly relevant for computer animation where the
process still largely relies on manual tasks, and especially
for virtual characters built on real scanned data. Several
examples will show the results obtained with our approach.

1 Introduction

The control skeleton is the major structural model which

defines and drives the animation of virtual characters. From

an abstract point of view, it is a directed acyclic graph, and

more precisely a tree, whose arcs correspond to body seg-

ments and whose nodes locate the joints among the body

parts. The animation of virtual characters is obtained by

defining a mapping between the movement of the control

skeleton and the resulting movement and deformation of the

3D body surface associated to the skeleton. Several meth-

ods exist to enrich the animation of a virtual character; they

are based on the control skeleton and levels of sophistica-

tion in the deformation model (e.g., surface skinning). We

refer the reader to [7] for a survey on the topic. The main ad-

vantage of skeleton-based animation is that high-resolution

meshes can be animated by a motion computation that ap-

plies to the simpler skeleton structure, where the root node

handles the global transformation and provides an initial

frame for the sequence of transformations to be applied to

the other nodes and segments.

The two main steps in the animation pipeline are the de-
sign of the skeleton and the surface skinning or mapping. In

the first step, the animator has to design the skeleton of the

input shape, that is, construct a hierarchy of labeled joints

which can be animated using key-frames or pre-recorded

sequences from motion capture. In the second step, in order

to obtain a successful skeleton-driven deformation, the an-

imator has to deliver an appropriate attachment of the skin,

i.e. the surface mesh, to the underlying skeleton in order to

transmit the appropriate deformation to the various surface

segments during the animation. Intermediate data structures

could also be used to mimic the presence of muscles. These

two steps are typically done with manual interactions, using

professional software [2] which allows to define the corre-

spondence between patches of the body surface and seg-

ments of the control skeleton. This process is particularly

tedious, especially when the model to be articulated is given

only as a boundary representation (e.g., an acquired body

surface). Few attempts have been proposed to automatically

generate the articulated skeleton from a 3D surface mesh.

Generally speaking, they rely on the computation of some

kind of geometric skeleton, derived by shape segmentation

or other skeletonization techniques. The main difficulty is

to extract the control skeleton from the geometric skeleton,

particularly when the topology of the articulated skeleton

is predefined, as for virtual humans whose control skeleton

has to adhere to the H-ANIM standard [1].

In this paper, we want to push forward the idea that better

results can be obtained by taking into account the seman-

tics of the shape at the various stages of the process. The

first observation is that methods for automatic extraction of

the skeleton are based either on geometric transformation
(e.g., the medial axis transform) or on geometric segmenta-
tion (e.g., the fuzzy clustering technique), which do not con-

sider the semantics that the shape segments should portray.

In the virtual character domain, indeed, the relevant shape

segments are those corresponding to natural segments, such

as arms or legs, and none of the traditional geometric seg-

mentation methods is devised to detect these features [5]. In

our approach, we exploit the results of a shape segmentation

method that is tailored to extract and annotate human body



parts. The second observation is that the a-priori knowl-

edge about the shape domain can be exploited to better tune

the joint location: reasoning on the functional meaning and

anatomy of the physical joints, it is possible to deduce joint

re-location rules which can be used to optimize the position

of the automatically extracted joints. In our approach, we

have experimented that the shape variations correspond to

areas where skeletal joints occur. In particular, a curvature-

based analysis of the shape at different scales is exploited

to infer the location of the physical joints and to drive the

definition of additional spinal joints on the control skeleton.

Overview and contribution The main contribution of the

paper is the exploitation of knowledge and semantic infor-

mation in the process of control skeleton extraction. In par-

ticular, a shape annotation process is effectively used as an

automatic pre-processing of the control skeleton definition,

either automatic or manual. To the best of our knowledge,

the extraction and adaptation of the control skeleton driven

by local semantics-based reasoning is the first attempt in

the field and its main expected advantage is to have a di-

rect mapping of the skin to the skeleton. Our approach is

constituted of two main steps:

• semantic shape annotation: based on a decomposition

of the human body surface presented in [13], we de-

rive a set of semantic annotation rules to classify each

segments with respect to a set of body parts;

• control skeleton extraction: the segmentation and an-

notation results are combined with a multi-scale curva-

ture analysis, which is applied to body parts, in order to

detect the location of joints using the a-priori knowl-

edge on human anatomy to select the best candidates.

The shape segmentation method, called Plumber, has

been firstly presented in [13] and further specialized in [11].

In this paper, the rules for automatically annotating the seg-

mentation in the domain of virtual humans are presented.

The method is able to handle real 3D input data for variable

body shapes in terms of corpulence, postures, or age. The

multi-scale curvature analysis, used at the second stage, is

based on the method called Tailor presented in [12]. Here,

we discuss on the experimental study that allowed us to de-

rive rules for detecting and adjusting joints in the segmented

body surface. Obviously, since we deal here with seman-

tic features that inherently lack of a precise mathematical

formulation, we have to accept a level of heuristics in the

definition of the rules and methods for extracting the skele-

ton. Nonetheless, the shape segmentation and the curvature

classification are based on sound mathematical definitions

and provide a rich workbench of tools for processing hu-

man body models.

The paper is organized as follows. In Section 2, we

present an overview of previous work in the field and ex-

plain the difficulty to obtain satisfying results. In Section 3,

we briefly sketch the segmentation algorithm and the mor-

phological analysis (detailed in [13] and [12]), that are

exploited in our approach. Then, the core of our methodolo-

ogy, i.e. the annotation, the skeleton extraction and refine-

ment, is detailed in Section 4. Finally in Section 5 and 6, we

demonstrate our algorithm on representative scanned bod-

ies. The body data were obtained from a full 3D body scan-

ner and they exhibit different genders, morphologies and

acquisition postures in order to establish the efficiency and

robustness of the method.

2 Previous work on segmentation and ab-
straction of 3D shapes and virtual charac-
ters.

In the following paragraphs, we briefly summarize the

main categories of methods to segment and extract a skele-

ton of arbitrary shapes. The first ones aim at providing a

compact representation of a 3D surface that allows to re-

trieve an approximation of the original shape. The second

ones generate segmentations for animation.

Skeleton extraction as a shape analysis process. Most

of these approaches are based on the Medial Axis Trans-

form (MAT, for short): here, the skeleton is defined as the

union of the centers of the maximal interior spheres which

approximate the input surface. Even though the MAT pro-

vides a short as well as a skeletal similar representation of a

3D shape, it is very sensitive to noise and produces complex

skeletons for animation purpose. A Modified MAT, called

Power Crust [4], has been proposed to reduce this sensibil-

ity, but the final skeleton remains very complex to be han-

dled when dealing with real data. Another notable exam-

ple of topology-driven skeleton is the Reeb graph [15], [8],

which codes the topology of a given shape M through

the study of the evolution of the iso-contours of a map-

ping function defined on M. In particular, the Reeb graph

provides a segmentation of the shape into slices and the

branches of the graph identify connected components of the

surface; however, the segmentation is computationally ex-

pensive and does not offer a simple control over the scale at

which the shape is analyzed.

Shape segmentation for animation. Differently from

previous approaches, which give an accurate skeleton to re-

trieve back the original 3D shape, other methods identify

primitives to explicitly animate the shape. The extracted

segmentation is not necessarily an exact simplification of

the shape, but allows to animate the model. Teichmann et
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Figure 1. (a) Vertex labeling as described in
Table 1; in particular concave (b) and saddle-
like (c) configurations. On the arm, each
sphere having two intersection curves deter-
mines a limb vertex (d,e).

al. [16] first use the MAT for retrieving the skeleton of an-

imation. From any closed polygonal mesh, they extract a

simplified and cleaned MAT with manual intervention to

select the main joints on this MAT. The use of a simplified

MAT as a control skeleton has been also studied in [19],

but did not offer the same simplicity of use because of the

skeleton complexity. It is also difficult to use this kind of

methods in a standard animation pipeline. In [10], [9], the

shape segmentation is used for skeleton driven animation;

however, the original input mesh is synthetic and relatively

simple. In a different context, vision-based modeling and

tracking, the authors of [6] propose spines to represent the

shape and topology of 3D objects with a branching axial

structure in order to track the limbs motion of moving artic-

ulated creatures from videos.

Hybrid approaches. Mixing geometric algorithms tends

to increase the robustness and some of the presented ap-

proaches are quite successful in providing rough skeletons

for simple shapes [16, 18, 10]. One of these recent ap-

proaches [18] provides sufficiently clean skeletons for ani-

mation, by connecting “domain control points” obtained us-

ing geometry shrinking with radial basis functions. These

links are made by using Snakes, which are also difficult and

non-intuitive to tune. It is also more difficult to label and

identify joints in this type of skeleton.

Existing methods start from a given 3D shape and

mainly extract the skeletal structure solely based on the sur-

face properties. The main drawback is that the topology and

geometry of the skeleton can not be pre-defined. For Virtual

Humans, and particularly for animating Virtual Humans,

the expected skeleton must satisfy certain constraints to be

directly usable for animation, i.e. it has to adhere to a refer-

ence skeleton such as H-ANIM. We also have requirements

on the way the skeleton must be placed with respect to the

skin surface. Precisely recovering the reference structure is

mandatory in order to further apply animation algorithms

(skinning, motion control, motion capture, ...) that rely on

the assumption that the skin is appropriately attached to the

Table 1. The main morphological labels
among those described in [12].

Feature Type Color �∩ Description

Tip Red 1 Sharp, convex

Pit Blue 1 Sharp, concave

Mount Orange 1 Rounded, convex

Dip Cyan 1 Rounded, concave

Blend Pink 1 Blend

Limb Yellow 2 Cylindrical

Joint Brown 2 Conic

Split Green more –

human skeleton. Our objective is therefore to use segmen-

tation algorithms in conjunction with a set of semantic rules

based on the knowledge of the skeleton structure and on the

human anatomy in order to systematically extract the ex-

pected virtual human skeleton from a single 3D body shape.

Mortara et al. [11] have shown that multi-scale shape

analysis is appropriate for studying and segmenting human

body shapes into semantic meaningful components, and

they also expose that an implicit skeleton may be extracted.

In this paper we define additional rules and processes for

precisely controlling the skeleton extraction in order to

match the pre-defined structure and constraints.

3 The Tailor and Plumber methods

The Tailor method [12] classifies the vertices of a 3D
surface represented by a triangle mesh M according to geo-

metric and morphological descriptors evaluated on neigh-

borhoods of increasing size. The set of neighborhoods as-

sociated to each vertex v is defined by a set of spheres

{S(v, r)}r, centered at v, and whose radii {r} represent the

scales at which the shape is analyzed. Chosen a scale r, we

consider the surface region containing v and delimited by

the intersection γ between M and S(v, r); we discard other

regions of intersection between the sphere and the mesh that

might occur but do not contain v. The number of connected

components of γ gives a qualitative characterization of the

shape in a neighborhood of each vertex, and the evolution

of the length ratio of the boundary components of γ with

respect to the radius of the spheres is used to compute geo-

metric attributes (curvature, concavity/convexity, etc...) to

detect specific features such as sharp protrusions or wells,

mounts or dips, blends or branching parts (see Figure 1 and

Table 1).

Starting from the above-mentioned vertex classification,

Plumber defines a shape decomposition into connected

components that are either tube features, identified by re-



Figure 2. From left to right, pipeline of the proposed approach. The segmentation and morphological
analysis phases (in the grey boxes) are already published in [12, 13]. The other steps constitute the
original contributions of the paper.

gions which can be described as generalized cylinders

(e.g., handle-like and protrusion-like features, together with

their concave counterparts), and blob regions identified by

patches which connect tubular features. The tube construc-

tion process starts from Limb vertices located by Tailor as

candidate seed regions of tubular features.

Plumber [14] works in a multi-scale setting (i.e., using a

fine-to-coarse strategy), starting with the extraction of small

tubes first; the set of radii can be automatically set by uni-

formly sampling the interval between the minimum edge

length and the diagonal of the bounding box of M.

4 The proposed approach

The animation control skeleton is a specialized graph

with a pre-defined topology that approximates the human

skeleton. In our study, we use H-ANIM as reference de-

scription of the control skeleton, which is a widely adopted

and standardized model of control skeleton included also in

MPEG-4 [1]. Our objective is therefore twofold: we have

to extract a skeletal structure from the 3D scan data of the

body shape that

• precisely reproduces the topology of the H-ANIM

skeleton and

• accurately locates the nodes at the natural joints inside

the 3D shape.

A method for automatically locating the joints must cope

with the different form, structure and functionality of body

parts as well as with the different postures in which the data

have been acquired. Geometric extraction algorithms work

under the hypothesis that for tubular shaped parts, like arms

or legs, it is reasonable to consider the joint positions on

the centerline of the corresponding shape segments. Other

joints, as for example vertebra, are located at positions that

are only roughly approximated by the trunk centerline. It is

straightforward that different strategies must be applied to

detect joints, depending on the body part they belong to.

Figure 2 depicts the whole pipeline of control skeleton

extraction. The body model is firstly segmented into tubu-

lar and non-tubular shaped components using the Plumber
tool. For each tubular part, the approximated axis and cross

section are computed; they will be used as a first skeleton

draft on which candidate joints will be projected. Then, as

we will detail in Section 4.2, each segment is automatically

annotated with a semantic label that indicates which body

part it represents. Our experiments have shown that saddle-

like or blend local features nicely detect variations on limbs

and therefore are useful to detect elbow or keen joints, while

small concave regions locate joint useful for the spinal part

of the control skeleton. Therefore, each annotated segment

is processed using the Tailor algorithm to locate the candi-

date skeletal joints (e.g., spine for the torso, knee and ankle

for legs.). The candidate locations are processed further in

order to construct the spine curve and to define the final

joints. Finally the corresponding control skeleton is con-

structed. Figure 3 shows the H-ANIM structure and high-

lights in red the 16 joints and 5 tip joints that our method

is able to detect from 3D scan data. The various steps are

discussed in details in the following Sections.

4.1 Semantic annotation of human body
models

Decomposing an object into parts having a precise mor-

phological meaning, such as tubular parts, has a deep impact

in the classification of articulated shapes. Such a morpho-



(a) (b)

Figure 3. (a) Detectable set of joints on a
scanned body, and their h-anim correspon-
dences: in red detectable joints, in blue tip
joints. (b) General spinal shape and de-
tectable joints in green.

logical segmentation is expressive enough to allow an auto-

matic annotation of components with semantic content, at

least in well specified knowledge domains like that of hu-

man body models. In fact, while geometric attributes may

vary from a model to another, the human body structure is

well defined and the basic components are predominantly

tubular (e.g., arms, legs, fingers, neck). Therefore, we

implemented an automatic semantic annotator for human

body parts based on the segmentation provided by Plumber.

In the following, we are going to describe the algo-

rithm and show the results of the segmentation and an-

notation on real scan data. The annotation can be de-

fined as a function α : S → L from the set of seg-

ments S into the set of labels L. In our case, the seg-

ments are those given by Plumber and they may be ei-

ther tubular or non-tubular parts; the labels are defined in

order to make the annotation exhaustive with respect to

the segmentation and the set of labels is chosen as L :=
{trunk, arm, hand, palm,finger, fingertip, leg, foot, neck,
head}.

In general, some of the labels in S might not appear

in the annotation because they have not been identified by

the segmentation due to the posture, the poor quality of the

scans, or the selection of level of details which do not en-

able to characterize small features such as fingers. In this

last case, the hand segment will be labeled as hand, dis-

carding the palm, fingers, and fingertip labels. Conversely,

fingers, fingertips, and palm will be instantiated at the ex-

pense of hand, unless we deduce afterwards that adjacent

regions labeled as palm, finger, and fingertip form a hand.

The annotator exploits the geometric attributes of parts,

Figure 4. Graphical user interface: on the left,
shape segmentation with the corresponding
annotation, on the right.

computed during the segmentation phase. For tubes, these

are the axis length and the maximum, minimum and aver-

age length of cross sections, while for blobs the volume is

considered. We point out that a tube segment has always

two adjacent segments, while a blob segment may be ad-

jacent to one or more tubes; in particular, we will call cap
a blob segment adjacent to one tube exactly. Given a seg-

mented shape, we define as shape-graph the graph whose

nodes are the identified segments and the arcs code the ad-

jacency among them. The adjacency relations among seg-

ments coded in the shape graph and the a-priory knowledge

on human anatomy are exploited through annotation rules

of parts, based on geometric attributes of segments. The an-

notation rules come from the following considerations and

imply a sequence of applications:

• the trunk is the blob segment of maximum volume 1.

• If the trunk is adjacent to 4 tubes, those are legs and

arms; if it is adjacent to 5 tubes, also the neck has been

segmented.

• If the neck has been segmented, it is the tube adjacent

to the trunk, also adjacent to a cap, having minimum

length; the head is the cap adjacent to the neck.

• Among the four tubes adjacent to the trunk, not yet

labeled (i.e. except the neck, if segmented) arms
are those having maximum length, maximum section

(greater value of maximum section length) and adja-

cent to a cap, that will be labeled as foot.

• The two tubes adjacent to the trunk still unlabeled will

be annotated as arms.

1This statement always holds: if the model is undersegmented, the

trunk segment will have the maximum volume, at the expense of the arms,

legs, and neck.



(a) (b) (c) (d)

Figure 5. (a-b) Shape segmentation of a human body in different postures; the presence of the seat
stops the identification of the legs at the knees. (c) The Klaus’ beret is recognized as tubular feature
by Plumber but cannot be associated to a label in L; (d) segmentation of a seated virtual human.
Comparing (a-b) with (d), we conclude that the segmentation provided by Plumber is not affected by
the posture and the annotation is right if we suppose that the input shape does not contain artificial
(e.g., seat, beret) and self-intersecting parts.

• If a cap is adjacent to an arm, it will be labeled as hand;

otherwise, the body segment adjacent to an arm (be-

yond the trunk) will be annotated as palm, and its ad-

jacent tubes as fingers. Finally, caps adjacent to fingers
will be annotated as fingertips.

Results Once the model is annotated, a mouse click over

a segment will cause the corresponding label to be printed

on the screen. In Figure 4, the graphical user interface of

the whole work-flow (morphological analysis, segmenta-

tion, and annotation) is shown, side by side with the com-

mand shell where the main computation steps are reported

by the program. Also, the output of some queries on seg-

ment labeling by the user are displayed. In all our test cases,

Plumber segments at least legs and arms, whatever the pos-

ture of the model, provided that limbs do not lay over other

body parts or objects (for instance in Figure 5(a)). In par-

ticular, as shown in Figure 5(b) Plumber generates the leg

segments despite the presence of a seat, but they circum-

stantially stop at the knees. The misleading/inaccurate geo-

metric parameters of the legs put to risk the whole annota-

tion results. We point out that the seat itself raises difficulty,

while just the seated posture do not affect the annotation

(see Figure 5(d)). Thus, we admit arms and legs in general

position but we require that they do not touch other body

parts; moreover, for getting a correct annotation we require

that no other tubular shaped object touches the body. In

this case (e.g., a man holding a stick, or santa Klaus beret

as shown in Figure 5(c)), the segmentation would generate

tubular parts that do not correspond to any body part. If the

requirements just described are met, all the segments will be

labeled. To conclude, we remark that the automatic seman-

tic annotation gave the right labeling for 16 models over the

19 in our repository, that is, all except the three shown in

Figure 5(a-c) and previously discarded.

4.2 Control skeleton extraction

The segmentation step has identified and annotated the

main anatomical parts of the human body: arms, legs, and

neck considered as tubular features, and also the torso and

extremities, like the tip of hands and feet, and the head. In

the second stage, each annotated segment is processed with

a multi-scale curvature analysis in order to detect candidate

regions for joint locations. Tailor provides the tools for the

identification of curvature variation zones across scales. In

particular, regions whose vertices have a uniform label of

type blends or dips in the Tailor terminology (see Section 3)

are identified as candidate regions which contain the joints

of that segment. For each of these areas, its centroid is de-

fined as the mean of triangles barycenters.

The next step consists in the analysis of the variation of

the centroid locations across scales. We compute centroids

across the different scales and filter them according to their

position invariance. In particular, we filter across all the

scales according to the standard deviation to remove unde-

sired centroids, if they exist, which most probably do not

correspond to joints. From our experiments on the average

centroids displacement across scales, we noticed that they

are approximately located at a same position considering a

set of bodies, regardless of fatness, size and morphology,

which confirm our hypothesis (see Figure 6). Moreover, by

taking into account only the blends and concave features we

have noticed that irrelevant feature points are easily filtered



Figure 6. Detected areas on a scanned body
(front and back) at all scales; in the most right
picture, the centroids corresponding to these
regions are located by the circles and they
globally correspond to the anatomical joints.

out. It is important to underline that the detection of joint

areas is consistent and stable with respect to different cor-

pulence and posture variations (see Figure 7), and therefore

the initial assumptions seem to be confirmed by the experi-

ments.

The proposed method attempts firstly to detect varia-

tions on limbs, therefore, in this first phase we are inter-

ested in detecting stable blend features (see Figure 1(b-c))

which are identified by one curve of intersection between

the sphere and the surface, at the considered scale. Sec-

ondly, the methods targets the detection of the spine, char-

acterized by features on the back labeled as dip, and which

correspond to one curve of concave intersection between

the sphere and the surface (see Figure 1(b)). This general

processing framework has been specialized to the different

type of body segments, as detailed in the following para-

graphs.

Case of limbs Each limb part contains only two joints:

elbow and wrist for the arms, and ankle and knee for the

leg. For each of these parts, we get a certain amount of cen-

troids. Since we know in advance the number of joints we

will get, and since we pre-filtered the centroids to avoid out-

liers, a K-mean algorithm is applied to obtain the desired

number of areas for each part. We thus obtain two distinct

areas of centroids. For each area, we classify the most prob-

able couple of centroids that could be the expected joints. If

centroids are detected at different scales with the smallest

Figure 7. Detected areas on a scanned body
with a different morphology: similar features
are identified.

displacement between scales, they corresponds to the most

plausible candidate to be selected as the joint. Then, for

each K-mean area, we obtain the most plausible couple of

centroids, and we take simply the average as the joint po-

sition. The remaining centroids are re-projected onto the

nearest point of the centerline tubes and give finally the ex-

act location of each joint. It is important to notice this joint

detection is independent from the posture of the arms and

legs.

Case of the torso: knowledge-based extraction of the
spine As previously discussed, it is not anatomically re-

alistic to consider the spine as the centerline of the torso

as it lays, anatomically, directly under the skin of the back.

Also in this case, the multi-scale approach is able to detect

relevant feature points, but we process them in a different

way in order to extract skeleton joints from the torso. The

joints detection on the torso is the key of our method. It in-

duces the way we connect the different joints with the limbs,

as it also detects the branching parts between the torso and

the limbs. It means that we are able to retrieve the pelvis

and the shoulders based on simple anatomic rules on a stan-

dard torso posture: when we normally stand up, our spinal

has a naturally four curvatures where some of the maxima

indicate the locations of arms and hip (see Figure 3(b)).

Depending on the human corpulence fatness and back

curvature, not all the spine is detected. We typically obtain

the areas where the spinal curvature is maximum and the

main direction of the spinal is simply the average of their

main axis. We then extrapolate the lowest and the highest

point along this axis on the torso part. At this stage, we need

to know the nearest points to this axis, which give the points



Figure 8. Three scanned bodies with their
tube centerlines and associated spine.

of the mesh that constitute the spinal (Ls the list of points

on the scanned mesh belonging to the spinal and Is the cor-

responding indexed points). To obtain a uniform represen-

tation, we re-sample this set of points using a Catmull-Rom

spline in 2D, using only the length and the depth dimen-

sions. This step is important, because we need a continu-

ous and uniform representation in order to evaluate the two

main curvatures of the spine whose maxima correspond to

the basin and the height of the shoulder joints.

Then, we take the center of each area that is cut at this

height to locate the joint position inside the limbs for the

hips and the shoulders. We then have to find the last three

maxima on this curve. The first one corresponds to arms

height and the last one to basin’s height. The middle one is

the global minimum of the depth spinal. Usually, we have a

dorsal curvature amplitude bigger than the sacral one. But

certain pathologies induce the opposite. The curvature am-

plitude stays in all cases similar, except for major diseases.

So as to avoid noisy data and to look for the right maxima,

we cut the curve into three main areas according to the stan-

dard depth deviation. Then,we cut the curve into three main

areas according to the standard depth deviation in order to

find the right maximum in each range and to locate precisely

the branching joints (see Figure 9).

Case of tips and neck As discussed in Section 3 not all

relevant body parts are precisely detected as tubular fea-

tures: this is the case of tips and neck. The scanned data

are in fact usually not very precise to guarantee a good re-

construction of hand or foot fingers, that often are glued

together in the reconstructed mesh. Therefore it is not pos-

sible to segment each finger independently. The method we

follow in this case is simply to compute the mean for each

of these parts in order to locate the extremity joints and add

them to the joint hierarchy in the last step. For the skull base

joint, we compute its position the same way and reproject it

to the nearest point of the corresponding Plumber tube.

Figure 9. Detected areas on the body back at
one of the level range in cyan (protrusion ar-
eas); detection of joint height and final posi-
tion of the joints on the torso using the re-
sampled 2D Catmull-Rom spline in red, and
deduction of shoulders and hips joints loca-
tions

Skeleton integrity check and refinement To build the fi-

nal skeleton, and annotate it properly, we simply start from

the spine and link the hips and shoulders to the nearest joints

of the corresponding arms and legs using the Euclidean dis-

tance. Since we know which joints have to be retrieved,

the labeling is quite immediate. The first resulting skeleton

is not necessary symmetric and may contain incoherencies.

In order to control and correct these incoherencies as much

as possible, we use anatomic proportions based on statisti-

cal data from [17, 3]. These data show that the proportions

between the long bones of the human skeleton are very sta-

ble with a negligible variation: the ratio fibula/femur and

ulna/humerus are respectively called crural and brachial in-

dex. Their values are respectively equal to 81% and 78%
with a standard deviation at 1%. However these statistics re-

flect the proportions between the real bones’ length, and not

between the control segments’ lengths. There is a slight dif-

ference between the control skeleton (located in the shape

center for members) and the real anatomical one: the pro-

portions need to be adapted to our type of skeleton. The

ratios increase a bit and it can be proved that they remain

less than 100%. In mean, we estimate them respectively at

95% and 90%. If the two segments of symmetric bones are

not fitting the human proportions, we then apply the mean

proportions to each segments to correct the skeleton.

5 Results and discussion

We first compare our results with the expected simplified

H-ANIM hierarchy. Figure 11 shows that we are able to de-

tect 16 joints, plus 5 tip joints which are approximations of

the concerned parts;the corresponding expected joints into

the H-ANIM hierarchy are depicted in Figure 3(a).



Figure 10. Detected set of projected joints
onto tube centerlines on three scanned bod-
ies.

All our models are about 20K vertices closed mesh. The

computational time is the following on a P4 3GHz with 1

GB RAM: about 1 minute to process the first segmentation,

then around 10 seconds for each tubular members and for

each scale of the range and 1 minute for the rest of the

analysis and to build the final skeleton. Thus, it takes 5
minutes of pure computation to achieve the overall process

for one body. We present below three different scanned

bodies with different morphotypes: first with the detected

tubular center-lines (see Figure 8) and spinal curve, then

the detected joints re-projected onto the tubes centerlines

(see Figure 10 and finally the corrected one according to

statistical proportions (see Figure 11). Some of the joint lo-

cations are not precise: such as the knees or wrists, because

small variations are not at the same exact location than big-

ger ones. Once we re-project the detected joint onto the

curves, the error is less important. Another kind of inac-

curacy occurs when we get very sharp variation induced by

muscles for instance (like the third scanned model) just near

bigger variations. In that case, the joint is considered upper

than it should be. A robust way to correct the joints posi-

tion is to check body proportions. This error disappear to-

tally once we check crural and brachial indices and choose

the most plausible joints. Our method has been successfully

applied to real body scans; the multi-scale approach allows

to compensate irregularities of this kind the data. Moreover,

the approach is basically robust with respect to variations in

morphologies and postures.

• Morphologies: The detection works with various mor-

phologies as demonstrated in the results. We expect

that it also globally works with various ages (children

or elderly) as the basic hypothesis should also apply.

This should anyway be tested as fat and muscles vol-

umes and repartition are varying with age. Moreover,

the spine detection may need to be adapted to specific

ranges of ages. The spine curvature assumption may

Figure 11. Optimal set of joints on the three
scanned bodies, according to statistical pro-
portions.

not exactly apply for children or elderly people. Fu-

ture works will include the evaluation of the method

for different range ages. If required the knowledge-

based detection should be adapted and tuned according

to specific anatomical configurations.

• Postures: for the spine detection, our assumption about

the curvature of the spine curve implies that the candi-

date for scanning should be standing up. Regarding

the limbs, we have shown that the detection relies on

shape analysis tools that are robust with respect to limb

posture. Therefore we can state that there are not any

strong constraints about the posture as long as the can-

didate is standing (which is the usual posture inside a

3D body scanner).

6 Conclusions

The skeleton extraction mainly remains a tedious inter-

active task that greatly relies on the skills and experience of

designers. The rules of thumb that designers are usually ap-

plying consists of locating each joint approximately at the

level (height) of the joint (relying on visual clues provided

by the 3D surface of the body shape) and in the center of

the 3D surface section. Our approach basically implements

these rules and the resulting joints are closely located to the

ones that a designer would initially select. However, we

must state that once designers have approximately located

the joints using the previous rules, they need to slightly tune

and adjust their locations until the 3D skinning is satisfying

and accurate. Therefore, our approach provides designers

with an initial skeleton configuration that they may further

need to tune according to the skinning. We presented in this

paper the extracted skeletons on different scanned meshes.

We have shown that exploiting a semantic driven segmen-

tation it is possible to automatically generate a 16 joints

skeleton for animation for 3D human scans, regardless to

the body posture.

With respect to the current implementation, significant



improvements are desirable, either by increasing algorithm

robustness or speed. The joint location is dependent from

the segmentation into body parts; moreover, it can only han-

dle the same amount of joints on separate limbs. When

processing a very corpulent body having for instance one

arm much more bent than the other, it may happens that the

arm segments extension differ much despite the volumet-

ric symmetry of the limbs. This is because the tube radius

increases notably in correspondence of the bending zone.

Therefore two symmetric tubular parts may not contain the

same amount of joints. In this scenario, we have no way

to improve the detection locally, but when we rebuild the

whole skeleton, we can decide if we missed or built one

more joint.

Another notable improvement can also be achieved in

the scale range choice for the multi-scale analysis. The

interesting scales seem to be always located around a fixed

scale and, with further analysis, it could be possible to re-

fine the range so that we may divide the computational time

of this step by two. Another alternative is to automatically

set the step range to divide into less scales. Nevertheless,

we believe that this methodology can be extended if we

adapt the pre-defined joints hierarchy. We believe also

that realistic creatures could be processed: for instance

when scanning figurines for 3D video games. Future works

include the extension of the method to various ages (from

children to elderly people). A next stage would also consist

in attaching the 3D surface/skin to the extracted skeleton

in order to control the skinning and animate the 3D body

shape according to control skeleton motions.
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