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Abstract

In the recent past, different application fields have
showed an increasing interest in shape description oriented
to recognition and similarity issues. Beyond the applica-
tion aims, the capability of handling details separating them
from building elements, the invariance to a set of geomet-
ric transformations, the uniqueness and stability to noise
represent fundamental properties of each proposed model.
This paper defines an affine-invariant skeletal representa-
tion; starting from global features of a 3D shape, located
by curvature properties, a Reeb graph is defined using the
topological distance as quotient function. If the meshisuni-
form, this Reeb graph can be also viewed as a geometric
skeleton defined by the barycenters of pseudo-geodesic cir-
cles sequentially expanded from all the feature points.

1 Introduction

Shape description is the basis for recognition and is one
of the key problems for similarity (matching) and recogni-
tion issues. To this end, proposed methods should satisfy
the fundamental criteria of invariance, uniqueness and sta-
bility to noise and computation. Another important property
of a powerful shape descriptor is the capability of handling
details, separating them from more essential shape charac-
teristics; this can be achieved representing an object as a hi-
erarchy of shape elements at different scales. This approach
guarantees noise stability, which is achieved by ignoring the
lower levels of the hierarchy, and allows top-down opera-
tions on the input object. It is not trivial to define a general
shape descriptor which fulfils all these requirements at the
same time, and ad hoc solutions have been proposed for spe-
cific applications. The Medial Axis Transformation (MAT)
[4] is probably the best-known method for characterizing
shapes, and it provides an integrated approach for the char-
acterization and compression of shape information. The
medial axis, together with the radius function, i.e. the dis-
tance from each point on the axis to the nearest one on the

boundary, defines the MAT. The power of this representa-
tion is that the surface boundary and its MAT are equivalent
and one can be computed from the other: therefore, a two-
dimensional object is transformed into a one-dimensional
graph-like structure. As described in [14], approximated
versions of the MAT have been proposed to decompose a
polygonal shape into a configuration of branches and pro-
trusions. The medial axis is independent from the object po-
sition in space (i.e. it is affine- invariant), but it is not stable
to small perturbations of the shape boundary. Furthermore,
the medial axis of a 3D shape is more complex and contains
not only lines but also surface elements. Another funda-
mental approach for the definition of a skeletal representa-
tion of surfaces is represented by the theory of Reeb graphs.
Given a manifold, Reeb graphs can be constructed by study-
ing the configuration of the critical points of a generic con-
tinuous function defined on the first one [16, 18] (see Fig-
ure 1(b)). In most applications the height function is chosen
even if it has the main drawback of producing graphs which
are dependent on the orientation of the object in space. To
overcome these problems other maps, as the geodesic dis-
tance, can be chosen for the skeleton construction. These
problems show that, as underlined in [20], a coordinate-
independent shape description, able to distinguish between
meaningful and detail features still lacks. Moreover, tools
suggested to construct such a representation are related to
geometric and topological information, e.g. curvature and
geodesics, on the input surface. Starting from considera-
tions mentioned above, we present an affine-invariant skele-
tal representation of triangular meshes which will be gener-
alized to manifolds. The proposed (Reeb) graph is defined
using the topological distance from global features, defined
by curvature extrema, as chosen function on the input man-
ifold.

2 Review of related work

The aim of skeleton extraction is to select and to convert
shape characteristics and properties of the surface into
a compact representation. One of the best known shape



Figure 1. (a) Medial Axis Transform, (b) Reeb
graph with respect to the height function.

descriptors is the Medial Axis Transformation, defined by
Blum in [4] for 2D shapes and extended to the 3D case by
Sherbrooke [17]. In the planar case, the Medial axis of a
shape is a graph defined as the locus of the centers of all
the maximal discs contained inside the shape and having at
least two points of contact with its boundary (see Figure
1(a)). It is known that this representation is independent
of the object position in space (invariance), but has the
negative side that tiny perturbations of the boundary pro-
duce extra edges in the graph, with no distinction between
main and secondary features. Another method which is
commonly used for shape description, and strictly related
to our method, is the Reeb graph [1, 3, 16] whose definition
is based on the Morse theory [13, 18]. First of all, Morse
theory states that the topology of a given manifold M
can be studied analyzing the critical points of any smooth
function h : M — R. Typically, the map h represents
the height function (Vp = (z,y,2) € R3, h(z,y,2) = 2)
whose critical points, i.e. peaks, pits and passes, are useful
for shape description because they locate its basic elements.
Starting from Morse theory, it is possible to define the Reeb
graph [16] by coding the evolution of the ”contours” on M
defined by h as described by the following definition.

Definition. Let h : M +— R be a real valued func-
tion on a compact manifold M. The Reeb graph of M with
respect to & is the quotient space of M x R defined by
the equivalence relation ~, given by (p, h(p)) ~ (g, h(q)),
p,q € M, ifand only if

* h(p) = hq),

e p, g are in the same connected component of

h=H(h(p))-

Therefore, the Reeb graph can be represented as a 1-
dimensional skeleton, provided by a continuous scalar func-
tion on M, which changes choosing different maps for the
definition of ~.

Even if different extensions of this theory [1, 3, 18] have
been proposed, the Reeb graph suffers of at least two prob-
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Figure 2. (a) Level sets and skeletal curves
computed on the horse point set, as shown
in [12], (b) result obtained with our algorithm.

lems. Firstly, it depends on the chosen map h and, sec-
ondly, there is no distinction between large and small fea-
tures due to the fact that the same connected components
are collapsed into the same class without distinction of their
sizes. Because the height function A is not affine-invariant,
in [10] a new map, based on the geodesic distance from a
source point p € M, has been defined to overcome this
problem. The determination of p is not simple; the solu-
tion proposed by the authors is to define, for every z € M,
h(z) as the sum of all geodesic distances g(z, p) from z to
p wWhen p varies on the input manifold. A similar approach
to that described here deals with the construction of center-
lines from unorganized point sets [12], later developed for
polyhedral objects [11]. With particular reference to [11], a
1-dimensional axial structure for genus 0 triangular meshes
is presented, which is essentially a tree made of the "aver-
age points” associated with the connected components of
the level sets of a given function; in particular, the shortest
distance to a source point is chosen. To automatically select
the source point an heuristic is used which seems to work
well on elongated shapes (like the horse ears in Figure 2.
Anyway the choice of only one source point determines a
privileged “slicing direction”, which can lead to the loss of
some features if the object is not tubular shaped (see Fig-
ure 2). We use here a similar approach, which selects at
first all the meaningful features as ”source points” to start
the skeleton construction, fact that prevents from loss of de-
sired information.

3 Overview of the technique and contribu-
tions

The proposed construction of the skeleton of a 3D object
represented by a triangular mesh is made in 3 steps.

1. A gaussian curvature estimation is performed on the
mesh and several zones of high curvature, which iden-
tify the surface features, are extracted (see Figure
3(a)). Since curvature is an intrinsic characteristic of



the surface, a curvature-based skeleton is coordinate
independent. The curvature estimations is performed
using a novel technique, which is described in [7]. The
idea is to detect points which identify global” curva-
ture features and to create a hierarchy of such elements
related to their scale.

2. Starting simultaneously from the centroid of the high
curvature regions, topological rings consisting of ver-
tices which have the same topological distance (mini-
mum number of edges) from the nearest centroid are
computed, growing of one edge at a time, until the
whole surface is covered (see Figure 3(b)).

3. The graph is constructed. The centroids of high curva-
ture regions become the terminal nodes of the graph,
while points of split or collision between topologi-
cal rings during the expansion phase individuate the
branching nodes. The centroids of the topological
rings between two nodes are connected to form an edge
(see Figure 3(c)).

Figure 3. Main steps of the algorithm: (a) cur-
vature evaluation, (b) topological expansion,
(c) graph construction.

The definition of gaussian curvature for meshes is not
trivial because they are parameterized by piecewise contin-
uous functions whose second derivatives are, almost every-
where, null. Among the different approaches which have
been used to overcome the lack of a standard definition
two main algorithms can be identified. The first one [9]
([19]) derives its discrete approximation at each vertex ap-
plying its continuous definition (i.e. estimating the tensor
curvature) to a least-square paraboloid fitting its neighbor-
ing vertices. The second one [5] is based on the Laplace-
Beltrami operator and the Gauss map guaranteing the valid-
ity of differential properties such as area minimization and
mean curvature flow [8].

In spite of the introduction of a multi-resolution struc-
ture, all the previous approaches are usually sensitive to
noise and small undulations requiring smoothness condi-
tions on the input mesh. Furthermore, the smoothing pro-
cess used to get stable and uniform curvature estimations in-
troduces a deficiency in the magnitude evaluation and, con-
sequently, difficulties in the accurate distinction between
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Figure 4. Approximated gaussian curvature
estimation on the rabbit: red regions indicate
high-curvature areas. In (b) a gaussian noise
has been added to input points.

planar patches and curved surfaces with low curvature.
Conversely, we need a classification of points which takes
into account both curvature extrema and the related shape
size in order to identify global features of maximal curva-
ture which represent the input of our algorithm for shape
abstraction. Curvature evaluation can also be defined by an
angle associated with a closed path on the surface, i.e. the
angle excess [15], defined as the total turning that a refer-
ence pointer undergoes when carried around a closed path.
Angle excess is additive and the following theorem applies:
for any topological disk on an arbitrary surface, the angle
excess around the boundary is equal to the total curvature
of the interior. It follows that a region on an arbitrary sur-
face can be divided into pieces, and the sum of the excess
angles of all these subparts of the subdivision gives the total
curvature of the region, which precisely equals to the excess
around the region boundary. These considerations represent
the starting point of the framework used for curvature eval-
uation on triangular meshes [7]. In Figure 4 (a), an example
is shown where red areas identify high-curvature features;
an example of the algorithm robustness to noise is given in
Figure 4(b). The paper is organized as follows: steps 2 and
3 are described in detail in section 4. The mathematical def-
inition of the graph as a quotient space is given in section 5,
while its properties and a comparison with the Reeb graph
are provided in section 6. Future work and results are pre-
sented in the last section.

4 Graph construction

Any object can be seen as essentially made of a main
body with several protrusions: for instance, the overall
shape of a man consists of the torso from which head, arms
and legs depart. From this point of view, the main features
of a 3D surface are its protrusions, and these ones are de-
tectable by mean of gaussian curvature: at a protrusion ex-



tremity there must be a high curvature region. Following
these considerations, we are going to construct the skeleton
of a 3D surface as a curvature-based graph which, starting
from high curvature regions, grows inside the shape towards
the main body according to the mutual adjacency between
features. High curvature regions are extracted as described
in [7]; we will show in this section how the developed algo-
rithm constructs the graph edges and determines the branch-
ing nodes according to a topological expansion method. We
represent a triangular mesh S as the pair S := {V, F'} where
V = {pi = (:c,-,yi,z,-) o= 1,...,N} is a list of v
vertices and F' is an abstract simplicial complex [6] which
contains the adjacency information whose subsets come in
three types: vertices {i}, edges {i,5} and faces {i, j, k}.
The topology in S is defined by F' in the sense that we can
construct the 1-neighborhood structure as

(NG):i=1,...,N} 1)

with

N@) :={je{1,...,N}:(i,j) € F}.
The previous relation assigns to each vertex 4 the set of its
1-neighborhood, that is, the vertices j such that (¢, 7) is an
edge of the triangulation F'. The size (radius) of the neigh-
borhood structure can be recursively enlarged by defining a
n-neighborhood (see Figure 5) as

%(()l(z:) . ,Ek; = Uf:1 N (i),
N'(i) = N (), @
N™(i) := NY(N"1(3)), n > 2.

Therefore, given a vertex ¢ € {1,..., N} we can define
its local neighborhood system as

B; .= {T(N*(i)) : k=0,...}
with

T(N*()) == U

1,p,geN*(7),{l,p,q}EF

T(,p,q)

and T'(I,p,q) the triangle with vertices I,p,q. Finally,
we refer to the border of T(Nk(4)), i.e. T (N*(i)), as
topological ring of order k for i.

From the previous definitions the following conditions
hold: Vi € {1,...,N}

e v; e T(N¥(i)), k=0,...
e T(N*(i)) CT(N*'(3)), k=0,...
e if S is connected, then

S= |J TW*3)).

k=1,...

topological ring of order 2
for the vertex |

1-neighborhood of i

topological ring of
order 1 for the vertex i

@) (b)

Figure 5. Local neighborhood system on a
triangular mesh: topological ring of order 1
(@), and (b) of order 2 for 4.

4.1 Topological expansion

Once computed the approximated gaussian curvature for
the mesh vertices, for each high curvature region R; a rep-
resentative vertex p; is selected (for a more pleasant visual-
ization p; is chosen as the centroid of R; and computed as
the farthest vertex from the region boundary; anyway, we
underline that from the topological point of view the choice
of p; is irrelevant). Each point in the set {p;} represents
the terminal nodes of the graph. Starting from {p;}, we
can construct a skeleton of the object following a topolog-
ical expansion approach, based on the idea of topological
rings growing (expanding) from representative vertices and
traversing the mesh, until rings split, collide with others, or
can be expanded no more. Starting at the same time from
all the representative vertices, the topological rings expand
one step at a time until:

e rings belonging to different representative vertices col-
lide: a union occurs,

e aring intersects itself: a split occurs,
e aring can be expanded no more: the ring terminates.

Union. When expanding a topological ring we meet a
vertex already belonging to the topological ring (of the same
order) of another representative vertex, the two rings inter-
sect. From the point of view of the surface, this means that
we have found a branching zone of the object where two dis-
tinct protrusions depart (see Figure 6). In the same way, the
corresponding skeleton will have a branch with two edges
joining. The rings of the representative vertices, which de-
termined the collision, can be expanded no more and the
construction of their ring sets is completed. A new topolog-
ical ring is created for the intersection vertex; in this case,
unlike what happens for representative vertices, the firstly
coded topological ring is the union of the two rings collid-

ing.
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Figure 6. (a) Example of union, and split (b).

Split. It can also happen that a ring intersects itself in
one or more of its vertices; this is the situation of rings
expanding near handles, through holes of the object or
where a new protrusion starts. In this case, the intersecting
ring splits in two parts and its expansion stops in favor of
two new rings derived from the split (see Figure 6(b)).

Termination. After a finite number of steps, the split-
ting and joining rings will cover the whole surface. A ring
terminates when the next step would produce a non valid
boundary, that is, with less than 3 vertices. When a ring
terminates, it means that there were no more significant
features in the object. Therefore, branches of the skeleton
will be not produced in the case of a ring which terminates
without having a union or a split.

When all the ring sets of the representative vertices and
the ones created during their expansion are terminated, the
algorithm can draw the skeleton as the adjacency graph en-
coded during the expansion phase (see Figure 7):

e each representative vertex gives a terminal node,

e each union or split of topological rings gives a branch-
ing node,

o the topological rings, belonging to the ring set of a
node, give an arc which goes out from that node *. In
particular, an arc is drawn joining the center of mass of
all its topological rings.

5 Graph asquotient space

In this section we are concerned with the formulation of
the graph construction for triangular meshes and manifolds
demonstrating that it is the quotient space of the input object
surface S with respect to an equivalence relation ~. The
proposed construction of G as S/ ~ enables to:

INote that when a split or a union occurs, there can be two arcs going
off the same node: in this case, two distinct ring sets are created for the
same node. Therefore, each ring set always defines one node and one arc.

Figure 7. Example of skeleton on the rabbit.

e verify that G only depends on the topology of S and
on a finite set of representative points {p1,...,pn} in
S of high-curvature values,

e verify that G is affine-invariant; this characteristic rep-
resents one of the main properties of G and of this the-
ory not shared by other approaches,

e extract the information on G (e.g. compactness, con-
nectivity, etc.) starting from S and exploiting the prop-
erties of the quotient space.

5.1 Graph definition for triangular meshes

Selected a point p; in S, we introduce the function

fpi:S—=N
T+ fp,(z) :=min{k:z € T(N*(i))}

, i.e., fp, () is the minimal topological distance between p;
and x. We can extend in a simple way the previous function
to a finite set of vertices {p1,...,p,} as

f:S=N
z = f(z) = ming=1,..,n{fp. ()}

, .e., f assigns to z its minimal topological distance with
respect to more than one vertex (n = 1, f = fp,).

Starting from f and S we are able to construct the rela-
tion ~ as follows (see Figure 8):

pg€S, p~qiff fTH )N (@) #0. ()

First of all, (3) implies that if f(p) # f(q) thenp # g; in
fact, we have

YUY N (@) = T {fIn{f@)}) = 0.

In other words, necessary condition for p ~ ¢ is that
f(») = f(q), thatis, p and ¢ have the same topological dis-
tance from the selected set of vertices {p1,...,pn}. Fur-
thermore, two points p and ¢ are in relation with respect
to ~ if and only if they have non-disjoint topological rings
(ie. f71(f(p) N F1(f(g)) # 0) of the same order (i.e.
f(p) = (q)).

Now we want to investigate the properties of ~:
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Figure 8. Topological rings on a manifold.

o reflexive: Vp € S,p ~ p,
e symmetric: Vp,q € S,p~q=q~p,

e transitive: Vp,q,7 € S,p ~ q,q ~r # p ~ r. Infact,
the intersection of sets is not transitive on P(X) :=
{X:X CS}L

From the previous relations it follows that
G=85/~={z]:2 €S}
where the class of z is represented by the set
o] = {y€S:y~a}
Furthermore, the following conditions hold:
e [z] # 0,z € S (i.e. every class is not empty),

e z~y=[z]N[y] #0 (i.e. two vertices which satisfy
the relation ~ have non-empty intersection. Generally,
the inverse condition is not true because ~ is not tran-
sitive.),

® U,cslz] = S (i.e. {[z]}ses represents a cover of S).
5.2 Graph definition for manifolds

We want to extend the previous model to a compact man-
ifold without boundary embedded in R.2 with the Euclidean
topology underlining the general application of our model
for the extraction of an affine-invariant shape description. In
the following we review definitions and concepts on topol-
ogy introducing the basic notions and referring to [6] for
further readings. The structure of the section reflects that
of the previous one facilitating the parallelism between the
continuous case study and the discrete one which has been
used for the implementation of the algorithm.

Introduced a topological space (X, 7), we define as

e induced topology of X in S C X: the topology 7s
defined as

s :={ANS: A€}

e local base of p in X: the family B, consisting of
neighborhoods of the point p such that for every neigh-
borhood U of pthereisasetV € B, suchthatV C U,

e boundary of A C X: 9A := AN X — A4, that is, the
intersection between the closure of the set A and of its
complement (X — A) in X.

Given a point p € S we define, for every R > 0, the
open ball of center p and radius R as

B(p,R) :={z € R®: ||z — p|l» < R}

and with U(p, R) the connected component of p in S N
B(p, R). Therefore, we can associate to each pointp € S
the family of neighborhoods {U (p, R)} r>o. From the pre-
vious relations we can derive the following properties which
will be used for constructing the graph of S:

o {U(p,R)}r>0 is a local base of the space S at the
point p with respect to the topology 7g induced by
the Euclidean topology = in S. This property fol-
lows using the definition of 75 and the fact that the
set {B(p, R)}r>o is a local base of p in (R?, 7).

e R < Ry = U(p,R1) C U(p,R»): infact, Ry <
Ry = B(p,R1) C B(p,R:) = SN B(p,R:) C
SN B(p, Ry) = the connected component of pin SN
B(p, Ry) is a subset of that in S N B(p, R»).

Introduced the counterparts of the concepts defined for
the triangular mesh, we can extend the previous functions
as described in the following. Chosen a point p € S, we
define the map

rREoR
z = fp(z) = |lp— |2

and then, fixed a set of points P := {py, ...
construct its extension to the set P as
f:S—=R
z = f(z) = ming=1,...n{fp. ()}

7pn} CcS,we

The function f is continuous because it is the composi-
tion of the continuous maps

(fors---sTpn) : SR
= (fp1(x)7---7fpn(x))
and
min: R» - R
(@1, -, Tp) = ming—y . {z;:}.



Therefore, in analogy with the previous section, we can
introduce the relation ~ as: p,q € S, p ~ ¢ if and only
if we can choose R > 0 such that f(p) = f(¢) and p, ¢
belong to the same connected component of f ~1(f(p)). In
other words, necessary and sufficient condition for p ~ ¢
is that p and ¢ have the same topological distance from the
selected set of points {p1,...,p.} and they belong to the
connected component of the pre-image of their (common)
value f(p). The relation ~ is symmetric, reflexive and tran-
sitive because it is the intersection of two equivalence re-
lations (i.e. function equality and membership to the same
connected component). Using the properties of the quo-
tient space, we deduce that ~ induces in .S a decomposition
into a family of non-empty, disjoint topological classes. If
the input surface S is compact/connected then G is com-
pact/connected; anyway, the canonical projection

m:S—>G=5/~
z > [z]

is continuous with respect to the quotient space topology
(i.e. A C Gisopenifr=1(A)isopenin (S, 75)).

6 Propertiesand comparison

In this section we want to present the main properties and
distinctions of the graph G with respect to the Reeb graph
constructed by using the height function. This comparison
is evaluated considering the topological properties of both
graphs, as quotient spaces, and a set of experimental results
which underline the main drawbacks of the previous theory
for shape abstraction.

The complexity of the proposed graph, in terms of num-
ber of nodes and branches, depends on the shape of the input
object and on the number of points {p;}?_, which we have
selected using the curvature estimation criterion. The con-
struction of G is guided, in the first step, by the topology of
the mesh through the connectivity relations in F' and, sec-
ondly, by the geometry V' which influences the chosen rep-
resentative point p for its equivalence class [p]. If the mesh
is uniform, i.e. all the edges have nearly the same length,
the topological rings are more balanced and the resulting
skeleton is smoother; otherwise, it is possible to pre-process
the mesh applying a regularization and/or a refinement al-
gorithm [2] to get better results (see Figure 9). Our graph
is affine-invariant (translation, rotation, scaling and shear)
because the chosen function f does not rely either on a lo-
cal coordinate system or on surface embeddings as it hap-
pens, for example, using the height function. On the other
hand, if the curvature evaluation process does not recognize
at least one feature region (e.g. surfaces with constant cur-
vature values such as spheres and torii), our approach is not
useful to extract a description of the shape; on the contrary,
the height function always guarantees to get a result. The

(© (d)

Figure 9. (a) Topological rings on the input,
(b) on the refined mesh, (c) skeleton of (a), (d)
skeleton of (b).

graph construction is also allowed for 3D-shapes of genus
greater than zero (see Figure 9). An interesting question is:
does a relation between them exist? In other words, which
hypothesis on S ensures that the related quotient spaces are
homeomorphic?

(b)

Figure 10. (a) Characterization of the pot in
maximum, minimum and saddle areas [1], (b)
Reeb graph with respect to the height func-
tion.

7 Conclusionsand futureworks

The starting point of this work is represented by previ-
ous approaches on shape abstraction attempting to propose
possible extensions of the Reeb graph which is the core of
our model. The presented graph is the first step toward the
construction of a complete framework for shape abstraction,
analysis and comparison. One of the most involving appli-
cations that we foresee and we want to approach is shape



matching. The affine-invariant structure of this graph and its
description as quotient space enable to convert the match-
ing problem between two graphs G and H into a multiple
framework whose solution is achieved by defining a match-
ing function which is a homeomorphism between G and H
plus a penalty function which takes into account the geom-
etry of the objects associated to them.
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