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Abstract

The heat di↵usion distance and kernel have gained a central role in geometry processing and shape analysis. This paper addresses
a novel discretization and spectrum-free computation of the di↵usion kernel and distance on a 3D shape P represented as a triangle
mesh or a point set. After rewriting di↵erent discretizations of the Laplace-Beltrami operator in a unified way and using an intrinsic
scalar product on the space of functions on P, we derive a shape-intrinsic heat kernel matrix, together with the corresponding
di↵usion distances. Then, we propose an e�cient computation of the heat distance and kernel through the solution of a set of sparse
linear systems. In this way, we bypass the evaluation of the Laplacian spectrum, the selection of a specific subset of eigenpairs, and
the use of multi-resolutive prolongation operators. The comparison with previous work highlights the main features of the proposed
approach in terms of smoothness, stability to shape discretization, approximation accuracy, and computational cost.

Keywords: Spectral methods, heat di↵usion equation, heat di↵usion kernel and distance, Chebyshev approximation.

1. Introduction

The heat di↵usion kernel and distance on manifolds play
a central role in several applications such as spectral cluster-
ing, data classification, dimensionality reduction, kernel princi-
pal component analysis, and visualization. Among their main
properties, we mention the intrinsic and multi-scale defini-
tion with respect to the input shape, the invariance to isome-
tries, the shape-awareness, the robustness to noise and tes-
sellation. The heat di↵usion distance and kernel have been
successfully applied to shape segmentation [10] and compar-
ison [6, 14, 20, 23, 33]; to the computation of the gradient
of discrete maps [38]; and to the multi-scale approximation
of functions [24]. The di↵usion distance and kernel also play
a central role in several applications, such as dimensionality
reduction with spectral embeddings [2, 39]; data visualiza-
tion [2, 16, 27, 34], representation [7, 30, 40], and classifica-
tion [22, 29, 32] through auto-di↵usion maps [14] and di↵usion
distances [5, 9, 17].

Overview and contribution. This paper addresses the dis-
cretization and computation of the heat di↵usion kernel and dis-
tance on 3D shapes represented as triangle meshes or point sets.
For surfaces represented as triangle meshes or point sets, we
firstly rewrite the discrete Laplace-Beltrami operator in a uni-
fied way as L̃ := B�1L, where L is a symmetric, semi-positive
definite matrix and B is positive definite. For triangle meshes, L
is the Laplacian matrix with cotangent weights and B is the di-
agonal matrix of the Voronoi areas [11], or the FEM mass ma-
trix [26, 35], or the identity matrix [25]. For point sets, L is
the Gram matrix associated to the exponential kernel and B is
the identity matrix [3, 4] or the diagonal matrix of the Voronoi

areas [19]. Under these assumptions, L represents the L2 scalar
product on the space of 1-forms.

Successively, the di↵usion kernel and distance are discretized
with respect to the scalar product h f , giB := f

>Bg on the space
F (P) := { f : P! R, f := f (pi)n

i=1} of functions defined on P,
which is either a triangle mesh or a point set. Here, the sym-
metric, positive-definite matrix B is chosen in such a way
that the corresponding scalar product is intrinsic to the sur-
face underlying P and is adapted to its local sampling. Using
the B-scalar product, we derive the heat kernel Kt := XDtX>B,
Dt := diag(exp(��it))n

i=1, where X is the eigenvectors’ matrix
associated to the generalized eigenproblem LX = BX� and
� := diag(�i)n

i=1, 0  �i  �i+1, is the eigenvalue matrix. Verify-
ing that the heat kernel Kt is still the exponential exp(�tB�1L)
of the Laplacian matrix L̃ := B�1L, we motivate the inclusion
of the matrix B in the definition of the heat kernel and the im-
portance of the orthonormality of the Laplacian eigenvectors
with respect to h·, ·iB for the validity of the exponential repre-
sentation. Using the proposed discretization of the heat kernel
and the shape-intrinsic scalar product, we also derive the cor-
responding heat di↵usion distance, which are compared with
respect to previous work.

If the matrix B is lumped to the positive diagonal ma-
trix D, then the heat kernel Kt becomes equal to the dis-
cretization K?t := XDtX>D, which holds for Laplacians of type
L := D�1W [6, 23, 28, 33, 37]. In this case, W has the mask of
the mesh adjacency matrix and the diagonal entries of D are the
areas of the Voronoi regions associated to the points of P for
both the Voronoi-cot and Voronoi-exp Laplacian weights. In
previous work [14, 6, 23, 38, 33, 37], the Laplacian eigenvec-
tors used for the computation of the di↵usion distances on tri-
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angle meshes are orthonormal with respect to the scalar product
induced by the diagonal matrix D whose entries are the areas of
the Voronoi regions associated to the mesh vertices. The linear
FEM mass matrix B allows us to accurately encode the geome-
try of the input surface through the area of its triangles instead
of its Voronoi regions. In this way, the proposed discretization
of the heat kernel has also a higher robustness against topolog-
ical and scale changes, irregular sampling, and noise.

Then, we compute any discretization of the heat di↵usion
distance through the Chebyshev approximation [8, 15, 21] of
the weighted heat kernel matrix. In this case, the computation
of the di↵usion kernel and distance is achieved through the so-
lution of sparse linear systems and a sequence of matrix-vector
multiplications, without computing the Laplacian spectrum. To
this end, we consider the (r, r)-degree rational function that is
the best approximation of the exponential function with respect
to the `1 norm. According to [15, 36], the computation of the
heat distance is reduced to the solution of r sparse linear sys-
tems in O(rn) time with iterative solvers, such as the Jacobi,
Gauss-Seidel, and minimum residual methods [15]. The over-
all cost of the computation of the value Kt(pi,p j) = e

>
i Kte j at k

feature points varies from O(kn) to O(kn2), according to the
sparsity of the coe�cient matrix. The approximation accuracy
is lower than 10�r (e.g., r := 5, 7) and it can be further reduced
by slightly increasing the degree r of the rational Chebyshev
polynomial used for the spectrum-free computation.

As main contribution with respect to previous work, our ap-
proach is independent of the evaluation of the Laplacian spec-
trum, the selection of a specific subset of eigenpairs, and the
use of multiresolutive prolongation operators. To speed-up the
computation of the values of the heat di↵usion kernel and dis-
tances for several values of t, or between a large number of
points, it is su�cient to apply iterative solvers of linear sys-
tems or a pre-factorization of the coe�cient matrices. The pro-
posed algorithm is also robust with respect to irregular sampling
density, noise, mesh degeneracies; can be applied to di↵erent
Laplacian weights; and is free of user-defined parameters. On
the contrary, in previous work the resolution of the simplified
approximation of the input surface, on which the Laplacian ma-
trix is computed, and the number of Laplacian eigenpairs are
tuned according to the target approximation accuracy. Since
our approach works mainly with matrices, the evaluation of the
spectral distances is independent of the discretization of the in-
put surface as a triangle mesh or a point cloud.

Related work. In previous work, the computation of the Lapla-
cian spectrum is the main computational bottleneck for the eval-
uation of the heat di↵usion kernel and distance; in fact, it takes
from O(n) to O(n3) time, according to the sparsity of the Lapla-
cian matrix. Even though iterative solvers of sparse eigenprob-
lems reduce the computational cost to super linear time [35],
the computation of the whole spectrum is unfeasible. To over-
come this drawback, the solution to the heat equation and the
di↵usion distance are approximated as
(

Fk(t) =
Pk

i=1 exp(��it)hf, xiiBxi, (a)
d2(pi,p j) =

Pk
l=1 exp(��lt)|xl(pi) � xl(p j)|2, (b) (1)

where x j(pi) the ith component of the eigenvector x j and k is the
number of selected eigenpairs. Indeed, only a part of the Lapla-
cian spectrum is used to approximate the heat kernel and dis-
tances through a truncated sum, which involves the contribution
of the Laplacian eigenvectors related to the smaller eigenvalues.
In this case, the heat di↵usion distance and kernel can only be
approximated and not exactly evaluated. To overcome these
limitations of the partial spectral approximation of the heat dif-
fusion distance and make the computation faster, previous work
has also approximated the heat kernel by prolongating its val-
ues computed on a sub-sampling of the input shape [37], simi-
larly to the computation of di↵usion wavelets [9] through multi-
resolution decompositions. In all the previous approaches, the
number of eigenpairs selected for the approximation of the heat
di↵usion kernel is heuristically adapted to the temporal param-
eter t or selected by the user. A small value of t generally re-
quires the time-consuming computation of a large number of
eigenvectors, whose capability of encoding local shape features
depends on the mesh resolution used for the spectrum calcula-
tion. Furthermore, on point-sampled and non-manifold surfaces
the definition of multi-resolutive and prolongation operators is
generally ambiguous.

Paper organization. We introduce the proposed discretiza-
tion of the heat di↵usion kernel and distance (Sect. 2), their
spectrum-free computation (Sect. 3), and an overview of their
main properties (Sect. 4). Finally, we conclude the paper and
present future work (Sect. 5).

2. Discrete heat di↵usion equation and distances

The scale-based representation F :M ⇥ R+ ! R of the
map f :M! R, defined on a surface M, is the solution to
the heat di↵usion equation @tF(p, t) = ��F(p, t), F(·, t) = f ,
(p, t) 2M ⇥ R+, and it is written through the convolution op-
erator ? as

(
F(p, t) := kt(p, ·) ? h =

R
M kt(p,q)h(q)dq

kt(p,q) :=
P+1

i=1 exp(��it)�i(p)�i(q),

where kt is the heat di↵usion kernel and (�i, �i) are the eigen-
pairs of the Laplace-Beltrami operator; i.e., ��i = �i�i, i 2 N.

We discretize the heat di↵usion equation on the space
F (P) := { f : P! R, f := f (pi)n

i=1} of maps defined on P. If P
is the set of vertices of a triangle mesh, then the values of f
are extended from the surface vertices along the edges and on
the faces by using barycentric coordinates. If P is a point set,
then f is defined only on P. In F (P), we consider the scalar
product h f , giB := f

>Bg, induced by the symmetric, positive-
definite matrix B, where f := ( f (pi))n

i=1 and g := (g(pi))n
i=1 are

the arrays of function values. As discussed in [12? , 35], the
matrix B must be chosen in such a way that the correspond-
ing scalar product is intrinsic to the surface underlying P and
is adapted to its local sampling. For more details on the choice
of B, we refer the reader to Sect. 4.

Let us now consider the Laplacian spectrum {(�i, xi)}ni=1 of
the couple (L, B), which satisfies the generalized eigenproblem
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(a) Vor.-cot (b) FEM (c) FEM
k = 100 k = 100 k = 500

Figure 1: Level sets of the map Fk(t) in Eq. (1a), which approximates Ktei. The
discrete map ei takes value 1 at the anchor point (yellow dot) and 0 otherwise. In
this example, we have selected the (a) Voronoi-cot and (b,c) the FEM weights,
the same time parameter t, and k Laplacian eigenpairs.

Lxi = �iBxi, 0  �i  �i+1, and the orthonormality conditions
x

>
i Bx j = �i j, i, j = 1, . . . , n. These relations are rewritten in ma-

trix form as

LX = BX�, � := diag(�i)n
i=1, X>BX = I, (2)

where � is the diagonal matrix of the Laplacian eigenvalues and
X := [x1, . . . , xn] is the matrix of the eigenvectors.

Introducing the vector F(t) := (F(pi, t))n
i=1, the heat di↵usion

equation is discretized in F (P) as @tF(t) = �L̃F(t), F(0) = f.
Let us now express the function F(t) =

Pn
i=1 ↵i(t)xi in terms of

the eigensystem of (L, B), where ↵(t) := (↵i(t))n
i=1 is the un-

known vector. Using the identity f =
Pn

i=1hf, xiiBxi, the in-
vertibility of the matrix B, and the linear independence of
the Laplacian eigenvectors, each component ↵i(t) satisfies the
di↵erential equation ↵0i(t) + �i↵i(t) = 0, with boundary condi-
tion ↵i(0) = hf, xiiB. Then, the scale-based representation of
f : P! R is F(t) =

Pn
i=1 exp(��it)hf, xiiBxi and it is re-written

in matrix form as F(t) = Ktf, where the heat kernel matrix

Kt := XDtX>B, Dt := diag
�
exp(��it)

�n
i=1 , (3)

is self-adjoint with respect to the B-scalar product. Recalling
that the first eigenpair is (0, 1), Kt converges to the constant av-
eraging operator, as t ! +1; i.e., limt!+1 Ktf = (f>B1)1. Fi-
nally, the representation

Kt =(3) Xdiag
0
BBBBB@
+1X

k=0

(��it)k

k!

1
CCCCCA

n

i=1

X>B

=

+1X

k=0

(�t)k

k!
X�kX>B

=

+1X

k=0

(�tB�1L)k

k!
, (B�1L)k =(2) X�kX>B

= exp(�tB�1L)

(4)

of the heat kernel matrix as the exponential of the Laplacian ma-
trix with respect to time motivates the inclusion of the matrix B
in the heat kernel (3) and the importance of the orthogonality of
the Laplacian eigenvectors for the validity of (4).

Input surfaces

(a) (b)
Voronoi-cot di↵usion kernel

t := 0.01 t := 0.001

(c) k = 200 (d) k = 500 (e) k = 200 (f) k = 500
Linear FEM di↵usion kernel

t := 0.01 t := 0.001

(g) k = 200 (h) k = 500 (i) k = 200 (j) k = 500

Figure 2: Approximation the map F(t) = Ktei generated using k Laplacian
eigenfunctions in Eq. (1a), with (c-f) Voronoi-cot and (g-j) FEM weights on
a 3D shape with a (a) coarse and (b) fine sampling.

Heat di↵usion distances. Using the identity

K>t BKt =(2) BXD2tX>B = BK2t. (5)

and according to [9], let us introduce the di↵usion distance,
with respect to Kt and the B-scalar product, as

d2
B(pi,p j) : =

���Kt(pi, ·) � Kt(p j, ·)
���2

B

=
���Kt(ei � e j)

���2
B

= (ei � e j)>K>t BKt(ei � e j)
=(5) (ei � e j)>BXD2tX>B(ei � e j)

=

nX

l=1

exp(�2�lt)
���hxl, ei � e jiB

���2 .

(6)

Comparing this expression with the standard discretization of
the heat distance (1b), we get that (6) is achieved from (1b) by
replacing xk(pi) = e

>
i xk with e

>
i Bxk and rescaling the temporal

variable. However, Eq. (1b) does not take into account the
intrinsic B-scalar product, or its lumped approximation, thus
disregarding the underlying generalized eigenproblem.
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(a) t = 0.1 (b) t = 1

(c) t = 0.1 (d) t = 1

Figure 3: Level sets of the linear FEM di↵usion distance (6), computed using
the Chebyshev approximation (r := 7) in Eq. (9), from a source point (black
dot), with di↵erent values of t, on a (a,b) smooth and (c,d) noisy surface.

3. Computation of the discrete di↵usion kernel and dis-

tance

For the computation of the heat distance, previous work over-
comes the high computational cost for the evaluation of Lapla-
cian spectrum by considering only the contribution of a fixed
number of eigenpairs in Eq. (1b). This choice is motivated
by the exponential decay of the filter factor exp(��it), which
increases with �i and reduces the contribution of the corre-
sponding eigenvector to the di↵usion distance and kernel. We
now describe how the heat di↵usion distance and kernel are ap-
proximated through the Chebyshev approximation and without
computing the Laplacian spectrum; to this end, we reduce both
problems to evaluate the vector Ktf, for specific choices of f.

Computation of the heat di↵usion kernel and distances. For the
evaluation of Kt(pi,p j) = e

>
i Kte j, we firstly compute the vector

Ktei through the Chebyshev method; then, we consider its ith
component. Rewriting the heat distance (6) in terms of the ker-
nel Ht := BK2t as

d2
B(pi,p j) = kKteik2B � 2hKtei,Kte jiB + kKte jk2B

=(5) e

>
i BK2tei � 2e

>
i BK2te j + e

>
j BK2te j,

we get that d2
B(pi,p j) is evaluated by computing K2tel, K2te j,

which are then multiplied by e

>
i B or e

>
j B. Indeed, the entries

of the heat di↵usion kernel and the corresponding distances are
computed through the Chebyshev approximation and without
extracting the Laplacian spectrum. Finally, we notice that the
proposed computation of both the heat di↵usion kernel and dis-
tance is independent of the discretization of the input surface as
a triangle mesh or a point cloud.

Evaluation of Ktf through the Chebyshev approximation. To
evaluate F(t) := Ktf, for any f 2 Rn, we apply the Cheby-
shev method [8, 15, 21] to the weighted heat kernel. Using

(a) (b)

(c) (d)

Figure 4: (b-d) Level sets of the linear FEM di↵usion distances (6), com-
puted using the Chebyshev method (r := 7), from a source point (black dot)
on partially-sampled surfaces. The behavior of the level sets remains almost
unchanged and coherent with respect to the original shape in (a).

the relation (4), which expresses Kt as the exponential of the
weighted Laplacian matrix with respect to time, we compute the
(r, r)-degree rational function crr(x) := arr(x)/brr(x) that is the
best approximation of the exponential function with respect to
the `1 norm over the semi-axis [0,+1). According to [15, 36],
this function is crr(x) = ↵0 +

Pr
i=1 ↵i/(x � ✓i) and the exponen-

tial matrix is approximated by

exp(C) ⇡ ↵0I +
rX

i=1

↵i(C � ✓iI)�1. (7)

In this representation, the poles {✓i}ri=1 and the coe�cients
{↵i}ri=1 have been computed for r := 5, 7 [13]. For a general de-
gree r and a fixed value of t, the coe�cients of the rational ap-
proximation of the exponential function are computed using the
Padé method [15], which is implemented in standard numerical
software packages. Through Eq. (7), exp(C)f is approximated
as exp(C)f ⇡ ↵0f +

Pr
i=1 ↵i(C � ✓iI)�1

f; i.e., exp(C)f is the sum
of the solutions of r sparse linear systems

(C � ✓iI)gi = ↵if, i = 1, . . . , r. (8)

Since we cannot explicitly invert the matrix B and apply the
scheme to C := �tB�1L, we notice that each vector in Eq.
(8) solves the system (tB�1L + ✓iI)gi = �↵if if and only if
(tL + ✓iB)gi = �↵iBf. For any i = 1, . . . , r, gi is now calculated
as the solution of a sparse linear system and Ktf is recovered as

Ktf ⇡ ↵0f +

rX

i=1

gi = ↵0f �
rX

i=1

↵i(tL + ✓iB)�1Bf. (9)
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t = 1 t = 0.001

(a) ✏1 := kKtf � Fk(t)k1 (c) t = 0.1
t = 1 t = 0.001

(b) (d) t = 0.1

Figure 6: (a,b) `1 error (y-axis) ✏1 := kKtf � Fk(t)k1 between the Chebyshev approximation (r := 7) of F(t) = Ktei in Eq. (9) and the partial spectral representation
Fk(t) in Eq. (1a), computed on a (c) regularly and (d) irregularly sampled shape, with respect to a di↵erent number k (x-axis, k  103) of eigenpairs and values of t.

The solution gi is computed by an iterative solver, which ex-
ploits the sparsity of the coe�cient matrix (tL + ✓iB), without
pre-factorizing the matrices L and B. Among the main solvers,
we mention the Jacobi, Gauss-Seidel, and minimum residual
methods (minres) [15]. Our implementation uses the minres
procedure, which computes a minimum norm residual solution
to the input linear system, whose coe�cient matrix is symmet-
ric, large, and sparse but not necessarily positive definite. Then,
the overall cost of the computation of the value Kt(i, i) = e

>
i Ktei

at k feature points varies from O(kn) to O(kn2), according to
the sparsity of the coe�cient matrix. To speed-up the compu-
tation of the values of the heat di↵usion kernel and distances
for several values of t, or between a large number of points, it
is su�cient to solve the linear systems in Eq. (8) with iterative
methods or pre-factorizing the matrices (L, B) [15].

Approximation accuracy and numerical stability. Assuming
exact arithmetic, the `2 approximation error between exp(�tC)
and its rational approximation crr(tC) is lower than the uni-
form rational Chebyshev constant �rr [36]. Since this con-
stant is known, independent of t, and related to the degree of
the rational Chebyshev polynomial by the relation �rr ⇡ 10�r,
r := 7 provides an error lower than 10�7, which is satisfactory
for the approximation of Ktf on 3D shapes. If necessary, a
higher approximation accuracy is achieved by slightly increas-
ing the degree r of the Chebyshev rational polynomial. Ac-
cording to [21], the Chebyshev approximation of the matrix
exp(�tC) might be numerically unstable if ktCk2 becomes large.

From the upper bound ktB�1Lk2  t�max(L)��1
min(B), we get that

a well-conditioned mass matrix B guarantees that ktB�1Lk2 is
bounded. These considerations and our experiments confirm
that the Chebyshev method provides a good approximation ac-
curacy and numerical stability for the computation of the dis-
crete heat di↵usion kernel.

4. Results and discussion

In the following, we represent the Laplace-Beltrami operator
on triangle meshes and point sets in a unified way as L̃ := B�1L,
where B is a positive definite matrix and L is symmetric, semi-
positive definite. Then, we discuss the main features of the pro-
posed approach in terms of smoothness, stability to shape dis-
cretization, approximation accuracy, and computational cost.

Laplacian matrix for triangle and polygonal meshes. Assum-
ing that the input shape is discretized as a triangle mesh, whose
set of vertices is P := {pi}ni=1, the Laplacian matrix is defined
as L̃ := B�1L, where L is the Laplacian matrix with cotangent
weights and B is the diagonal matrix whose entries are the ar-
eas of the Voronoi regions of the mesh vertices (Voronoi-cot
weights) [11]. Alternatively, B is the FEM mass matrix (linear
FEM weights) [26, 35], which codes the variation of the tri-
angle areas. On polygonal meshes, we consider the Laplacian
discretization proposed in [1], which provides a generalization
of the Laplacian matrix with cot-weights to surface meshes with
non-planar, non-convex faces.
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(a)

(b)

Figure 5: (a) Variation of the `1 approximation error ✏1 (y-axis) between the
ground-truth di↵usion distances and its approximation with (blue line) k = 500
Laplacian eigenpairs (red line) and the Chebyshev approximation (r := 7), with
di↵erent values of t (x-axis). (b) Level sets of the di↵usion distance from a
source point (black dot) with di↵erent values of t.

Laplacian matrix for point sets. In [2, 3, 4], the Laplace-
Beltrami operator for a function f : P! R defined on a
point set P := {pi}ni=1, is discretized as the linear operator
(L f (pi))n

i=1 = Lf, where the Laplacian matrix is

L(i, j) :=
1

nt(4⇡t)3/2

8>><
>>:

exp
⇣
�kpi�p jk2

4t

⌘
i , j,

�Pk,i exp
⇣
�kpi�pkk2

4t

⌘
i = j

and f := ( f (pi))n
i=1 is the array of the f -values at P. We briefly

recall that Lf converges to � f , on P, as t ! 0+.
Recently [19], a new discretization of the Laplace-Beltrami

operator has been proposed using a finer approximation of
the local geometry of the surface at each point through its
Voronoi cell. More precisely, the Laplacian matrix is defined
as L̃ := B�1L, where the entries of the symmetric matrix L and
the diagonal matrix B are defined as follows

L(i, j) :=

8>><
>>:

1
4⇡t2 exp

✓
�kpi�p jk22

4t

◆
i , j,

�P j,i L(i, j) i = j,
B(i, i) = vi,

and vi is the area of the Voronoi cell associated to the point pi.
The Voronoi cell of pi is approximated by projecting the points
of a neighbor of pi on the estimated tangent plane toM at pi.
This discretization still converges to the Laplace-Beltrami op-
erator of the underlying manifold, as the sampling density in-
creases and t tends to zero.

Examples and discussion. For our tests, we consider the solu-
tion Ktei to the heat di↵usion process, whose initial condition

Figure 7: Conditioning number 2 (y-axis) of the matrices {(tL + ✓iB)}7i=1 in Eq.
(8), for several values the time parameter t; the indices of the coe�cients {✓i}7i=1
are reported on the x-axis.

takes value 1 at the anchor point pi and 0 otherwise. On ir-
regularly sampled data, the linear FEM heat kernel (Figs. 1, 2)
provides smooth level sets that are well-distributed around the
anchor point pi; on the contrary, the Voronoi-cot heat kernel is
more sensitive to the surface sampling. On noisy (Fig. 3) and
partially-sampled data (Figs 4), the analogous behavior of the
level sets and color maps also confirms the robustness of the
linear FEM heat distances.

Fig. 5 shows the `1 approximation error between the ground-
truth heat di↵usion distances from a source point and its ap-
proximation with k = 500 Laplacian eigenpairs and the Cheby-
shev approximation. While the approximation error of the dif-
fusion distance with the same number of Laplacian eigenpairs
decreases and becomes more sensible to local noise as t dimin-
ishes, the Chebyshev approximation provides a lower approxi-
mation error for any value of t. We have further analyzed the
di↵erent accuracy (Fig. 6) of the spectral and Chebyshev ap-
proximation of the heat kernel by measuring the `1 approxi-
mation error (y-axis) between the spectral representation of the
heat kernel Kt(·, ·), computed using a di↵erent number k (x-
axis) of eigenfunctions, and the corresponding Chebyshev ap-
proximation (c.f., Eq. (9)). For small values of t, the partial
spectral representation requires a large number k of Laplacian
eigenvectors to recover local details. For instance (Fig. 6(a,b)),
selecting 1K eigenpairs the approximation error remains higher
than 10�2; in fact, local shape features encoded by Kt(·, ·) for
a small t are recovered using the eigenvectors associated with
high frequencies, thus requiring the computation of a large part
of the Laplacian spectrum. For large values of t, increasing k
strongly reduces the approximation error until it becomes al-
most constant and close to zero. In this case, the behavior of the
heat kernel is mainly influenced by the Laplacian eigenvectors
related to the eigenvalues of smaller magnitude. We conclude
that the spectral representation generally requires a high num-
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(a)

(b)

Figure 8: Level sets of the di↵usion distance from a source point (orange) on
(a) point set (150K points) and (b) a bordered (bottom). In (a), the level sets are
rendered on the underlying triangle mesh. For the computation, we have used
the Chebyshev approximation of order r := 7.

ber of eigenpairs without achieving an accuracy of the same or-
der of the spectrum-free approximation through the Chebyshev
method. The proposed approach guarantees the smoothness of
the heat di↵usion distance at small and large scales and it is not
a↵ected by the irregular surface sampling.

According to Eq. (9), the value of t influences the condition-
ing number of the coe�cient matrices (tL + ✓iB), i = 1, . . . , r.
Our experiments (Fig. 7) have shown that the linear systems
in Eq. (8) are generally well-conditioned; in any case, pre-
conditioners and regularization techniques [15] can be applied
to attenuate numerical instabilities. Since our approach works
mainly on matrices, the computation of the heat di↵usion dis-
tance and kernel is independent of the discretization of the in-
put surface as a manifold/non-manifold polygonal [1] mesh or a
point cloud. The spectrum-free computation on point-sampled
surfaces or non-manifold meshes (Fig. 8) is one of the novelties
of the proposed approach with respect to previous work, which
uses multi-resolutive and prolongation operators on manifold
triangle meshes. Timings (Table 1, Fig. 9) are reduced from 20
up to 1200 times with respect to the approximation based on a
fixed number of Laplacian eigenpairs. For the computation of
the Laplacian eigenvectors, we have used the Arnoldi iteration
method [18, 31]. Selecting B := I or B := D, the Chebyshev
method also provides a new computation of the discrete heat
di↵usion kernel associated to the Laplacian matrix with cot and
Voronoi-cot weights.

5. Conclusions and future work

This paper has presented an e�cient and spectrum-free com-
putation of the heat di↵usion distance and kernel through the

(a) (b)

(c)

(d) (e)

Figure 9: (c) Computational cost (in seconds, y-axis, log-scale) for the evalua-
tion of the heat kernel on (a,b;d,e) 3D shapes with n samples (x-axis), approx-
imated with (straight line) with k = 500 eigenpairs and the Chebyshev approx-
imation (dotted line). Colors of di↵usion distances from the source (orange)
point vary from blue (null distance) to red (maximum distance). Timings are
reported in Table 1.

rational Chebyshev approximation, which involves the solution
of a set of sparse, symmetric, well-conditioned linear systems
and a sequence of matrix-vector multiplications. With respect
to previous work, we provide an e�cient computation on both
triangle meshes and point-sampled surfaces, thus avoiding the
computation of the Laplacian spectrum, the selection of a spe-
cific subset of eigenpairs, and the use of multiresolutive prolon-
gation operators. Furthermore, the Chebyshev computation is
e�cient, accurate, and robust to noise, missing and irregularly
sampled areas. As future work, we foresee the generalization
of the proposed approach to a larger class of spectral distances.
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Table 1: Timings (in seconds, Fig. 9(c)) for the evaluation of the heat di↵u-
sion kernels on 3D shapes with n points, approximated with k = 500 eigenpairs
(Eigs) and the Chebyshev approximation (Cheb.). Column ’⇥’ indicates the
number of times the computational cost is reduced. Tests have been performed
on a 2.7 GHz Intel Core i7 Processor, with 8 GB memory.

Acquarius Fig. 9(a) Neptune Fig. 9(b)

n Eigs Cheb. ⇥ n Eigs Cheb. ⇥
5K 30.06 0.26 115 10K 59.65 0.50 119
25K 97.25 1.83 53 30K 111.28 1.78 62
35K 130.39 2.61 49 50K 176.47 3.21 54
50K 173.78 3.60 48 100K 372.16 7.44 50

Torus Fig. 9(c) Julius Fig. 9(d)

n Eigs Cheb. ⇥ n Eigs Cheb. ⇥
2K 12.00 0.01 1200 2K 18.47 0.08 230
6K 33.28 0.45 73 7K 35.89 0.37 97
26K 100.88 2.89 34 22K 82.47 1.42 58
49K 140.00 5.14 33 43K 173.52 3.71 46
58K 186.06 7.92 23 50K 174.89 4.34 40

Modalities for Physiological Human Articulation”. 3D shapes
are courtesy of the AIM@SHAPE Repository.
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