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ABSTRACT
Given an object digitized as sequences of scan lines, we pro-
pose an approach to the extraction of feature lines and ob-
ject segmentation based on a multi-resolution representa-
tion and analysis of the scan data. First, the scan lines
are represented using a multi-resolution model which pro-
vides a flexible and useful reorganization of the data for
simplification purposes and especially for the classification
of points according to their level of detail, or scale. Then,
scan lines are analyzed from a geometrical point of view
in order to decompose each profile into basic patterns which
identify 2D features of the profile. Merging the scale and ge-
ometric classification, 3D feature lines of the digitized object
are reconstructed tracking patterns of similar shape across
profiles. Finally, a segmentation is achieved which gives a
form-feature oriented view of the digitized data. The pro-
posed approach provides a computationally light solution to
the simplification of large models and to the segmentation
of object digitized as sequences of scan lines, but it can be
applied to a wider range of digitized data.

Categories and Subject Descriptors
I.4.6 [Segmentation]: Edge and feature detection; I.5.2
[Design methodology]: Feature evaluation and selection

General Terms
Algorithms, Design
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Feature detection, segmentation, reverse engineering.
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1. INTRODUCTION
In the traditional approach to design, objects are manu-

factured starting from a CAD model, while in reverse engi-
neering real parts or prototypes are transformed into CAD-
like models that can be modified with different mathemat-
ical transformations providing a great flexibility to the de-
sign phase. The process of CAD model reconstruction starts
from a set of points which are acquired on an existing object
with several methods such as tactile or non-contact ones.
The resulting data set, unorganized or partially ordered, is
transformed into a polyhedral or smooth surface converting
its discrete description into a piecewise, continuous model.
A basic step towards the creation of a CAD-like model is
segmentation [6, 21] which provides a high level description
of the input object where points are grouped into subsets
each of them belongs to a specific surface type. The ap-
proaches used for the segmentation process are general or
dedicated. The first ones only use a general knowledge of
the surface to execute the segmentation while dedicated ap-
proaches, which are preferable, search in the data set for par-
ticular structures related to the application environment and
to its envisaged use. The design of an industrial product,
indeed, requires the representation of geometric and func-
tional information, and this aspect becomes more important
in concurrent engineering where multiple steps and processes
interact with common information defining the object to be
manufactured [4]. In reverse engineering a possible solution
is to control the data segmentation using feature lines which
are extracted from the original data set and to obtain a seg-
mentation into patches meaningful for CAD/CAM.

1.1 Review of related work
Data segmentation methods can be divided into two main

groups: edge-based and face-based algorithms [21]. The first
ones search for boundaries between regions characterized
by changes of surface normals or curvature discontinuities.
Methods belonging to the second class group points into con-
nected regions based on homogeneity measures such as mem-
bership to the same primitive surface type, such as plane,
sphere, cylinder. The edge-based methods have the main
drawback of producing non-connected components generally
requiring an extensive post-processing phase which aims at
connecting disjoint local curves not recognized as belonging
to the same feature line. The connectivity and continuity
in the data structure are also very important and a low-
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level description, such as a simple collection of faces, is not
enough [21] because it can not be used in the manufacturing
process.
The segmentation problem can be approached using im-

age processing techniques. Given an image, feature detection
usually starts with the extraction of edge points character-
ized by sharp variations of their coordinates. The most fa-
mous edge detector was described by Canny [1]: it is based
on a pre-filtering phase, which aims at reducing the image
noise, followed by the edge localization, i.e. a filter respond-
ing to edges. The second phase, represented by the line
and curve detection, extracts curves (e.g. lines, circles, el-
lipses) starting from the output of an edge detector algo-
rithm. Following [19], this problem can be solved into two
steps. The first one groups those points which compose an
instance of the target curve and finding, in the second step,
the best curve which interpolates or approximates selected
vertices. These methods include the Hough transform [8]
and deformable contours based on energy functionals [10,
22]. Feature extraction is followed by segmentation which
subdivides the input image into patches with similar charac-
teristics and whose boundaries are made of curves obtained
at the previous step.
While range images have a regular connectivity, segment-

ing unstructured or partially structured data is more com-
plex. A first approach to segmentation of 3D objects has
been studied for CAD/CAM and reverse engineering appli-
cations [6, 20, 21] exploiting the possibility of describing
them in terms of the shape and position of building sur-
faces. The extension of this method to more general 3D
shapes has been mainly based on the estimation of surface
differential properties at each point evaluating the sign and
value of the mean and gaussian curvature as summarized
in the following. The methods described in [7, 13, 14] use
a discrete curvature approximation to segment the surface
into patches identifying edge points by curvature extrema.
The growing interest in curvature-based segmentation faces
up to its sensibility to noise. In fact, the smoothing process,
required to get stable and uniform curvature estimations,
introduces a deficiency in the magnitude evaluation and,
consequently, difficulties in the accurate distinction between
planar patches and curved surfaces with low curvature. Fur-
thermore, a distortion of small features is introduced with
the loss of important information in the case of high-detailed
data sets. In [14], a method is discussed based on curva-
ture estimation supporting a region growing segmentation
for planar areas. In [7], the identification of feature lines for
unstructured meshes is achieved using a family of operators
which associate to each edge of the object surface the proba-
bility that it belongs to a mesh feature. These operators are
defined starting from an analysis of the normals to the trian-
gles of the input mesh or using a local curvature estimation
of lines obtained by intersecting the surface with planes or-
thogonal to the edge in issue. In [13], the curvature values at
each vertex of the input mesh are thresholded constructing
a binary vector which is converted into a skeleton of feature
regions using two morphological operators (i.e. dilatation
and erosion).
A different approach is described in [17] using the Reeb

graph which is a topological structure coding a given shape
by storing the evolution of critical points of a mapping func-
tion defined on the boundary surface. In particular, when
the height function is chosen with respect to a predefined di-

rection, the Reeb graph describes the evolution of the con-
tours obtained intersecting the shape with planes having
the required orientation. The decomposition induced by the
Reeb graph corresponds to a segmentation into shape parts
where the topology does not change.

1.2 Overview of the technique and contribu-
tions

In this context, we are interested in the identification of
features of the digitized object which are used to drive the
segmentation of the data into patches meaningful for reverse
engineering. We will assume that data are distributed along
slicing planes (i.e. directions of digitalization). By object
feature we mean an object part which is meaningful for the
description of the object. In our approach, features are rep-
resented by piecewise linear curves obtained linking points
which are judged similar with respect to scale and geometry.
Features are also regions, or patches, of the decomposition
induced by the data segmentation.
Given a set of scan lines, our approach to the problem is

described in the following steps [11, 12]:

• multi-resolution data modelling : this phase aims to or-
ganize sampled points into a hierarchical structure dis-
tinguishing between local and global details. Data sim-
plification and level of detail representation are han-
dled into a unified framework;

• classification phase: using the previous model we as-
sign to every vertex a value which represents its degree
of importance in the description of the related shape
from the point of view of the geometry and scale;

• detection phase and segmentation: the previous steps
consider data line by line and characterize the shape
using a 2D view of data. In this last phase, a 3D view
of the whole data set is considered and the segmen-
tation and feature line extraction are performed using
the results of the previous steps. First, a coarse data
segmentation is done using only the scale classification.
Then, the segmentation is refined using a geometric
view of data, by extracting feature line first, and then
grouping points which have a similar shape with re-
spect to basic geometric features (e.g. slots, pockets
etc.). In this way, a set of maximal and connected re-
gions, which covers the input surface, is constructed.

Each step allows a certain degree of control over the gen-
erated process. Our model differs from the previous ones
for the hypothesis of the input data set structure and for
the feature-based classification. Another main difference is
related to the use of a simplification strategy instead of a
curvature-based classification, which leads to more stability
in presence of noise.
The paper is organized as follows. First, in Section 2 the

multi-resolution framework defined to organize and to pro-
duce different LODs is presented. In Section 3, the approach
used to classify the shape of scan lines is introduced and the
method for tracing feature lines and segmenting the object
surface are presented in Section 4 and 5 respectively. Finally,
comparison with other techniques, tests and limitations are
discussed in the last section.
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2. MULTI-RESOLUTION FRAMEWORK
New scan technologies are now able to provide precise

and dense data of natural and synthetic surfaces, which is
good for an accurate surface reconstruction but is a bot-
tle neck for data processing. Redundant information, or
irrelevant data, have to be identified and discarded. The
problem of mesh decimation and model compression has at-
tracted enormous interest and several solutions have been
proposed which work on mesh representations of the data
set [2]. Tackling the problem using a 2D approach, that is,
exploiting the 2D spatial organization induced by the scan
directions, provides an interesting and computationally effi-
cient alternative which is worth to explore.
In the past, many line simplification algorithms have been

proposed, based on geometric [3, 16] and numerical [15, 18]
criteria. For applications to reverse engineering, it is gener-
ally preferred to simplify line data using methods which do
not move original points, that is, the simplified data set has
to be a subset of the original one. Therefore, we will restrict
our attention to this class of algorithms.
Besides simplification, another important issue is the or-

ganization of data according to a multi-resolution hierarchy.
A multi-resolution model defines an organization of data
into levels of detail, thus providing a flexible solution to the
simplification problem and to the distinction between the
global and the local features that shape the line [7].
In the following, the multi-resolution model adopted for

representing scan data is introduced, which can be used in
combination with any incremental simplification technique.
Its application will be demonstrated using a simplification
algorithm based on local point displacement. For the sake
of clarity, the description will start with the simplification
technique, which is a vertex removal based on a local evalu-
ation of the approximation error.
The application domain of our approach is defined by so-

called scan lines. This term was originally chosen to de-
scribe almost parallel digitalization profiles over 2.5D ob-
jects. Here, the mathematical formalization of scan lines
used is more general and it identifies parallel digitized cross-
sections of 3D objet, as follows.

Definition. 1. Let f : D ⊆ 3 �→ be a function on an
open set D which defines the surface

Σ := {(x, y, z) ∈ 3 : f(x, y, z) = 0}.
Given a plane π of equation ax+by+cz+d = 0, (a, b, c) �= 0,
the scan line of Σ with respect to π is represented by the
line, possibly empty, defined as

L := Σ ∩ π =
f(x, y, z) = 0,
ax+ by + cz + d = 0.

Chosen a scan direction (a, b, c) �= 0 the sampling of the
surface Σ is described by the set

{Li}m
i=1 with Li := Σ ∩ πi,

πi : ax+ by + cz + di = 0, i = 1, . . . ,m.

Therefore, each scan line is described by a set of points
P = {Pi}n

i=0, which locates the associated polygonal curve
S(P0, . . . , Pn) obtained joining consecutive points with a line
segment. The constraint for scan lines of being planar is not
strict, in the sense that the results still hold if the curves are
not planar, provided that they do not intersect each other.

2.1 Local displacement algorithm
The simplification method chosen for this application works

as a point subset selection, without introducing or moving
points. Our approach to simplification is incremental be-
cause it is based on a sequence of local updates which re-
duce the number of points and minimize the approximation
error, at each step. Another possible choice is given by the
Douglas-Peucker algorithm [3, 11] which produces similar
results.

Figure 1: Local displacement algorithm.

The local displacement algorithm (LDA) works evaluating
for each point in P its distance from the line segment that
joins the previous and next point. More precisely, at the first

step, the distance d
(1)
i = dist(Pi, Pi−1Pi+1) is calculated for

every Pi. This value represents the maximum displacement

between the line Pi−1Pi+1 and Pi−1Pi+1, i = 1, . . . , n − 1.
During this step, the simplification is initialized with the
computation of the cost of all possible point eliminations.
The actual simplification is performed by minimizing the
local error, therefore the point to be eliminated is the one
causing the minimum line deviation.
At the next step, and similarly for the subsequent, the

distances will be updated only for the points involved in
the last removal, that is, the previous and next point of the
removed point. Therefore only two new distances will be
computed. It follows that the method is based on a sequence
of local updates where, at each iteration, the current data
set is slightly modified and changes are limited to the part
which surrounds the removed point. The shape is therefore
preserved. The computational complexity is linear in the
number of points n, since at the initialization step n distance
computations are required while at each other step only two
distances are updated.
If the simplification is run without the aim of building

a multi-resolution model of the line, the process may stop
when a threshold distance is reached, that is, when all re-
maining points are above the given threshold distance. But,
if we think of iteratively removing points until the line is sim-
plified to the segment joining the first and last point, a more
interesting formulation can be given in terms of data rear-
rangement. Indeed, the LDA as well as many other methods
for line simplification, reduces the number of points by sort-
ing data according to a simplification criterion, typically the
error associated to the simplification technique. Indirectly,
these methods induce a rearrangement of the original data
into a new set which corresponds to the sequence of points
ordered according to the error criterion.
More precisely, given a chain of n points P, its rearrange-

ment is defined by a permutation over the indices of P
j : {0, . . . , n} �→ {0, . . . , n}. Let us also consider at each
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simplification step k a vector (d
(k)
i )ni=0, where d

(k)
i is the

value of importance of Pj(i) in the current simplified line.
Let us now describe the behavior of LDA using the rear-
rangement and the importance vector. At the first step,
the importance vector and the permutation are initialized
as follows. If the following minimization criteria is used

d
(1)
k = min

i=1,...,n−1
{d(1)

i }

then, the first values of the permutation j are j(0) =
0, j(1) = n, j(2) = k while the importance vector gets d0 =

d1 = 0, d2 = d
(1)
k . At the second step the array (d

(1)
i )ni=0 is

updated with

d
(2)
i =

d
(1)
i if i /∈ {k − 1, k, k + 1}
dist(Pk−1, Pk−2, Pk+1) if i = k − 1
dist(Pk+1, Pk−1, Pk+2) if i = k + 1.

(1)

where dist is the Euclidean distance function between a
point and a segment (see Figure 1), i.e. the cost function of
the algorithm.
Therefore, the cost function is recomputed only on the

points Pk−1, Pk+1 whose neighborhoods were affected by the
elimination of Pk. After this update, the minimization cri-
terion is applied and j(3) and d3 are defined. After (n − 1)
steps the input polygonal line will be fully reordered by the
complete permutation j : {0, . . . , n} �→ {0, . . . , n} together
with the associated importance array (di)

n
i=0.

The simplification process could be biased by the presence
of spikes in the scan line. Spikes are characterized by a
sharp local variation of the scan line shape, and therefore
they can be easily identified and removed before applying
the LDA [9]. If spikes are not removed by a pre-processing,
they could be retained in the simplified line. Conversely,
small undulations are automatically corrected by the LDA
simplification.

2.2 Multi-resolution model
In this section we describe the multi-resolution representa-

tion of the input line data, independently of the chosen sim-
plification criterion. In general, given a set P := {Pi}n

i=0, a
simplification algorithm defines a new set Q = {Qi}m

i=0 such
that:

• Q is a subset of P (m ≤ n),

• S(Q0, . . . , Qm) is a good approximation of S(P0, . . . , Pn),
that is, the distance between P and the simplified line
is less than a maximum tolerance with respect to a dis-
tance function d associated to the application context.
Typically, d represents the Hausdorff or the Euclidean
distance.

As previously described, several methods for line simplifi-
cation reduce the number of points by sorting data according
to a simplification criterion, which induces a rearrangement
of the original data into a new set. The new set corresponds
to the sequence of points ordered according to the error cri-
terion. The simplification process can be also expressed as
the process of constructing lower resolution representations
of the original line, therefore resulting in a sequence of lines
at different levels of detail.

Indicated with Sr := (P0, P1, . . . , Pn) the input data set
at the original resolution, we want to construct its lower res-
olution version Sr−1 with m points, m ≤ n. Therefore, in
the simplification from Sr to Sr−1, (n −m + 1) points will
be omitted with an amount of lost detail Dr−1 that will be
estimated using the reference distance d. If this procedure
is applied recursively, we may express Sr through a hierar-
chical structure of lower resolution descriptions S0, . . . , Sr

and of details D0, . . . , Dr−1 as described in (2). Since Sr

can be reconstructed from the sequence S0, D0, . . . , Dr−1

the process is a filter bank and it represents a hierarchical
transformation of the sampled data set.
Having introduced the outline of the multi-resolution anal-

ysis, we have to specify [11]:

• the simplification error between Sr and a lower reso-
lution Sk,

• the expression of Sr using S0, D0, . . . , Dr−1.

To formalize the error, let us introduce a sequence of
strictly decreasing real non-negative error bounds, called
α−set, {t1, . . . , tr : t1 > . . . > tr, r ≥ 1} and let us de-
fine:

• Sk the data set obtained from Sk+1 considering those
points which fulfill the inequality d(Sk, Sk+1) ≤ tk+1,

• Dk := Sk+1 − Sk (note that Dk ∩ Sk = ∅, Sk+1 =
Sk ∪Dk) ∀k = 0, . . . , r − 1 the data set of detail.

From the previous relations, we have that Sk ⊆ Sk+1 and
we can construct the sequence

S0 ⊆ S1 ⊆ . . . ⊆ Sr

and its filter bank

Sr −→ Sr−1 −→ . . . −→ S1 −→ S0

↘ ↘ ↘
Dr−1 . . . D0

(2)

with

Sk = {Pj(i) ∈ Sk+1 : di ≥ tk+1} = {Pj(i) ∈ Sr : di ≥ tk+1}
and

Dk = {Pj(i) ∈ Sr : di < tk+1}.
Therefore, Sk is obtained applying the algorithm with

tk+1 either to Sr or to Sk+1. The previous relations can
be summarized as

Sr = ∪r−1
k=0Dk ∪ S0

that is, the original data set is uniquely decomposed using
the low resolution description S0 and the detail sets (Dk)

r−1
k=0.

To conclude, let us note that the multi-resolution scheme
is general since it is described independently of the specific
simplification used. The specific method used in combina-
tion with the proposed multi-resolution framework is de-
scribed in the following section.

3. CLASSIFICATION PHASE
The goal of the classification phase is to characterize the

input data using a family of algorithms each one is related to
a specific aspect of representation, more precisely the scale
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(see Section 3.1) and the geometry (see Section 3.2). Ac-
cording to [4], we want to identify in the mathematical de-
scription of the object both a general aspect (i.e. its ge-
ometrical model) and a set of specific aspects induced by
the application context. The mathematical description is
defined by the notion of equivalence class. The idea is to
translate the geometric information into mathematical rela-
tions and to use the classes induced in the quotient space to
collect points with equal properties into non-empty, disjoint
subsets. This approach represents an initial and general step
for the identification of feature lines and the segmentation
phase.
Given a set X and a relation R on X, i.e. R is a subset of

X×X, we can define, for every point x ∈ X, its equivalence
class [x] as the set of points in X which are in relation with
x, that is,

[x] := {y ∈ X : xRy} ⊆ X,

and the quotient space X/R := {[x] : x ∈ X}. Furthermore,
the following conditions hold:

• [x] �= ∅, ∀x ∈ X (i.e. every class is not empty),

• [x] ∩ [y] = ∅ iff (x, y) /∈ R (i.e. two classes are disjoint
if and only if their representative elements are not in
relation),

• X = x∈X [x] (i.e. {[x]}x∈X represents a cover of X).

Therefore, a symmetric, reflexive and transitive relation on
a set X induces a decomposition into a family of non-empty,
disjoint sets each one identifies all points in X which fulfills
the ”property” described by R.

3.1 Scale analysis and α-value similarity
The multi-resolution simplification provides the classifi-

cation of scan line points with respect to different levels of
detail (scale). In order to define an automatic and global
characterization, the α-value di associated to each scan line
is normalized in I := [0, 1] dividing it by the maximum value
which has been stored during the re-ordering of the entire
input data set. Considering a partitioning of I into r sub-
intervals

{(ti, ti+1]}r
i=1, t1 = 1, tr+1 = 0,

r

i=1

(ti, ti+1] = [0, 1)

we apply the multi-resolution model using the α-set {1 =
t1, t2, . . . , tr+1 = 0} and classifying each point with respect
to its α-value which represents the scale of the shape it in-
troduces on the line.
Therefore, the most important vertices with respect to

scale will be represented, for each polygonal line, by the set
Q := {Pj(i)}n−1

i=i0
∪ {P0} ∪ {Pn} with i0 such that di0 > tr

and di0−1 ≤ tr. We underline that if the input data set is
equally sampled the partitioning of I can be defined using a
uniform distribution, that is

ti :=
r + 1 − i

r
i = 1, . . . , r + 1

achieving good results without user interaction. In presence
of unbalanced density and dimension of shape features a re-
distribution of the partitioning is applied taking into account
prior information.
Using the α−set, we introduce the following relation:

• α-value similarity : P ∈ LP , Q ∈ LQ

P∼αQ⇐⇒ dP , dQ belong to the same sub-interval of I

where dK is the α-value that characterizes the point
K in its scan line LK . Therefore, the multi-resolution
model defines the relation ∼α which introduces a hier-
archy of importance between the size of shapes related
to each point in the input data set.

Using the α-value criterion we are able to distinguish be-
tween local information and characteristic points which lo-
cate the line features of the object to be extracted in the next
phase (see Section 4). More precisely, small undulations are
located by points whose α-value belongs to the first sub-
interval I1 := (0, tr] of I (i.e. detail points). Points belong-
ing to other intervals are called characteristic or structural
points.

3.2 Form feature similarity
The next classification phase is aimed to capture the ge-

ometry of shape features in the scan lines. Here, we have
tried to use shapes which have a meaning in the machining
context, such as slots, pockets or steps. The configurations
shown in Figure 2 correspond to their shape as if they were
digitized on the object. Input points are classified using
their local behavior with respect to their neighbors on the
line, and each point belongs to a unique type of geomet-
ric shape. Clearly, Figure 2 could be improved and tuned
to the specific application domain, for example geographical
information systems [11] or more general pattern recognition
processes.

Figure 2: Basic shape types: for each configuration,
black dot represents that point at which the label is
attached.

Starting from this table, we define the following relation:

• feature similarity : P ∈ LP , Q ∈ LQ

P∼TQ ⇐⇒ T (P ) = T (Q)

where T (K) represents the class of K according to the
basic shapes represented in Figure 2.

The feature similarity classification (see Section 5) is ap-
plied to each simplified polygonal line represented by charac-
teristic points; in this way, we get rid of local perturbations
in the data and we may use a global view of the shape.
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4. FEATURE LINE DETECTION
The importance of feature lines for reverse engineering

has been stressed in [6, 21] even if knowledge of the mor-
phological structure of a surface is important in many other
contexts such as GIS [4] and computer vision [19]. The
reconstruction of surface features relies on the assumption
that the shape of adjacent profiles is similar for sufficiently
dense data sets, i.e. the object surface varies with continu-
ity. The background for the reconstruction is the analysis
of each scan profile by using the previous classification.
The extraction of feature lines across scan lines is achieved

by considering the reciprocal position of characteristic points.
More precisely, if p and q belong to adjacent scan lines, the
point p will be linked to q if and only if their distance is less
or equal to a given threshold η, i.e. ‖p− q‖ ≤ η (see Figure
3). This parameter represents the scan step used for the
acquisition process; its role is to control the joining process
whose reliability decreases when distance between points in-
creases. In Figure 4, an example of characteristic points is
presented.

Figure 3: Example of construction of feature lines
and splitting points. The point P is not connected
to Q because ‖P −Q‖2 > η.

(a) (b)

Figure 4: Input object with 17.374 points structured
in 99 scan lines, (b) characteristic points.

A crucial part of the detection process is the selection of
similar points because there may be a considerable num-
ber of candidates as well as none. In general, a point can
be connected to one or more vertices, which belong to the
same scan line, giving rise to a split of the feature line into
two or more parts (see Figure 3). To handle this situation

(a) (b)

(c) (d)

Figure 5: (a) Input object with 19.967 points struc-
tured in 102 scan lines, (b) feature points, (c), (d)
optimized feature lines.

in a simple and efficient way, we enable the possibility of
eliminating small branches. Given the penalty function

F (L) :=
1

n

n−1

i=0

‖Pi+1 − Pi‖2, (3)

where (Pi)
n
i=0 is a set of ordered points, and indicated with

L1 and L2 the two feature lines which intersect in a common
point P we will eliminate the polygonal line segment L1

which fulfills the condition

|F (L1)− F (L2)| ≤ ε

where the threshold ε is chosen by the user.
An example of the result achieved by applying this crite-

rion is shown in Figure 5.
Furthermore, an overlapping test is performed in order to

discover possible intersections between feature lines. Clearly,
different changes to (3) are possible considering the appli-
cation environment, the smoothness of the input data set
and introducing weights for each line segment PiPi+1, i =
0, . . . , n − 1.
Another problem is represented by the scan direction,

which is fundamental because feature lines whose direction
is almost parallel to the scan direction will be difficult to
detect. Therefore, this method recognizes feature lines in a
direction almost orthogonal to the scan one by linking sim-
ilar points from a line to the next one. This problem is not
really critical for curved features; as shown in Figure 4 and
5, the main lines are successfully detected. Problems arise
when the feature lines are completely orthogonal to the scan
direction.
Finally, since the feature extraction is done on the set of

characteristic points only, the complexity of the extraction
is obviously very attractive and the set of feature extracted,
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even if not complete, may represent a very rich basis to
perform a full segmentation of the data.

5. SEGMENTATION
The focus of this section is on segmentation with the goal

of subdividing the input data set into high-level features rep-
resented by closed regions with specific properties. There-
fore, we want to define an hybrid method using a dedicated
approach. Our approach to segmentation is based on the
following definition given in [5].

Definition. 2. Let D represent the input data set (”en-
tire image region”). Segmentation is the process that par-
titions D into n subregions R1, . . . , Rn such that:

1. n
i=1 Ri = D,

2. Ri is a connected region, i = 1, . . . , n,

3. Ri ∩Rj = ∅, i �= j,

4. Pred(Ri) = TRUE,

5. Pred(Ri ∩ Rj) = FALSE, i �= j,

where Pred is a logical predicate on the points in D.

Figure 6: Segmentation strategy.

The segmentation is structured into two steps using the
feature type similarity and a grouping process. In the first
phase, the structural points, which define the global shape of
the object surface, are classified using the feature similarity.
In the second phase, each detail point p, which falls between
two consecutive structural points v and w, is classified as
its nearest one with respect to the medium point m which
joins v and w (see Figure 6). This reflects the idea of transi-
tion from a shape to another; however, an unsolved problem
is represented by the identification, in each scan line, of a
region which locates this (shape) transition.
The segmentation is induced by the predicate

Pred :=∼α ∩β
where ∩ is the intersection of two relations and β is defined
as follows: pβq if and only if p, q belong to a shape feature
of the same type (with respect to the classification given in
Figure 2) identified by 3 or 4 characteristic points in LP ,
LQ. The segmentation is visualized using colors identify-
ing global areas of interest in the manufacturing context.
In Figure 7, the segmentation has been applied to a metal
mould.

Figure 7: Segmentation.

(a) (b) (c)

Figure 8: (a) Input object with 24.147 points struc-
tured in 139 scan lines, (b), (c) feature lines.

6. DISCUSSION AND FUTURE WORK
The proposed model introduces a framework which en-

ables a high-level description of densely sampled objects at
different levels of detail. It represents the base of a struc-
tured approach to shape analysis and feature line extraction
concerning reverse engineering of shape. In this sense, the
use of the multi-resolution simplification aims at defining
a hierarchical classification of points identifying structural
parts in the input object. Finally, the feature line extraction
and the segmentation of the input data set into non-empty,
disjoint subsets have been defined exploiting the proper-
ties of the equivalence relations and of the induced quotient
space. Our model can be extended to a triangular mesh con-
verting its description to a set of scan lines achieved by the
surface with a family of cutting planes. Because the pro-
posed model only exploits the basic features preserved by
the simplification phase it results independent from unifor-
mity hypothesis on the object surface. Clearly, high-detailed
data sets ensure better results especially in the feature line
extraction reducing the number of disjoint arcs. Further-
more, it is possible to improve the quality of the feature line
detection and segmentation using a supervising of the result
with a subset of intervals in the partitioning of I or a part
of the feature type classification in order to discard object
features not meaningful with respect to the final result.
The method is semi-automatic; user interaction is restricted

to the choice of the parameters η and ε which respectively
control the feature extraction and its optimization. The
parameter η is chosen as the average distance between con-
secutive scan lines and ε is selected proportional to η. The
proper setting of these parameters is strictly related to the
quality of the measured data in terms of density and noise
presence. Even if all presented tests have been obtained
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using the previous criterion for selecting the thresholds, ir-
regular objects require an interactive supervision in order to
achieve meaningful results. In Figure 8, 9 feature lines have
been successfully extracted even if small branches have not
been removed by the optimization phase. The principal im-
provements of the described framework are intended to de-
fine a simplification algorithm fully integrated in the feature
line extraction in order to minimize the number of disjoint
arcs and to detect nested form features. The achievement of
this result may allow to optimize the segmentation process
producing more uniform regions in the input data set. Fi-
nally, a segmentation defined starting from feature lines is
currently being studied.

(a) (b) (c)

Figure 9: (a) Input object with 16.883 points struc-
tured in 100 scan lines, (b) characteristic points, (c)
segmentation.
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