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Abstract. The paper discusses the initial results obtained for the gen-
eration of canonical 3D models of anatomical parts, built on real patient
data. 3D canonical models of anatomy are key elements in a computer-
assisted diagnosis; for instance, they can support pathology detection,
semantic annotation of patient-specific 3D reconstructions, quantifica-
tion of pathological markers. Our approach is focused on carpal bones
and on the elastic analysis of 3D reconstructions of these bones, which
are segmented from MRI scans, represented as 0-genus triangle meshes,
and parameterized on the sphere. The original method [8] relies on a
set of sparse correspondences, defined as matching vertices. For medical
applications, it is desirable to constrain the mean shape generation to
set-up the correspondences among a larger set of anatomical landmarks,
including vertices, lines, and areas. Preliminary results are discussed and
future development directions are sketched.
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1 Introduction

Thanks to the widespread availability of medical imaging devices, digital 3D
data of patients are more and more used, accurate and massive. Diagnosis,
image-guided surgery, prosthesis fitting or legal medicine now heavily rely on
the analysis of 3D information, such as data measuring the spatial extent of
organs, tissues, cells, and even molecules. While there is an agreement on the
importance of patient-specific models of the human body, there is still a huge
gap between patient data and actual 3D models able to simulate digitally the
specificity of each patient, the complexity of the human body, and its anatomical
sub-systems (e.g., cardiovascular, musculoskeletal, gastrointestinal systems).

The shape of anatomical structures is highly important: shape is, indeed, re-
lated to function and its deviation from a normality might indicate pathological



situations. The shape variability, even within healthy situations, is considerable:
statistical shape models have been used for guiding 3D image segmentation [11]
and cope with the variability of shapes in this phase of medical data analysis.
This fact made it difficult until now to exploit fully the usage of 3D reconstruc-
tions of anatomical parts for supporting diagnosis or follow-up studies.

In this paper, we explore the suitability of statistical shape analysis to pro-
duce 3D canonical models of bones, built from homogeneous classes of 3D bone
reconstructions, extracted from MRI data. Starting with the method proposed
in [8], our aim is to generate a 3D model that captures the variability exhibited
by the members of the class, while preserving important anatomical landmarks,
which characterize both the function and status of the anatomical part. We argue
that 3D canonical models could be used to support diagnosis of musculoskeletal
diseases, acting as reference 3D atlases (healthy average shape) based on which
important morphometric parameters can be evaluated and quantified.

The paper is organized as follows. First (Sect. 2), we describe the role of 3D
canonical models in medicine and give more details on the type and number
of anatomical landmarks that are relevant for describing carpal bones. Then
(Sect. 3), we introduce the reference framework for the generation of mean
shapes, which uses the definition of a shape space constructed from a sparse
set of corresponding shape landmarks. The two approaches to 3D mean shape
generation, augmented by anatomical landmarks, are described together with
the experimental setting. Finally (Sect. 4), our preliminary results are discussed
and future work is presented (Sect. 5).

2 3D canonical models in the medical domain

There is an agreement in medicine that both spatial data (e.g., drawings, 2D/3D
image, 3D models) and symbolic information (e.g., texts, taxonomies, bio-medical
ontologies) have equal importance for describing the human anatomy, and the
optimal solution goes in the direction of a tighter integration of the two [2]. More-
over, a comprehensive integration between patient-specific geometric data and
symbolic information is required to bring 3D patient-specific models (3D-PSM)
fully into clinical practice: this challenging research direction mainly builds on
the processes required to (i) extract automatically 3D models from acquisitions
(e.g., MRI, CT) and to (ii) characterize the 3D reconstructions according to the
needs of the bio-medical domain.

The paper addresses the bridge between (i) and (ii), investigating an approach
to define canonical 3D models of anatomy, which encapsulates and integrates
medical knowledge (e.g., presence of anatomical landmarks) and shape variability
(i.e., statistical variations within an anatomical class). This idea will be discussed
focusing on statistical 3D atlases of carpal bones. The wrist joint consists of
eight carpal bones-hamate, scaphoid, trapezium, trapezoid, pisiform, triquetrum,
capitate. In general, each carpal bone has complex and variable geometry, and
knowledge about healthy shape variations is essential for the diagnosis of wrist
pathologies, such as osteoarthritis or rheumatoid arthritis.



Today, various digital 3D atlases [3, 10] are available and the access to spatial
digital entities tagged with appropriate symbolic information provides an opti-
mal understanding of generic anatomical knowledge. This kind of 3D atlases are
used mostly for educational purposes, while computer-assisted diagnosis systems
need more specific and statistically-relevant 3D reference shapes to evaluate the
regularity of anatomical structures. We target the definition of patient-derived
atlases, and we envisage the definition of methods that, using these atlases, might
derive automatically morphometric or morphological values for the relevant pa-
rameters and descriptors that are considered crucial for the description of the
anatomy and its function.

3D reference models of healthy bones are indeed necessary to automatize a
number of operations that could help clinicians in their daily practice: these in-
clude, for instance, the comparison of a patient-specific 3D reconstructions with
the reference healthy models in order to detect anomalies (e.g., fractures, defor-
mations), monitor changes (e.g., pathology evolution), quantify morphometric
parameters (e.g., volume, distal area), or compute markers of pathologies (e.g.,
scores of bone erosion). Anatomical landmarks are defined as any anatomical fea-
ture (e.g., fold, prominence, duct, vessel) consistently presents in a tissue (e.g.,
bone, muscle) that serves to indicate a specific structure or position, and that
helps to determine homologous parts of an organism. For carpal bones, anatom-
ical landmarks can be, for instance, contact area, pressure points, or ligament
insertion sites that are located on the boundary of the 3D model. Often, these
landmarks can be correlated with geometric features, such as grooves or ridges.
An interesting study of the capability of geometric reasoning for the extraction
of anatomical landmarks of femur is given in [12]. To treat complex injuries or
fractures, or in the diagnosis of musculoskeletal pathologies, such as osteoarthri-
tis or rheumatoid arthritis, clinicians need to have a clear idea about the 3D
shape of the patient bones, as well as specific positions and characteristics of
these landmarks in the patient.

In the present study, we build a taxonomy of landmarks for carpal bones
in OWL language, which formalizes a set of landmarks and has been collected
by osteological surveys and clinical literatures, and discussed among medical
professionals. The landmarks refer to: (i) areal features, which are typically used
to describe the shape of the bone, and indicate the correlation of the shape
with its function within the articulation (e.g., the articular and non-articular
facets of the bone, or prominent features, such as the scaphoid tubercle); (ii)
linear features, which usually delineate the boundaries between the landmark
regions; (iii) point features, which typically represent either an extremal feature
of the bone, such the tip of a protruded facet, or functional sites within the
bone, such as ligament insertion sites. It is important to underline that the
landmarks have a varying topological dimension and influence the statistical
generation of mean shapes. Given the nature of the landmarks, it is clear that
their geometric definition is intrinsically vague and their location, or boundaries,
is hardly captured by mathematical formulation. Statistical analysis is therefore
much more appropriate to locate them.



3 Statistical shape analysis

The main steps of the statistical analysis are: elastic registration, landmark-
guided refinement of the registration, and statistic analysis.

Elastic registration According to [8], we represent anatomical shapes as spherically-
parameterized surfaces f : S2 → R3. Let the set of all such surfaces be F = {f :
S2 7→ R3|

∫
S2 |f(s)|2ds <∞ and f is smooth}, where s = (θ, φ) are the standard

spherical coordinates, ds = sin(θ)dθdφ the standard Lebesgue measure on S2,
and | · | denotes the standard 2-norm in R3. Let also Γ be the set of all diffeo-
morphisms of S2 to itself. With a slight abuse of notation, we assume that all the
surfaces in F have been normalized for translation and scale. Let each surface of
interest be manually annotated by n anatomical landmarks and s1, s2, . . . , sn are
their location on S2, such that f(si), i = 1, 2, . . . , n, become the given landmarks
on a parametrized surface f .

With this representation, the elastic registration of two surfaces f1 and f2 can
be formulated as the problem of finding the optimal rotation O ∈ SO(3) and dif-
feomorphism, or re-parameterization, γ ∈ Γ , such that the distance between f1
and (Of2, γ) = Of2 ◦ γ is minimized:

(O∗, γ∗) = arg min
SO(3)×Γ

d(f1, (Of2, γ)), (1)

where d(·, ·) is a certain measure of distances between surfaces in F . Kurtek et
al. [6, 7] showed that the Euclidean distance (or L2 metric) is not suitable for
comparing surfaces in F , and thus for solving the registration problem. In fact,
the L2 metric can lead to non-symmetric registration between f1 and f2, and
more importantly, the re-parameterization group does not act by isometry under
this metric, i.e. ‖f1 ◦ γ − f2 ◦ γ‖ 6= ‖f1 − f2‖ unless γ is area preserving, which
is often not the case, particularly when dealing with elastic deformations.

To overcome these limitations of the L2 metric, Jermyn et al. [5] proposed a
simplified elastic metric that quantifies differences between two surfaces f1 and f2
as a weighted sum of the amount of bending and stretching that is needed to align
one surface onto the other. Furthermore, they showed that by carefully choosing
the weights of the two terms, the metric reduces to an Euclidean distance between
the Square Root Normal Fields (SRNF) representations of the two surfaces.
Formally, the SRNF representation of a surface f is a function q : S2 → R3

defined as q(s) = n(s)√
a(s)

, where n(s) = ∂f
∂θ ×

∂f
∂φ is the normal to f at s = (θ, φ)

and a(s) = |n(s)| is the local surface area at s.
With this representation, the elastic registration problem defined in Eq. (1)

can be formulated using the Euclidean metric in the space of SRNFs:

(O∗, γ∗) = arg min
SO(3)×Γ

‖q1 − (Oq2 γ)‖2, (2)

where qi is the SRNF representation of fi and (q, γ) =
√
Jγq ◦ γ. Here, Jγ is the

determinant of the Jacobian of γ. Note that the Euclidean distance in the space



of SRNFs corresponds to the geodesic distance in F . We refer the reader to [5]
and [7] for the theoretical details of this representation and also for the approach
used for solving the optimization of Eq. (2). Then, we rotate f2 with O∗ and re-
parameterize it with γ∗ to obtain a new surface f̃2 that is in full correspondence
with f1.

Landmark-guided refinement of the registration While the proposed approach
finds plausible elastic registrations between surfaces, in many cases, however, it
fails to correctly align the anatomical landmarks (provided by medical experts),
particularly when the landmarks are located in feature-less regions. We propose
to refine the registration by finding an additional diffeomorphism γ0 that aligns
the landmarks of the two surfaces. Let us assume that the surface f1 is annotated
by a number, n, of anatomical landmarks. Let s1, s2, . . . , sn be the locations
of these landmarks on S2. Similarly, let s̃1, s̃2, . . . , s̃n be the locations on S2
of the landmarks of f̃2. Let us assume that the corresponding landmark pairs
are {f1(si), f̃2(s̃i)}. Following [8], we connect each pair of matched landmarks
on S2 with a great circle and sample it uniformly using k steps (k = 5, in our
implementation). Then, we solve, using [4], for a small deformation that matches
the (k − 1)-st point to the k-th point on this circle for all j. A composition of
these k small deformations leads to the larger desired deformation γ0. Finally,
the composition γ∗ ◦ γ0 leads to the optimal diffeomorphism that puts f2 in full
correspondence with f1.

Summary statistics Let F = {f1, . . . , fN} be a set ofN spherically-parameterized
carpal bone surfaces of the same type. Let also qi be the SRNF representation
of fi. We seek to build an atlas that is composed of the average shape µ and
its modes of variation. The first step is to register all the surfaces into the same
coordinate frame. To this end, we first compute the pairwise distances between
every pair of surfaces fi and fj in F using the geodesic distance defined in Eq.
(2). We then select among all the surfaces in F the one that has the minimum
average distance to all the other surfaces. Let us denote it by g and note that g
corresponds to the medoid point of the set F .

Next, for every surface fi ∈ F , we find the optimal rotation O∗
i and diffeo-

morphism γ∗i that align fi onto g. Let f̃i = (Q∗fi, γ
∗
i ). Then, all the surfaces f̃i

are now fully aligned and one can use standard linear statistics to compute the
mean shape and the modes of variation. That is, the mean shape µ is given
as: µ = 1

N

∑N
i=1 f̃i.

Finally, the principal modes of variations can be obtained using standard
Principal Component Analysis on the surfaces f̃i after discretization. Note that
it is possible to compute the summary statistics directly on the non-linear man-
ifold F by computing for example the Karcher mean [8] and studying the modes
of variation on the tangent space to F at the Karcher mean. This approach,
however, can be computationally expensive, particularly when dealing with high
resolution data sets.



Fig. 1. Mean shape of the bone of the right wrist: (a) capitate, (b) hamate, (c) lunate,
(d) scaphoid, (e) trapezium, (f) trapezoid, (g) triquetrum, (h) pisiform.

4 Experiments and discussion

In this case study, we mainly focus on (i) testing the original elastic 3D shape
analysis framework with the carpal bone data set, and assessing the quality of
resulting 3D mean shapes and (ii) discussing the hypothesis that guarantees
that actual anatomical features can be preserved in the mean shape, by using
the anatomical landmark-guided correspondence in the mean shape generation
step.

Creation of 3D carpal bone data set We have generated and classified a data set
that contains two sets of patient-specific carpal bones. The first set contains 49
healthy and pathological subjects segmented from T1 weighted MRI images. On
average, for each class of the carpal bone, we have 14 3D surface models for left
wrist and 18 surface models for right wrist. Moreover, the data set contains 8
pathological subjects for left wrist and 6 for right wrist. We have augmented this
set with the models provided by the Digital database of wrist bone anatomy [9],
which contains 30 triangulated 3D models for each carpal bone (healthy) seg-
mented by experts from high-resolution CT images. We manually annotated the
3D models in our training data set [1], using the carpal bone landmark taxonomy,
where we have formalized the landmarks mentioned in Sect. 2. Each bone model
was annotated with 6-8 landmark regions, where the regions mostly represented
the prominent bone features (e.g., hook of the hamate) and articulation facets.

Atlas generation without and with anatomical landmark guided correspondence
In Fig. 1, we show a set of mean shapes computed from the carpal bone training
data set (healthy subjects) without anatomical landmark guided correspondence.
The generated mean shapes loses some anatomical features with respect to the
training data set. According to our preliminary results, we derive the hypothesis
that the actual anatomical features can be preserved in the mean shape genera-



(a) (b) (c)

Fig. 2. (a) Input shape (hamate), generated mean shape (b) without and (c) with
anatomical landmark guided correspondence.

tion process by applying anatomical landmark-guided refinement of the registra-
tion. To verify our hypothesis, we performed experiment by generating the mean
shape of the healthy hamate bone (right) based on anatomical landmark-guided
correspondences. The anatomical landmarks were manually annotated by the
experts on the training data set (16 -18 shapes) using the SemAnatomy3D [1]
tool, which allows interactive annotation of anatomical landmarks on the 3D
models. As the shape generation works with vertex correspondences only, we
have established the correspondences between healthy bone models considering
only the centroid of each annotated region; e.g., the centroid of the hook of ha-
mate region. In Fig. 2, the anatomical features in the mean shape generated with
landmark-guided correspondences (c) appear more reliable and similar to the in-
put shape than the ones generated without taking into account the anatomical
landmarks (b). Moreover, another advantage is that the generated mean shape
contains the canonical landmark positions, which can be further utilize in several
applications (Sect 2).

5 Conclusions and future work

In this paper, we presented a framework that generates canonical 3D models
from the real patient data by using an elastic shape analysis guided by the cor-
respondence of anatomical landmarks. The generated models capture the healthy
variability while preserving important anatomical landmarks. It can be used as
an average healthy shape for supporting the comparison with patient data to de-
tect anomalies or compute markers of pathologies. We introduced the framework
with carpal bone case study, but it can be extended to generate canonical model
of other anatomical districts. The results presented are preliminary and several
steps are necessary to better evaluate the performance of the method. There is
an obvious need for a deeper analysis of the results and a validation framework
involving experts. On the technical side, we would like to address shape corre-
spondences defined by fully real landmarks. This step requires to design also a
more elaborate parametrization method to properly map these constraints dur-
ing the parametrization step and then use them to guide the correspondences.
Once the method is refined, we are also planning to use the 3D canonical model
to automatically identify landmarks and transfer the annotation from the tem-
plate to the patient-specific reconstructions.
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