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Differential topology methods for shape description*
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Differential topology, and specifically Morse theory, provides a suitable setting for formalizing and solving several problems
related to shape analysis. In thisfield, we discuss how a shape can be analyzed according to the properties of areal function
defined on it (e.g., harmonic fields or laplacian eigenfunctions), and how these properties can be stored in compact and
informative descriptors. We refer to Reeb graphs, that encode the configuration of level setsand critical points of the function.
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Introduction. The analysis and description of 3D digital shapes are key-issues in the current scientific scenario, playing a
rolein industrial design, bioinformatics, compuer-aided diagnosis, physical and engineering simulation, to cite afew. Mathe-
matics can support these tasks by providing a set of tools (e.g., homotopy or homology) that can be reread from acomputati onal
viewpoint and used to formalize and solve shape analysis problems. A possible source of inspiration is classical Morse the-
ory: the fundamental ideaisto combinethe topological exploration of a shape with quantitative measurements of geometrical
properties, the latter provided by areal function defined on the shape. The added value is that different functions can be used
according to the properties and invariants that one wishes to capture: real functions play indeed the role of a lens through
which we look at the shape. The approach we discuss works in two steps: first, one or more real functions are evaluated on
the shape; then, a shape descriptor is defined to quantify in a compact structure the information conveyed by these functions.
After discussing different choices of real functions, we describe how to synthesize their behaviors by coding the configuration
of the associated level-setsin a Reeb graph.

Describing shapes via real functions. A variety of different functions have been proposed to analyze shapes, in several
application fields which range from surface remeshing and parameterization to 3D shape matching and retrieval. If any a-
priori information is available on the input shape, this can be used to select the functions which are best suited to identify
specific shape features. By shape feature we mean a property characterizing the shape and that is relevant in a given context
(e.g., protrusions or holes); then, the choice of the function drives the analysis by constraining the description to interpolate
such properties. The height function is among the most intuitive and simple choices for analysing the shape of a surface, but
its drawback is the dependence on the direction considered. A more elaborate characterization is provided by the elevation [1]
function, which derives from the height function but aims at a rotation invariant analysis. Roughly speaking, the elevation
measures how much a point is relevant in its normal direction with respect to its neighbourhood and it has been used to
detect cavities and protrusionsin docking studies. The Euclidean or geodesic distance of mesh vertices from selected feature
points [2, 3], or the average of al geodesic distances among the vertices [4], can be applied to guarantee a description that
retains or forgets the spatial pose. Also curvature-based analysis have been frequently used to characterize the shape of
3D surfaces. Since the curvature-based analysis is rather sensible to noise, small features, and the quality of the shape
discretization in terms of sampling density and tiny triangles, a more robust approximation of the curvature valuesis achieved
either using variations of the curvature evaluation function [5], polynomial surfacefitting, or amulti-scale curvature evaluation
where details are discarded [6].

In case the set of input shapes does not exhibit a uniform structure, harmonic [7] and Laplacian-based functions [8] may
provide a new and powerful set of descriptors for shape analysis, as they are intrinsically defined by the Laplace-Beltrami
operator A. In [7], a harmonic function f is calculated by solving the equation A f = 0 subject to the Dirichlet boundary
conditions B := {f(p;) = a;, i € Z},Z C {1,...,n}. For piecewise linear functions on triangulated surfaces, the discrete
Laplacian operator is defined as A f(pi) = > ;< n(;) wis [f (Pj) — f(pi)], where N (i) is the set of vertices adjacent to the
vertex ¢ and w;; the weight associated with the directed edge (7, j). As coefficients w;; we can select the mean-value or
the cotangent weights, which approximate harmonic maps or minimize the Dirichlet energy respectively. Then, computing
f requiresto solve a sparse linear system whose coefficient matrix is related to the Laplacian matrix L which discretizes A.
Another choiceisto consider the scalar function corresponding to the eigenvector x; of L related to the eigenvalue \;; in this
case, f; := v/ ix; With Lx; = \;x;,7 = 1...,n — 1. Thefunctionsrelated to the smallest eigenval ues are generally smooth,
with a low number of critical points; they also show slow variations, while those related to higher eigenvalues show rapid
oscillations.
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Fig. 1 Reeb graph of a 2-dimensional manifold studied with respect to the height function (left), the distance from the center of mass
(middle) and the second eigenfunction of the Laplacian matrix (right).

Shapedescriptors. Thefunctions used to analyze the shape can be directly associated to a corresponding signature, or shape
descriptor. This association can be exclusive, meaning that a specific function has to be used to produce a given signature, or
the descriptor can be parametric with respect to the choice of the function. The added value of the latter approach relies on the
possibility of adopting different functions, according to the properties and invariants that one wishes to analyze. In this class
of descriptors[7,9, 10], the Reeb graph is probably the most popular. It dates back to 1946, when the French mathematician
George Reeb [11] gave its definition for aMorse function f defined on a smooth manifold M, in terms of the quotient space
defined by the equivalence relation that identifies the points belonging to the same connected component of level setsof f:

Let M be a compact manifold of dimension n and f a simple Morse function defined on M, and let us define the
equivalencerelation“ ~" as (p, f(p)) ~ (q, f(q)) ifandonlyif f(p) = f(q) and p, q are in the same connected
component of f~!(f(p)). The quotient space on M x R induced by “ ~” is a finite and connected simplicial
complex K of dimension 1, such that the counter-image of each vertex A? of K isa singular connected component
of the level sets of f, and the counter-image of the interior of each simplex A]l is homeomor phic to the topological
product of one connected component of the level setsby R [11].

The quotient space defined by Reeb iswhat is currently called Reeb graph. Since itsintroduction in Computer Graphics by
Shinagawaet al. [12] in 1991, Reeb graphs have been used to solve different problems related to shape matching, morphing
and coding. The Reeb graph acts as atool for studying shapes through the evolution and the arrangement of the level sets of a
real function defined over the shape. It is able to convey both geometrical and topological information, since the topological
analysisisdriven by the propertiesexpressed by f. Itsparametric naturewith respect to f isshownin Figure 1, wherethe Reeb
graph of a closed surface with respect to different functions are depicted. Notice how different functions can give insights on
the shape from a different perspective.

Concluding remarksand future per spectives. Shape descriptorsrelying on the use of areal function defined on the shape,
and particularly descriptors based on differential topology and Morse theory, play a fundamental role in the field of shape
analysis. Inthisarea, an interesting issue concernsthe way to use concurrently multiple functions. In this scenario, we foresee
the definition of anew generation of descriptors, that would allow an efficient analysis of complex and high-dimensional data.
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