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Abstract

This paper presents an alternative means of deriving and discretizing spectral distances and kernels on a 3D shape by filtering its
Laplacian spectrum. Through the selection of a filter map, we design new spectral kernels and distances, whose smoothness and
encoding of both local and global properties depend on the convergence of the filtered Laplacian eigenvalues to zero. Approximating
the discrete spectral distances through the Taylor approximation of the filter map, the proposed computation is independent of the
evaluation of the Laplacian spectrum, bypasses the computational and storage limits of previous work, which requires the selection
of a specific subset of eigenpairs, and guarantees a higher approximation accuracy and a lower computational cost.

Keywords: Spectral distances, Biharmonic and diffusion distances, Laplace-Beltrami operator, Shape analysis, Discrete
geometry, Laplacian matrix.

1. Introduction

In geometry processing and shape analysis, several problems
have been addressed through the properties of the heat diffu-
sion kernel on a 3D shape, such as shape segmentation [13] and
comparison [9, 7, 15, 17, 26] through heat kernel shape descrip-
tors [32] and auto-diffusion maps [17]. The Laplacian spectrum
is also fundamental to define random walks [31], commute-
time [8], biharmonic [25, 33], wave kernel [8, 2], and diffu-
sion distances [6, 7, 11, 17, 21, 38, 29]. Further applications
include dimensionality reduction [3, 39] with spectral embed-
dings, the computation of the gradient of discrete maps [38],
and the multi-scale approximation of functions [27, 28].

This growing interest on the biharmonic, heat diffusion, and
wave kernel distances is motivated by their capability of en-
coding local geometric properties (e.g., Gaussian curvature,
geodesic distance) of the input shape. Additional properties,
such as the intrinsic and multi-scale definition with respect
to the input shape, the invariance to isometries, the shape-
awareness, the robustness to noise and tessellation, make these
distances particularly suitable to address several applications in
shape analysis, segmentation, and matching.

Starting from recent work [12, 27], which has been fo-
cused on the computation of the geodesic and heat diffu-
sion distances, we address the definition and computation of
spectral distances on a manifold M (Sect. 2). As spec-
tral distance d2(p,q) := Â+•

n=0 j2(ln)|fn(p)�fn(q)|2, we re-
fer to any distance on M that can be defined through a fil-
tering (j(ln))

+•
n=0 of the Laplacian spectrum {(ln,fn)}+•

n=0
of M . Here, j : R+ ! R is a strictly positive and square in-
tegrable map. In particular, the corresponding spectral ker-
nel K(·, ·) is defined as the map that verifies the relation

d(p,q) = kK(p, ·)�K(q, ·)k2.

Different filter maps identify spectral distances introduced
by previous work. For poly-harmomic distances induced by
j(s) := s�k/2, the larger Laplacian eigenvalues are enhanced
by selecting a low degree k. Mexican hat wavelets [20] are
generated by the filter j(s) := s1/2 exp(�s2) and in [8, 2] the
map jt(s) := exp(is), s 2 [0,2p], defines the wave kernel sig-
nature. Similarly to random walks [31], we consider the filter
map jt(s) = tksa exp(�tsa), where k scales the diffusion rate
and a controls the distance smoothness. The selection of the fil-
ter map allows us to adapt the corresponding spectral distances
to specific features of the input data and characterize intrinsic
shape properties. In this way, we provide a simple procedure to
design new spectral kernels and distances, whose smoothness
and encoding of both local and global properties depend on the
convergence of the filtered Laplacian eigenvalues to zero. In-
creasing the filter decay to zero, the effects of larger eigenvalues
and of the corresponding eigenvectors on the filtered spectral
distance are negligible with respect to the contribution of the
lower eigenvalues. The resulting distance encodes the global
features of the input shape, while poorly identifying its local
properties. Reducing the filter decay to zero, local shape fea-
tures are better characterized.

Rewriting the Laplacian matrix as L̃ := B�1L, where L is a
symmetric, positive semi-definite matrix and B is symmet-
ric and positive definite, we derive the discrete spectral ker-
nel K := Xj(L)X>B, j(L) := diag(j(li))n

i=1. Here, X is
the eigenvectors’ matrix associated to the generalized eigen-
problem LX = BXL and L := diag(li)n

i=1, 0  li  li+1, is
the eigenvalue matrix. For this representation, which holds
for polygonal meshes and point sets, the orthogonality of the
Laplacian eigenvectors with respect to the B-scalar product
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hf,giB := f>Bg is crucial to encode the geometry of the surface
underlying P in the spectral kernel and makes its evaluation
robust to surface sampling.

Our approximation (Sect. 3) is independent of the computa-
tion of the Laplacian spectrum, which is generally unfeasible
in terms of memory storage and computational cost, even by
applying iterative solvers of sparse eigenproblems with super
linear time complexity [35]. Furthermore, it avoids the selec-
tion of a subset of Laplacian eigenpairs and the use of multires-
olutive prolongation operators [37], which heuristically adapt
the number of eigenpairs and/or the surface resolution to its
global/local features. The novelty of our approach is to approx-
imate any spectral distance using an r-degree Taylor polyno-
mial approximation of the filter map. In this way, the spectral
distances are computed through the solution of r sparse linear
systems in O(rn) time with iterative solvers, such as the Jacobi,
Gauss-Seidel, minimum residual methods [18], and without ex-
tracting the Laplacian spectrum. Since the proposed approxi-
mation scheme works mainly with matrices, the evaluation of
the spectral distances is independent of the discretization of the
input surface as a polygonal mesh or a point cloud.

For the heat diffusion distance, we also apply the (r,r)-degree
Padé-Chebyshev rational polynomial approximation [10, 18,
24, 36] of the exponential map with respect to the `• norm. In
this case, the approximation accuracy of the heat diffusion dis-
tance is lower than 10�r and it can be further reduced by slightly
increasing the degree r of the rational Padé-Chebyshev polyno-
mial (e.g., r := 5,7 in our experiments). The Padé-Chebyshev
approximation has been applied to the wavelet operator for ap-
plications in spectral graph theory [19] but its use for the com-
putation of the heat diffusion distance has not been addressed.

To speed-up the computation of the spectral distances among a
large number of points, it is sufficient to apply iterative solvers
of linear systems or a pre-factorization of the coefficient ma-
trices. Our experiments (Sect. 4) show that the proposed algo-
rithm is also robust with respect to irregular sampling density,
noise, and mesh degeneracies; can be applied to different Lapla-
cian weights; and is free of user-defined parameters. On the
contrary (Sect. 5), in previous work the resolution of the simpli-
fied approximation of the input surface, on which the Laplacian
matrix is computed, and the number of Laplacian eigenpairs are
tuned according to the target approximation accuracy.

2. Laplacian spectral distances

The idea behind the proposed approach is to define the spec-
tral kernels and the corresponding distances in the frequency
domain (Sect. 2.1) through the filtering of the spectral decom-
position of the Laplace-Beltrami operator (Sect. 2.2).

2.1. Spectral distances

Let L2(M ) be the space of square integrable maps on a
compact Reimannian manifold M , endowed with the prod-

uct h f ,gi2 :=
R
M f (p)g(p)µ(dp), where µ is a (Borel) mea-

sure on M . Let j : R+ ! R be a strictly positive and square
integrable filter map and (ln,fn)

+•
n=0, Dfn = lnfn, ln  ln+1,

the Laplacian eigensystem. Considering the power series
j(s) = Â+•

n=0 ansn and noting that Di f = Â+•
n=0 l i

nh f ,fni2fn, on
L2(M ) we define the spectral operator

F( f ) =
+•

Â
n=0

anDn f =
+•

Â
n,m=0

anl n
mh f ,fmi2fm

=
+•

Â
n=0

j(ln)h f ,fni2fn.

(1)

The linear operator F is continuous (kF( f )k2  kjk2k fk2)
and F( f ) = K ? f , where K(p,q) = Â+•

n=0 j(ln)fn(p)fn(q) is
the spectral kernel. Since

kK(·, ·)k2
2 =

+•

Â
n=0

|j(ln)|2
Z

M
|f(p)|2µ(dp)

�
 kjk2

2.

the kernel is well-defined; the symmetry and self-adjointness
of K(·, ·) follow from its spectral representation. Through the
spectral operator, in L2(M ) we introduce the scalar product
and the corresponding distance as
⇢

h f ,gi := hF( f ),F(g)i2 = Â+•
n=0 j2(ln)h f ,fni2hg,fni2, (a)

d2( f ,g) = k f �gk2 = Â+•
n=0 j2(ln)|h f �g,fni|2. (b)

(2)
Indicating with dp the map that takes value 1 at p and 0 other-
wise, the spectral distance between p, q is

d2(p,q) := kdp �dqk2 =
+•

Â
n=0

j2(ln)|fn(p)�fn(q)|2.

The distance d(·, ·), which is defined by filtering of the Lapla-
cian eigensystem, is also expressed through the kernel as
d(p,q) = kK(p, ·)�K(q, ·)k2.

The space L2(M ) is complete with respect to the norm in-
duced by the spectral scalar product; i.e., given a Cauchy
sequence ( fn)

+•
n=0 in L2(M ) there exists f 2 L2(M ) such

that limn!+• k fn � fk= 0. Since ( fn)
+•
n=0 is a Cauchy

sequence, k fn � fmk2 = Â+•
k=0 j2(lk)|h fn � fm,fki|2 converges

to zero and limn,m!+• |h fn � fm,fki|= 0, k 2 N. Indeed,
(h fn,fki)+•

n=0 is a Cauchy sequence that converges to ak 2 R.
Then, we define the map f = Â+•

n=0 anfn and the norm
k fn � fk= Â+•

k=0 j2(lk)|h fn � f ,fki|2 converges to zero, thus
showing the completeness of L2(M ) with respect to (2a).

To estimate the stability of the spectral distance, we perturb the
input map f : M ! R with a function e and notice that

��d2( f ,g+ e)�d2( f ,g)
��=

+•

Â
n=0

j2(ln)|he,fni2|2  kjk2
2kek2

2;

i.e., the resulting variation on d(·, ·) is bounded by kjk2kek2.
Without loss of generality, we normalize the filter as j/kjk•
and conclude that the variation of the spectral distance is pro-
portional to the perturbation of the input map.
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Figure 1: Spectral distances and kernels induced by the filter map j (log-scale on the t- and y-axis) applied to the Laplacian eigenvalues.

2.2. Selection of the filter map

The filter map is chosen in such a way that both local and
global properties of the input shape are encoded in the cor-
responding spectral distance. For instance (Fig. 1), select-
ing jt(s) := exp(�ts), exp(�ist) or j(s) := s�k/2,s�1/2, we
get the heat diffusion, wave, or poly-harmonic, commute-time
distances, respectively. On the one hand, the effects of the
Laplacian eigenvalues of larger magnitude are enhanced by se-
lecting a low degree k. Mexican hat wavelets [20] are gen-
erated by the filter j(s) := s1/2 exp(�s2) and in [8, 2] the
filter map j(s) := exp(is), s 2 [0,2p], defines the wave ker-
nel signature. The spectral distances associated to this pe-
riodic filter identify local shape features by separating the
contribution of different frequencies and of the correspond-
ing eigenfunctions. Similarly to random walks [31], we in-
troduce multi-scale kernels by integrating the moment of or-
der k of the differential operator Da exp(�tDa). In this case,
the filter map is j(s) = tksa exp(�tsa), where k scales the
rate of diffusion and a controls the decay of the Lapla-
cian eigenvalues to zero. The selection of the parame-
ters a , k makes the multi-scale kernels more robust to ge-
ometric and topological noise; the integral over time also
avoids the selection of the heat diffusion rate. Finally,
the filter maps jt(s) := [cos�1/2(

p
st),s�1/4 sin1/2(

p
st)] and

j(s, t) = exp(srt) are associated to the diffusion equations�
∂ 2

t +D
�

F(·, t) = 0 and (∂t +Dr)F(·, t) = 0, respectively.

Starting from these filters, we can design new distances; the
only constraint is that j is strictly positive and square inte-
grable. In particular, the filter map has a compact support (e.g.,
periodic filter maps) or lims!+• j(s) = 0. In this last case, the
convergence of the filtered eigenvalues (j(li))n

i=1 to zero deter-
mines the capability of the spectral distances to locally or glob-
ally characterize the input shape, their smoothness and approxi-
mation accuracy through the truncated approximation (c.f., Eq.
(5b)). Increasing the filter decay to zero, the effects of larger
eigenvalues and of the corresponding eigenvectors on the fil-
tered spectral distance are negligible with respect to the contri-
bution of the lower eigenvalues. The resulting distance charac-
terizes the global properties of the input shape, while poorly
identifying its local properties. Reducing the filter decay to
zero, local shape features are better characterized. Finally, a
simple way to generate new kernels and distances is to com-
pute a convex combination of filter maps. For instance (Fig. 2),

a trade-off between the measure of both local and global proper-
ties is achieved by selecting as j a convex combination between
the filters associated to the diffusion and biharmonic distances.

3. Spectrum-free computation

After introducing the discrete spectral distances (Sect. 3.1),
we discuss their proposed spectrum-free computation, which is
based on the Taylor approximation of the filter map (Sect. 3.2),
and its specialization to the heat diffusion distances through the
Padé-Chebyshev approximation (Sect. 3.3).

3.1. Discrete spectral distances

The spectral distances are discretized on the space of
maps f : P ! R, f := ( f (pi))n

i=1, defined on the point set
P := {pi}n

i=1. To this end (Sect. 4), we represent the Laplace-
Beltrami operator on polygonal meshes and point sets in a uni-
fied way as L̃ := B�1L, where B is a positive definite ma-
trix and L is symmetric, positive semi-definite. Noting that
B(i, j) = h1pi ,1p ji2, where 1p is the map that takes value 1 at p
and 0 otherwise, the matrix B discretizes the Borel measure µ
(Sect. 2.1) and hf,giB := f>Bg is the counterpart of the L2
scalar product on the space of discrete maps on P .

The couple (L,B), which defines the Laplacian matrix L̃,
is associated to the generalized eigensystem LX = BXL,
with orthonormal eigenvectors X>BX = I. Noting that
j(L) = diag(j(li))n

i=1 and L̃ = XLX>B, we get that
L̃i = XLiX>B and the discretization of (1) is

K := j(L̃) =
+•

Â
n=0

an(XLX>B)n = X

 
+•

Â
n=0

anLn

!
X>B

= Xj(L)X>B.

Indeed, we approximate F( f ) as Kf := Ân
i=1 j(li)hf,xiiBxi.

From the eigenvectors’ orthonormality, we get that

K>BK = BXj2(L)X>B
= BK̃,

(3)
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s = 0 s = 0.2 s = 0.5

s = 0.8 s = 1

Figure 2: Level sets of the filtered spectral distance achieved as a convex com-
bination of the filter maps associated to the diffusion (s = 0, t = 0.5) and bi-
harmonic (s = 1) distances.

where K̃ := Xj2(L)X>B is the spectral kernel associated to the
filter j2. From Eq. (3), the discrete spectral distances are

d(pi,p j) = kK(ei � e j)k2
B = (ei � e j)

>K>BK(ei � e j)

=
n

Â
l=1

j2(li)|hxl ,ei � e jiB|2.
(4)

Truncated approximation. The computational limits for the
evaluation of the whole spectrum of L̃, which varies from O(n)
to O(n3) according to its sparsity, and the decay of the coeffi-
cients in Eq. (2b) are the main reasons behind the approxima-
tion of the solution to the spectral distances as a truncated sum;
i.e.,
⇢

Fkf = Âk
i=1 j(li)hf,xiiBxi, (a)

d2(pi,p j) = Âk
l=1 j(ll)|x>l Bei �x>l Be j|2, (b)

(5)

where k is the number of selected eigenpairs. Even though
the first k Laplacian eigenpairs are computed in super-linear
time [35], the evaluation of the whole Laplacian spectrum is un-
feasible for storage and computational cost, which are quadratic
in the number of surface samples. In this case, the parame-
ter k must be selected by the user and the approximation ac-
curacy cannot be estimated without extracting the whole spec-
trum. Furthermore, the selection of filters that are periodic or do
not decrease to zero highlights the need of defining a spectrum-
free computation of the corresponding kernels and distances,
which cannot be accurately approximated with the contribution
of only a subpart of the Laplacian spectrum.

3.2. Spectrum-free computation of the spectral distances

A natural way to approximate a matrix function j(L̃),
j : R+ ! R, is through the truncated approximation of the Tay-

Algorithm 1 Evaluation of the spectral distance and kernel.
Require: A filter map j : R! R.
Ensure: The spectral distance d(pi,p j) in Eq. (4).

1: Compute the Taylor polynomial pr(s) := Âr
n=0 ansn of j of de-

gree r, r � 1.
2: Compute g1 such that Bg1 = Lei
3: for n = 1, . . . ,r�1 do
4: Compute gn+1 such that Bgn+1 = Lgn
5: end for
6: Approximate Kei as a0ei +Âr

n=1 angn
7: Repeat the previous steps for e j
8: Compute d(pi,p j) = kKei �Ke jkB
9: Compute K(pi,p j) = e>i Ke j

lor series of j . More precisely [18], if j(s) = Â+•
n=0 ansn is the

power series representation of j on an open interval contain-
ing the spectrum of the matrix L̃ then j(L̃) = Â+•

n=0 anL̃n. An
alternative is the Padé-Chebyshev approximation, which uses a
rational polynomial and has been applied to the approximation
of the heat diffusion kernel [27] (Sect. 3.3). To evaluate the
spectral distance, we can proceed in two different ways, which
are independent of the computation of the Laplacian spectrum
and have the same approximation accuracy.

As first option, we approximate Kei through the Taylor approx-
imation j(s)⇡ pr(s) := Âr

n=0 ansn as

Kei ⇡
r

Â
n=0

an(B�1L)nei = a0ei +
r

Â
n=1

angn,

where gn satisfies the linear system Bgn+1 = Lgn, Bg1 = Lei.
Being the coefficient matrix B sparse, symmetric, and posi-
tive definite, the vectors (gn)r

n=0 are computed in linear time
by applying iterative solvers (e.g., conjugate gradient) or pre-
factorizing B. Then, d(pi,p j) is equal to the B-norm of the
vector (Kei �Ke j). Algorithm 1 summarizes the main step of
the spectrum-free computation.

As second option, we rewrite the spectral distance (3) in terms
of the kernel K̃ in Eq. (4) as

d(pi,p j) = e>i BK̃ei �2e>i BK̃e j + e>j BK̃e j, (6)

and d(pi,p j) is evaluated through the Taylor approximation of
the new filter j2. Then, K̃ei, K̃e j are computed through the
Taylor approximation and the resulting vectors are then multi-
plied by e>i B, e>j B, without extracting the Laplacian spectrum.

From the upper bound
�����j(L̃)�

r

Â
n=0

anL̃n

�����
2

 n
(r+1)!

���L̃r+1j(r+1)(L̃)
���

2

 n
(r+1)!

kL̃kr+1
2 kj(r+1)(L̃)k2

 n
(r+1)!


lmax(L)
lmin(B)

�r+1
kj(r+1)(L̃)k2,

it follows that the approximation accuracy is mainly controlled
by the degree of the Taylor approximation and the variation
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Low-resolution shape: biharmonic distances
FEM Voronoi-cot

k = 10 k = 500 k = 10 k = 500
High-resolution shape: biharmonic distances

FEM Voronoi-cot

k = 10 k = 500 k = 10 k = 500

Figure 3: Biharmonic distance on a surface at different resolutions, with dif-
ferent Laplacian weights and k eigenpairs.

of the ratio between the maximum eigenvalue of L and the
minimum eigenvalue of B. If necessary, a higher approxima-
tion accuracy is achieved by slightly increasing the degree r.
Finally, the proposed computation of both the spectral ker-
nel and distance is independent of the discretization of the in-
put surface as a polygonal mesh or a point cloud. In case
of a complex kernel, it is enough to apply the previous dis-
cussion to its real and imagery parts; e.g., for the wave ker-
nel we consider the series sin(L̃) = Â+•

n=0(�1)nL̃2n+1/(2n+1)!
and cos(L̃) = Â+•

n=0(�1)nL̃2n/(2n)!.

In previous work, the spectral distances are discretized with re-
spect to the Euclidean scalar product as

d2(pi,p j) =
n

Â
l=1

j(ll)|x>l ei �x>l e j|2

= e>i K?ei �2e>i K?e j + e>j K?e j,

(7)

where K? := Xj(L)X> is the corresponding kernel. Compar-
ing the proposed discretization of the spectral distance with pre-
vious work, we get that (6) is achieved from (7) by replacing
xk(pi) = e>i xk with e>i Bxk. However, Eq. (7) does not take
into account the intrinsic B-scalar product, thus disregarding
the geometry of the input data and the underlying generalized
eigenproblem.

3.3. Spectrum-free computation of the diffusion distances

We now specialize the previous approach to the spectrum-free
computation of the heat diffusion distances. To this end [27],
we recall that the heat diffusion kernel is defined in terms of
the Laplacian eigensystem (X,L) as Kt = Xj(L)X>B, where
j(L) := exp(�tL) is the diagonal matrix achieved by ex-
ponentiating the Lapalcian eigenvalues with respect to time.

(a)
n = 5K n = 10K n = 26K

(b)

(c)

Figure 4: Stability of the biharmonic distance from a source (black) point with
respect to (a) sampling, (b) noise, (c) holes.

Rewriting the Laplacian matrix as L̃ = XLX>B, we get that
L̃n = XLnX>B and

exp(�tL̃) : =
+•

Â
n=0

(�tL̃)n

n!
= X

+•

Â
n=0

(�Lt)n

n!
X>B

= Xexp(�Lt)X>B = Kt ;

i.e., the weighted diffusion kernel Kt is still the exponen-
tial of the Laplacian matrix L̃. Then, we can apply the
rational Padé-Chebyshev approximation, which is based on
the extension of the minmax Padé-Chebyshev theory to ra-
tional fractions [18] (Ch. 11). More precisely, we com-
pute the (r,r)-degree rational function crr(s) that provides the
best approximation of the exponential function with respect
to the L •(R+) norm. Using algebraic rules, this solution is
crr(s) = a0 +Âr

i=1 ai/(s�qi) and the exponential matrix is ap-
proximated by exp(C)⇡ a0I+Âr

i=1 ai(C�qiI)�1. In this rep-
resentation, the poles {qi}r

i=1 and the coefficients {ai}r
i=1 have

been computed for r := 5,7 [16]. Applying the approximation

F(t) = exp(�tL̃)f ⇡�
r

Â
i=1

ai(L̃+qiI)�1f, r = 7, (8)

the vector F(t) = Âr
i=1 gi is computed as the sum of the solu-

tions of r sparse linear systems (tL̃+qiI)gi = aif, i = 1, . . . ,r.
In this way, we avoid the computation of the spectrum of L̃.
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Input surfaces

(a) (b)
Voronoi-cot diffusion kernel

t := 0.01 t := 0.001

(c) k = 200 (d) k = 500 (e) k = 200 (f) k = 500
Linear FEM diffusion kernel

t := 0.01 t := 0.001

(g) k = 200 (h) k = 500 (i) k = 200 (j) k = 500

Figure 5: Approximation (c.f., Eq. (5a)) of the diffusion map Kt ei using k
Laplacian eigenpairs, with (c-f) Voronoi-cot and (g-j) FEM weights on a (a)
coarse and (b) fine surface sampling.

According to [36], the `2 approximation error between
exp(�tC) and its rational approximation crr(tC), C := L̃, is
lower than the uniform rational Chebyshev constant srr. Since
this constant is known, independent of t, and related to the de-
gree of the rational Padé-Chebyshev approximation by the rela-
tion srr ⇡ 10�r, r := 7 provides an approximation error that is
satisfactory for the approximation of Kt f. For a general degree r
and a fixed value of t, the coefficients of the rational approxi-
mation of the exponential map, are computed using the Padé
method [18].

Computation of the heat diffusion distances. According to [11]
and Eq. (4), let us introduce the diffusion distance, with respect
to Kt and h·, ·iB, as

d2
t (pi,p j) = (ei � e j)

>K>
t BKt(ei � e j),

=
n

Â
l=1

exp(�2llt)
��hxl ,ei � e jiB

��2 ,
(9)

where we have used the identity K>
t BKt = BXD2tX>B in the

last equation. Noting that K>
t BKt = BK2t and applying Eq. (9),

the distance is expressed in terms of the kernel Ht := BK2t as

d2
t (pi,p j) = e>i BK2tei �2e>i BK2te j + e>j BK2te j.

Then, K2tei, K2te j are computed through the Padé-Chebyshev
approximation and the resulting vectors are then multiplied by
e>i B, e>j B, without extracting the Laplacian spectrum.

(a) t = 0.1 (b) t = 1

(c) t = 0.1 (d) t = 1

Figure 6: Level sets of the linear FEM diffusion distance (9), computed using
the Padé-Chebyshev approximation (r := 7) in Eq. (8), from a source point
(black dot), with different values of t, on a (a,b) smooth and (c,d) noisy surface.

4. Results and discussion

Firstly, we detail how to represent the Laplace-Beltrami opera-
tor on polygonal meshes and point sets in a unified way. Then,
we discuss the main features of the proposed approach in terms
of smoothness, stability to shape discretization, approximation
accuracy, and computational cost.

Laplacian matrix on meshes and point sets. Assuming that the
input shape M is discretized as a polygonal mesh or a point set,
we represent the Laplacian matrix as L̃ := B�1L, where L is a
symmetric, positive semi-definite matrix and B is a symmet-
ric and positive definite matrix. On triangle meshes, L is the
Laplacian matrix with cotangent weights and B is the diago-
nal matrix whose entries are the areas of the Voronoi regions of
the mesh vertices (Voronoi-cot weights) [14]. Alternatively, B
is the FEM mass matrix (linear FEM weights) [32, 35], which
encodes the variation of the triangle areas. If B := I, then we
get the Laplacian matrix with cot weights [30]. On polygo-
nal meshes, we consider the Laplacian discretization proposed
in [1], which provides a generalization of the Laplacian ma-
trix with cot-weights to surface meshes with non-planar, non-
convex faces. On point sets [23], L is the Laplacian matrix asso-
ciated to the Gaussian kernel and the diagonal matrix B encodes
the area of the Voronoi cells. This discretization and its previ-
ous version [4, 5] (B := I) converge to the Laplace-Beltrami
operator of the underlying manifold, as the sampling density
increases and t tends to zero.

Biharmonic distances. In Fig. 3, the approximation of the bi-
harmonic kernel with a subset of the Laplacian spectrum (Eq.
(5b)) presents local artifacts, which are represented by isolated
level sets and are due to the use of only a part of the Laplacian
spectrum. While these artifacts are reduced by increasing the
number of eigenpairs without disappearing, the spectrum-free
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Figure 7: Level sets of the linear FEM diffusion distances (9), computed us-
ing the Padé-Chebyshev method (r := 7), from a source point (black dot) on
partially-sampled surfaces. The behavior of the level sets remains almost un-
changed and coherent with respect to the original shape (left).

(a)

(b)

Figure 8: (a) `• error e• (y-axis) between the ground-truth diffusion distances
and its approximation with (blue line) k = 500 Laplacian eigenpairs (red line)
and the Padé-Chebyshev approximation (r := 7), with different values of t (x-
axis). (b) Level sets of the diffusion distance from a source point (black dot)
with different values of t.

approach does not have this behavior. In Fig. 4, the smooth and
uniform distribution of the level sets of the biharmonic distance
around the anchor point (black dot) confirms the stability of the
proposed computation with respect to surface sampling, noise,
and missing parts.

Heat diffusion and wave kernel distances. We now consider the
solution Ktei to the heat diffusion process, whose initial condi-
tion takes value 1 at the anchor point pi and 0 otherwise. On
irregularly sampled data, the linear FEM heat kernel (Fig. 5)
provides smooth level sets that are well-distributed around the
anchor point pi; on the contrary, the Voronoi-cot heat kernel
is more sensitive to the surface sampling. On noisy (Fig. 6)
and partially-sampled data (Fig. 7), the analogous behavior of
the level sets and color maps also confirms the robustness of
the linear FEM heat distances. Fig. 8 shows the `• approxi-
mation error between the ground-truth heat diffusion distances
from a source point and its approximation with k = 500 Lapla-
cian eigenpairs and the Padé-Chebyshev approximation. While

the approximation error of the diffusion distance with the same
number of Laplacian eigenpairs decreases and becomes more
sensible to local noise as t diminishes, the Padé-Chebyshev ap-
proximation provides a lower approximation error for any t.

e•
P t = 1 t = 0.001

t = 0.1

Figure 9: `• error (y-axis) e• := kKt f�Fk(t)k• between the Padé-Chebyshev
approximation (r := 7) of F(t) = Kt ei and the partial spectral representation
Fk(t) in Eq. (5a), computed on an irregularly sampled shape, with respect to a
different number k (x-axis, k  103) of eigenpairs and values of t.

We have further analyzed the different accuracy (Fig. 9) of the
spectral and Padé-Chebyshev approximation of the heat kernel
by measuring the `• approximation error (y-axis) between the
spectral representation of the heat kernel Kt , computed using
a different number k (x-axis) of eigenfunctions, and the cor-
responding Padé-Chebyshev approximation. For small values
of t, the partial spectral representation requires a large num-
ber k of Laplacian eigenvectors to recover local details. For in-
stance (Fig. 9), selecting 1K eigenpairs the approximation error
remains higher than 10�2; in fact, local shape features encoded
by Kt for a small t are recovered using the eigenvectors asso-
ciated with high frequencies, thus requiring the computation of
a large part of the Laplacian spectrum. For large values of t,
increasing k strongly reduces the approximation error until it
becomes almost constant and close to zero. In this case, the be-
havior of the heat kernel is mainly influenced by the Laplacian
eigenvectors related to the eigenvalues of smaller magnitude.
We conclude that the spectral representation generally requires
a high number of eigenpairs without achieving an accuracy of
the same order of the spectrum-free approximation through the
Padé-Chebyshev method. The proposed approach guarantees
the smoothness of the heat diffusion distance at small and large
scales and it is not affected by the irregular surface sampling.

The value of t influences the conditioning number of the ma-
trices (tL+qiB), i = 1, . . . ,r. Our experiments (Fig. 10) have
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Figure 10: Conditioning number k2 (y-axis) of the matrices {(tL+qiB)}7
i=1,

for several values the time parameter t; the indices of the coefficients {qi}7
i=1

are reported on the x-axis.

shown that the linear systems in Eq. (8) are generally well-
conditioned; in any case, pre-conditioners and regularization
techniques [18] can be applied to attenuate numerical instabil-
ities. Since our approach works mainly on matrices, the com-
putation of the heat diffusion distance and kernel is indepen-
dent of the discretization of the input surface as a manifold/non-
manifold polygonal [1] mesh or a point cloud.

The spectrum-free computation on point-sampled surfaces or
non-manifold meshes (Fig. 11) is one of the novelties of the
proposed approach with respect to previous work, which uses
multi-resolutive and prolongation operators [37] on manifold
triangle meshes. Timings (Table 1, Fig. 12) are reduced from 20
up to 1200 times with respect to the approximation based on a
fixed number of Laplacian eigenpairs. Laplacian eigenvectors
have been computed with the Arnoldi iteration method [22, 34].

5. Conclusions and future work

This paper has presented a novel definition and efficient com-
putation of Laplacian spectral distances and kernels through the
solution of a set of sparse, symmetric, well-conditioned lin-
ear systems and a sequence of matrix-vector multiplications.
With respect to previous work, we provide an efficient compu-
tation of spectral distances and kernel on polygonal and point-
sampled surfaces, thus avoiding the computation of the Lapla-
cian spectrum, the selection of a specific subset of eigenpairs,
and the use of multiresolutive prolongation operators. Since
our approach works mainly on matrices, the computation of
the spectral distances and kernels is independent of the dis-
cretization of the input surface as a manifold/non-manifold
polygonal mesh or a point cloud. For point-sampled surfaces,
we simply apply the spectrum-free computation to the corre-
sponding Laplacian matrix. The spectrum-free computation

(a) Heat diffusion distances

(b) Heat diffusion distances

(c) Bi-harmonic distances

Figure 11: Spectrum-free computation of distances from a source point (or-
ange) on (a) locally non-manifold, (b) a bordered (bottom), and (c) point-
sampled surface. In (c), the spectral distance has been computed on a point
sets with 150K samples and rendered on the underlying triangle mesh. For
the computation of the diffusion distance, we have used the Padé-Chebyshev
approximation of order r := 7.

of Laplacian distances and kernels on point-sampled surfaces
or non-manifold meshes is one of the novelties of the pro-
posed approach with respect to previous work, which uses
multi-resolutive and prolongation operators on manifold trian-
gle meshes. As future work, we foresee the analysis of the main
constraints that the filter map should satisfy in order to define
new Laplacian spectral distances and kernels. Another interest-
ing direction is the study of the limit properties of the proposed
computation on point-sampled surfaces.
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