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Abstract

This paper introduces a skeletal representation, cafaint Cloud Graphthat generalizes the definition of the Reeb graph to
arbitrary point clouds sampled from m-dimensional mamifoémbedded in the d-dimensional space. The proposed thigois
easy to implement and the graph representation yields toff@cteve abstraction of the data. Finally, we present experital
results on point-sampled surfaces and volumetric data shatv the robustness of the Point Cloud Graph to non-unifoointp
distributions and its usefulness for shape comparison.

Keywords: Graph-based representations, point clouds, shape aistrahape comparison.

1. Introduction the search in a database for an object similar to a query can
) ) be nearly impossible if approached by simply comparing {poin
Shape representation from data samples is a well knowgjouds or bulks of thousand triangles. Important aspegs th
problem in many fields of science and engineering. In most Ofjrjve the definition of a skeletal representation are theriav
cases, the data samples are assumed to approximate a whanifghce to translations, rotations, and scalings; the ideatiéin
embedded in a higher-dimensional space. A typical exarsple iznd abstraction of shape features; the independence aéphe r
shape reconstruction from range images obtained by sa@nnifesentation with respect to the shape embedding and diseret
real 3D objects: here, the dimension of the embedding spaggyn; the property of being medial with respect to the shape.
is three (i.e., the dimension of the Euclidean space) whie t  From a general perspective, two main philosophies drive the
intrinsic dimensionality of the surface is two. definition of skeletal representations on triangulatedas@s:
Generally, point sets are supposed to densely sample thf defining amedialstructure representation that always falls
boundary of a smooth surface, which is reconstructed througinside the shape and is equidistant from the shape bountary a
moving least-squares [4, 6, 41], implicit [1] and VorohDe-  each point or (i) explicitly representing how the basic qum
launay [5, 29] approximations. Since point sets are ablefe r nents of the shape are glued together to form the whole. We
resent arbitrarily complex 3D shapes without needing the eXhighlight that in the latter case, the skeletal represantds
plicit storage of the manifold connectivity, they have baeoa ot necessarily medial with respect to the shape.
surface representation alternative to polygonal meshthave Main examples of medial representations are: the Medial
been_widely use_d for several applications. _Among them, wenyis [19, 20, 58], which in 3D may contain both curve seg-
mention ray fracing [2], surface reconstruction [43, 68nS  ments and sheets with non-manifold connections; the medial
pling [4], simplification [52], segmentation [8], spectamialy-  cyrves computed through segmentation [22, 25, 39]; theahedi
sis [51], machine learning [12, 62], progressive rendednd  geodesic skeleton [30]; the mesh contraction based on Lapla
streaming [33] _cian smoothing [9] and surface-based operations [3, 26, 60]
Since only few works address the problem of computing  as 3 representative of the second class of skeletal represen
high-level representations [14] of point clouds, this papek-  tations, theReeb grapl54] codes the evolution and arrange-
les the problem of defining graph-based representationsiof p - ment of the level sets of a real functidn: M — R, defined
clouds. Byskeletal representatiowe mean an explicit graph- gyer a manifoldM. The Reeb graph has been proven to be al-
like coding of the essential structure of the shape undwlyi \yays a 1-dimensional complex and in its original definitioo-p
the input point cloud and the way the shape components glugdes a description that is not invertible. This means thetin-
together to form the whole. put shape cannot be exactly recovered from the Reeb graph and
In general, a skeletal representation yields a compact ane geometric information stored in its nodes and arcs.eSine
expressive shape abstraction, which attempts to reflediuhe  Reep graph is parametric with respect to the input map, chang
man intuition. The use of sliciently concise, informative, ing f induces diferent descriptions of the same surface, which
and easily computable skeletal representations, instt#teo  can pe tackled to shape comparison [38], segmentation [13],
whole models, may facilitate the comparison process. It fac 3nd visualization [63]. Examples of functionSextively used
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Figure 1: (a-d) Graph representations of several pointpgeansurfaces with dlierent features and sampling densities. The original tiearmmgesh representing the
model in (a) has 11 components.

in applications are geodesic distances, harmonic and tiapla function f makes the Point Cloud Graph suitable for several
eigenfunctions. Hicient algorithms for the computation of the applications (e.g., shape abstraction, sketching, cosmgt
Reeb graph exist for polyhedral surfaces [24, 50], volumd-mo Replacing the level sets with strips leads to a robust compu-
els [63], and higher dimensional data [49, 32, 37]. tation of the skeletal curve whef has deficiencies in terms of

A main limitation of the aforementioned approaches is thahoise, missed data, and multiple components. Additionidliy
they assume a manifold connectivity for the representadfon choice avoids the need of computing the moving least-sguare
the input shape, thus making skeletons unavailable for norsurface underlyin@ and allows us to extract the skeleton of an
manifold models, such as triangle soups and point sets in aerbitrary set of points ifR¢, without requiring a local smooth-
bitrary dimension. Concerning point sets, the main apgresc ness or connectivity of the underlying shape. FinallyRithe
for skeletal representations are based on medial-likeemsc Point Cloud Graph reduces to the Reeb graph of the underlying
and exploit the identification of a rotational symmetry ggit] manifold as the point cloud becomes denser. Fig. 1 shows the
through symmetry detection; the Voronoi diagrams [47];ia-th  results of the proposed algorithm on point-sampled susface
ning process based on the 1D moving least-squares construc- The main contribution of the proposed approach relies on
tion [40]; a Laplacian-based contraction [21]; and the meati  its generality with respect tg”, f) and the capability of han-
spheres inscribed inside the input point set [56]. Methbds t dling point sets in any dimension. Concerning the first doaotr
approximate the Medial Axis generally assume that the pointion, our computation of the Point Cloud Graph handles sbape
cloud densely samples the external surface of a solid [5,£28] that are not necessarily described as an assembly of dylindr
few methods generalize the Reeb graph to point clouds,reitheal patches and joints as in [61]; is restricted neither tmtpo
using the level sets of geodesic distance functions ancteetiéss ~ sets representing 0-genus surfaces nor to a specific soalar f
Reeb graph coding [67, 65] for human body scans, or introduction; does not use any template to drive the graph extraction
ing a cluster-based multi-resolution structure, which mdgit  as in [65] for human scans. Finally, we directly compute the
input functions of co-dimension higher than one [59]. skeletal representation without a graph post-processihigh

) - _ ) is generally required by the Laplacian-based contracdh [

Overview and contributionThis paper introduces a skeletal According to the definition of the Reeb Graph [54], the
representation, callébint Cloud Graphwhich generalizesthe pgint Cloud Graph codes a point #in a 1D representation,
definitioq of thg Reeb grgph to arbitrary p.oint cl_ouds _samhple whose properties depend on those one$ afd the shape un-
from m-dimensional manifolds embedded in thelimensional  yerlying#. Note that reducing the width of the partition of the
space. The input point sets represent single shapes, se#hes jyterval containing the image dfforces the strips to converge
several objects, and volumetric data, without assumpt@ns g the corresponding level sets. Even though the Point Cloud
the quality of the mput pomF _sets in terms of noise, MissiNgGraph cannot be used to exactly recover the input davert-
data, and low sampling densities. . ibility property), the graph is useful to compute an approxima-

The proposed approach computes the Point Cloud Graph fn of the input point set through an implicit represerdati
the point setP = Pk, < RY by joining the connected com- y ._ {p : F(p) = O} with radial basis functions [61].
ponents of strips of a real functioh : £ — R. To extract Concerning the computation of the Point Cloud Graph for
this skeletal repr_esentanon,we explplt t_he local conmmjc_bf higher dimensional data, the proposed approach remains un-
thek-nearest neighbor graph &, which is also used to iden-  changed by substituting surface with volume strips. ThePoi
tify the connected components Bf(# may represent a set of cjoyud Graph, as well as the Reeb graph, does not distinguish
shapes) and of the strips &f induced byf. Intuitively, the | the features in higher dimensions [16]; in fact, in cage o
Point Cloud Graph codes the points according to their neame yo|ymetric data it may not code cavities. Since the Point@lo
but it might distort large scale distances. This is a dekrab Graph is intended to generalize the Extended Reeb graph to

property in those applications where large scale distacaey point clouds embedded ¢, differently from [59] we consider
a little meaning. Moreover, the flexibility of the choice diet
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Figure 3: Connectivity between two point sétandQ.

which contains the elements ﬁti whose distance from; is
equal to or lower tham (Fig. 2). These dferent types of neigh-
Figure 2: Example ok-nearest neighbofg, which includes thé points ofP bO!’S will b? l,'lsed to extract th? connected components ,Of the
ok o . strips and join the corresponding nodes of the graph without
closest top; Z," is the set of points if; whose distances from are lower . . ) .
thanr. meshing the point set (Fig. 3). To this end, we adopt the fol-
lowing notions of connectivity and connected components of

. . ) oint sets.
only R as co-domain of the functiohand we do not admit the P

overlap between clusters of points. Admitting overlappiiog  Definition 2.1. Let® := {pj}.; andQ := {q,—}‘j“:1 be two point
mains would not be meaningful for the equivalence relation i sets. Given a positive threshotd® andQ are r-connectedf
Definition 2.2. Furthermore, iik3 the number of loops of the exist two pointp; € P andg;j € Q such that|p; — qjll> < 7.

corresponding Reeb graph would be no more equal to the genus . ] . )
of the input surface. In particular, a point se® is saidr-connectedf each non-

The paper is organized as follows. In Section 2, we provid€Mpty subsef2 of # and its complementary s€I° in # are
formal definitions of the point cloud connectivity, intrazkithe ~ thémselvesr-connected Then, aconnected componenf a
notion of Point Cloud Graph, and detail our graph extractionP0int set¥ is ar-connected set of points . Finally, given
technique. In Section 3, we present our experimental gsttin two r-connected componer@s andC» we define their distance
discuss the robustness of the method with respect to notse af(C1,C2) as

parameters, and show shape matching as a possible applicati d(C1,C2) = ,[P'CT IP1 = Pall2. (1)
Conclusions and future developments are provided in Sedtio P2<C2
2. The Point Cloud Graph 2.2. Graph definition

Our graph representation broadens to point sets conceptt% n\évggfqr\]’;g?nera(‘)'.'ﬁfstgstg?be?‘r?ﬁ:gs;:z'rt'f r:]tc(;zfgar func-
related to the Reeb graph; in particular, it generalizesske IEIQ o delnote its Fn;m m ;';mdlvma um 'thu -
tended Reeb graph (ERG) originally defined on triangle mefglt » W ! inimu ximumwi
and the Discrete Reeb graph [67]. We name this new represen-, ._ o rf(o).p: € P Vo = max!{f(p:).n € P
tationPoint Cloud GrapHPCG). Similarly to the ERG, the aim m = min g (Pi). pi € 7). w =, max (Pi). pi € 7).

of the method is to extract the PCG of the p&®, £), where -
P = (P, € RY is a set of points iR? andf : » - Ris a andIm(f) = [vm, vm] is the interval ofR that contains the dis-
scalar function defined oR, i.e., f(p;) is known for each point  crete image Imf) := {f(p;), pi € #} of f. For any interval
pi € P. The idea behind our approach is to organize the daté@ bl. & < b, contained inm(f), the discrete striprelated to
into a family of strips of points oP, to associate a node to each [& bl (Fig. 4(a)) is defined as the s&tjap = {pi € P : a <
connected component of the strip, and to insert an arc betwed (Pi) < b}. Then, we replace the role of contours in the defini-
two nodes if their distance is less than a user given threshol tion of the Reeb graph [54] with the concept of strips.

In the following, we introduce the connectivity among the
points of # (Section 2.1), the definition of the Point Cloud
Graph of @, f) (Section 2.2), and its computation (Section 2.3).

Definition 2.2. Let f : £ — R be a real-valued function de-
fined on a point cloud®® and J = {J1,...,9m} be a parti-
tion of Im(f) by non-empty intervals, i.elm(f) = Ug; T«
. . JNT; =0,i # j. Then, thePoint Cloud Graplof £ with
2.1. Connectivity and connected sets of point clouds respect to f andJ is the quotient space @ x R defined from

Within the k-nearest neighbor grapi™ of #, each point o equivalence relation<": (p, f(p)) ~ (q. f(q)) if and only
pi € P is associated to itk nearest points oP, which identify 39, € J such that:

the neighbor 7, := {p;.}, of pi. In a similar way, theo-

nearest neighbor gf; is defined as the set of points Bfthat 1. f(p). f(a) € Ji;

fall inside the sphere of centg@; and radiuso. Finally, we 2. p, q € P belong to the same connected component of
introduce the neighbor &g,

IKT = {pj, € Ip, © llpi - pidll2 < 7},
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Figure 4: (a-d) Main steps of the proposed approachf,,age consider a harmonic function with one maximum and onermim. (a) A strip (red) and (b) its
connected components are identified witffetient colors. (c) The nodes of tReint Cloud Graphare computed as centroids of each connected component)and (d
linked to form the arcs of the PCG. (e,f) PCG with respect totikight function oriented according to tix@xis. The same axis frame is used in the rest of the
paper. In (e), the green nodes represent strips with moneahe component and (f) the corresponding arcs are identifigacthree colors.

The connected components of a strip (Fig. 4(b)) correspondnd its closeness to the underlying surface. An alterniite
to its T-connected sets defined in Section 2.1. In particular, wérace the shortest path among the nodes of an extended sphere
notice that Definition 2.2 introduces the PCG through anwequi of-influence graph. In this case, the Point Cloud Graph asso-
alence relation that requires the géto be a partition. Indeed, ciated to the averaged geodesic distance from a set of source
the elements qff cannot intersect and the PCG cannot be im-points is useful for the computation of bending invariareysh
plemented through the clustering strategy introduced®.[5  signatures [55, 65].

To define harmonic scalar functions on a point Betthe

2.3. Graph extraction Laplace-Beltrami operator is discretized by the Laplacraa

To describe how our algorithm extracts the Point Cloud Gra@tx L := (Lij){";_; as [10, 11, 23]
as a couplgs = (V, E), whereV andE are respectively the set

of the graph nodes and edges, we distinguish four fundamenta -1 i=]j a = exp(_\lpi—fnlg)
steps: Lij =1 aj/ai pj € Ny, g o)
0 else @i '= Yjen, &j-

1. choice of the scalar functiofn

2. extraction of the strips of (Fig. 4(a)); We briefly remind that the vectdr, h # 0, is aneigenvector
3. identification of the connected components of each stripf L related to thesigenvaluel if and only if Lh = Ah. OnceL
(Fig. 4(b)) and creation of the s&tof nodes (Fig. 4(c)); has been built, the computation of the harmonic scalar fonct
4. generation of the s& of arcs (Fig. 4(d)). resembles the case of triangle meshes [31, 34, 46]. Choasing
set of boundary conditior8 := {f(pi) = ailier, L € {1,...,n},
Choice of the scalar function fThe graph extraction scheme we solve the linear systetn*f* = b, wheref* := (f(pi))icrc is
can be applied to any mapdefined orP, thus providing a set  the vector of unknownd is the complementary set t b is
of characterizations andf@&rent descriptions of the shape un- a constant vector, arid* is achieved by removing th&-row
derlying®. The properties of the corresponding skeleton will andith-column ofL , i € 7.
reflect those off, thus yielding to a multi-view shape descrip-  The Laplace-Beltrami eigenfunctions [12], or the heat ker-
tion. Coding the PCG as an attributed graph, the choice of th@el [42], provide a family of maps whose Reeb graphs code
function f influences the geometric and topological informa-the features of? in a multi-scale manner; i.e., from global
tion stored in its nodes and arcs. Scalar functions may bereit to local levels of detail. Even though a general choicef of
induced by the application context or intrinsically defif®d  does not guarantee that the corresponding Reeb graph is in-
the manifoldM underlying®. In the following, we briefly re-  side®, specific choices of the input maps such as the Laplace-
view the computation of the geodesic, harmonic, and Lagfaci Beltrami eigenfunctions provide representations thatcame
functions. tered and well aligned with generalized cylindersrofif any).
Recent works [44, 55] on the computation of geodesics on &urthermore, non-cylindrical joints are represented aplyedges
point setP have enriched the class of scalar functiongonith without self-intersections. For shape analysis, we mdimtys
geodesics-based maps, previously defined on triangle mE8le on functions that are intrinsically defined by the point cpu
and used for shape comparison [27, 45]. For instance, in [55uch as the Laplacian eigenfunctions.
piecewise linear approximations of geodesic paths on point
sampled surfaces are computed by minimizing an energy fundextraction of the strips of f.According to Definition 2.2, the
tion, which takes into account both the geodesic path lengtbtrips are extracted with respect to a partitigi}’ , of the in-
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Table 1: Computational cost of the main steps of the propappdoach, where
sis the number of source points used for the computation ofé&uzlesic dis-

tance.
Task Comput. cost
Load O(n)
Function O(n)-O(snlogn)
k-nearest neigh. graph O(nlogn)
Conn. components | O(kn)
Arc constructions O(n)
i+1 i+1
Cy C;
Git1 d>T @
6£ ..' .l... -' Eo:: .:
ci :

Figure 5: The nodei1 is linked to nodenil"l. Similarly, there is an arc between
nodesnl, andnL. Sinced(Cl, C\?) > 7, we have not a linking edge between
ni, andni*L,

tervallm(f) (Fig. 4(a)). The easiest way to partitibm(f) into
ns sub-intervals is to select + 1 valuesvy := Vi, V1, ..., Vq, =
VM, Vi < Viz1, and define each strip &g = (7)), Ji = (b)

[Vi,Vis1), i = 0,...,ng— 1. This slicing strategy is quite com- _ , _

. . . . . Figure 6: Point Cloud Graph of a scene with (a) three and (x)domponents.
mon in the eXtraCtllon Of_ discrete apPr_‘”_('ma“O”S of the Reet%s scalar function, we have chosen the height function wadpect to the-
graph because uniform interval subdivisiondraf f) allow us  axis.
to approximate the size and the relevance of a feature irsterm
of the length of the arcs of the graph; i.e., the longer thetac
more important the feature coded by the graph. Furtherntore,
is possible to define an iterative sequence in the inteniadisu
vision that makes the graph multi-resolutive. For more itketa
on the slicing strategy, we refer the reader to [16, 38].

are visited sequentially with respect to the increasingond

of the corresponding intervalg;. According to Equation (1),
two connected componer@s andCi** are linked ifd(CL, CI*Y) <

7; in this case, we add the am( ni**) to G (Fig. 4). The extrac-
tion of the seE of arcs ends when all the possible links among

Connected components of strips and creation of the set vV ¢he connected components of two consecutive strips have bee
nodes. Once we have identified the strgy., we detect its- proc_:essed (Fl_g. 5). The_ construcno_n of the arcs allows us .to
connected components with respect to Definition 2.1. To ex€asily recognize branching parts. Figs. 4(d.e) show thatPoi
tract ar-connected componedt, of the stripS ., we selecta  Cloud Graph of the same point cloud with respect to two dif-
pointp;, € &, that has not been marked as belonging to anyerent functions. DOferently from [57] and in order to extract
r-connected component. Then, all the pointsof N IIS’,»TI are the graph of scenes, which are typically composed of several

. ; . : components (Fig. 6), we do not automatically connect adja-
marked as belonging ©. and we recursively repeat this expan- . :
i : i i cent strips that have only one connected component. Fjnally
sion on all the points of". If at the end of this process there

i , Figs. 7, 8, and 9 show the Point Cloud Graph of the same shape
are points ofS 5, that are still unmarked, then we select one of ;i gifferent functions.

them, identify a new connected component, and continué unti
all the points ofS 5, have been labeled as visited. The whole Computational cost.Our algorithm is computationallyigcient
process is applied to all the strips and ends when each poiaihd handles point clouds with hundred thousands of points an
of # has been assigned to someonnected component. Fi- more than one object. Analyzing the single steps of the al-
nally, we associate a nod to every connected componéiit  gorithm (Table 1), the data loading requir®gn) operations,
As spatial representative of] we choose the centroid ofj, wheren is the number of points dP. The computation of the
(Fig. 4(c)). input scalar functiorf varies fromO(n) to O(nlogn). For in-
stance, the evaluation of the height function and the digtan
Creation of the set E of arcsAccording to Definition 2.2, the  from the center of mass is linear in the number of points; the
noden', which codes the connected componé€ht must be  computation of the geodesic distance frensource points is
linked to the nodes that correspond to the connected comp@(snlogn) using the Dijkstra’s algorithm; and the solution of
nents of the strip& 4, , and& ,,,. Note that these strigs 4 }i the Laplace-Beltrami eigenvalue problem is super-lineam i



(@) (b) (©) (d)

(@) (b) (€) (d)

Figure 7: Point Cloud Graph of the same point cloud with respe different
scalar functions: (a) height function with respect to taxis; (b) f(p) =

log(lpll2 + 1); (€) f(x.¥.2) := X% =¥, p := (X ¥, 2); (d) f(p) = lIpll2.

(€) (f) (9 (h)

Figure 9: Point Cloud Graphs of the scans of two statues withect to (a,b,e,f)

Laplacian-Beltrami eigenfunctions and (c,d,g,h) harmduanctions.
Figure 8: In (a), the graph is represented as two overlapgicg (b) Changing P g (c.d.g.h)

the scalar function, the arcs of the Point Cloud Graph arkaitkpcoded. Here,

f is the height function with respect to (a) thexis and (by-axis. our method to point sets with fiérent sampling density, noise

level, distribution of shape features, and missed parts.stMo
and the number of eigenfunctions computed. The computasf point clouds corresponds to 3D scans of real models such
tion of thek-nearest neighbor graph takesO(nlogn) oper-  as small statues and human bodies ifiedlent poses. We also
ations [7] and the creation of the strips is lineaninFor each  consider point samples of volumetric data, i.e., where tire u
strip, the computation of the connected componentst@ies)  derlying manifold is a 3manifold with boundary embedded in
operations. The extraction of the arcs@fequires to traverse R3. For our tests, we have considered 50 points clouds from
two consecutive strips and visit their points at most twice;  the AIM@SHAPE repository, 30 body scans from the CAE-
deed, this step runs @(n) operations. Finally, the overall com- SAR Data Samplés and the 400 models of the SHREC 2007
putational cost i©(n)+O(nlogn)+0O(kn) = O(maxkn,nlogn}), benchmark The non-orientable models have been obtained
which does not considerablyftir from theO(nlogn) time re-  from parametric samples of the Moebius surface and Klein's
quired to compute the Reeb graph over triangle meshes [2&ottle and the two scenes have been composed from objects of
16] and an #icient implementation of the clustering strategy the data sets. To evaluate how the Point Cloud Graph depends
in [59]. on the data quality, the point clouds have been perturbe wit
geometric noise, by modifying the point coordinates. Tonsho
the scalability and theficiency of the method (Table 2), the
size of the data set ranges from a few thousand points to over

Once our experimental settings have been introduced (Secne million. All the experiments have been performed over a

tion 3.1), we discuss the main properties and degrees of freenini-laptop equipped with Linux operative systeMobile In-
dom in the computation of the Point Cloud Graph; namelytel Celeron 900MHzand2048MByte Ram
the choice of the parameters (Section 3.2), its robustrgsss ( Beside the choice of the input functidnthe arcs and nodes
tion 3.3), the generalization to volume data and non-oaiglet  of the Point Cloud Graph are determined by the point cloud
surfaces (Section 3.4), and the application to shape casapar connectivity stored in th&-nearest neighbor graph. For point
(Section 3.5). sets that represent 3D surfaces, we have experimentaifieder

that when the sampling &% is suficiently dense the number of

3. Discussion and results

3.1. Experimental settings

To analyze the behavior of the Point Cloud graph with re-— .
. . . http://shapes.aim-at-shape.net
spect to the size of the nelghbor of each point throth the con ’http://www.hec.afrl.af .mil/HECP/Cardib. shtml#caesarsamples
nectivity parameters introduced in Section 2.1, we havéiegp Shttp://watertight.ge.imati.cnr.it/
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Figure 10: (a) The adaptive selection of the threshegldllows us to better
identify through holes in the point clouds as loops of thenP@loud Graph.

(b) The choice of a constantprovides a skeleton that codes a lower number of

local details. Heref is the first non-trivial Laplacian eigenfunction.

(@) (b)

(© (d)

Figure 11: Point Cloud Graph of a point set with (a,b) a low mrejular sam-
pling density with missed parts (shoulder and feet in (b})iclv are occluded

|00p5_0f the PCGiis equal to th.e genus of the surface undgrlyinguring the acquisition process. (c,d) Zoom-in. For botmepies, the extracted
P. Since the sampling density varies from model to modelskeletal representations capture the main features ofritierlying surface. In

it is crucial to automatically select a threshold that idferg both cases, we have selected the first non-trivial Laplagigenfunction.
the connected components of both the shapes of a scene and
the strips of each building shape. To this end, we assume th

the 3D shapes arenherently sampled.e., the local sampling

densityop of £ [53] is equal to or lower than the distance used

to identify the connected components of the strips, the gize
the through holes and the connected components.

3.2. Choice of the parameters
Since the choice of the parametersand k is crucial to

fhriation of the sampling density occurs, the choice;ahight
provide problems for the identification of topological héexd
whose size is approximatety (Fig. 10).

A crucial part for the extraction @f is related to the compu-
tation of the connected components of each strip and tha-gene
ation of the arcs of the graph, where multiple componentaiocc
These two steps of the algorithm are guided by the expansion
radiust; of the neighbor of each point @& ,. The tolerance

obtain an fective representation of the shape characteristicshat identifies the connected component of the strip will be
we analyze how their choice influences the Point Cloud Grapl|so defined as a multiple of.

and how to automatically determine them. To deal with non-  The adaptive choice of the parameters is also crucial when

uniform point samples or partially missing data, we introglu
an adaptive definition of, which is iteratively tuned according
to the local density of the point cloydl. To guarantee the co-
herence of the point cloud, we fix the valuemfas a multiple
of op and initialize the connected components®§,. Then,
during the expansion process and in a neighbor of a pgioif
thei—th strip S 4; we iteratively refine the constanf,(, j > 1,
as follows:

@js1tT krj _
e =k
Tj+1 .=

2(71]+1+jTj k,Ti
+1 |iji | < k’

where|Z| is the number of points of the sdt and aj.1 =

we deal with scenes that include components withféedint
sampling density. For instance, in Fig. 6(b) the table maslel
denser than the other ones and the dog surface is not unyforml
sampled. In case of a non-uniform distribution of pointg th
Point Cloud Graph could present m@ess connections than
expected or many connected components (Figs. 11 and 12).
Fig. 12(a) shows how our representation automaticallyirdist
guishes spurious data, such as regions of the platform ochwhi
the human is standing during the body acquisition, from body
parts partially occluded. Additionally, the rear part of thead
is correctly connected to the main body.

Table 2 summarizes the characteristics of the PCG in terms
of number of elements, loops, and connected components with

max _«; [Ip — pjllz. In those shape regions where an irregularrespect to dferent choices ok andr. For the computation

pEIPii
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Figure 12: (a,b) Point Cloud Graph extracted from partialgcluded body

scans and in dierent postures. In these examples, we have selected the first

non-trivial Laplacian eigenfunction. . .
(® 9) (h) 0] 0)

. . jgure 13: If the original point cloud (a) is perturbed witiGaussian noise (b-
of these graphs, the number of strips has been fixed to 30 fd;';, then the number of nodes and arcs of the PCGs does notechiEimg PCGs

the bi-torus model, 100 for the hand model, and 50 for the 30 (1.h) correspond to the ones in (c-e) selecting= 30 instead ofis = 50. For
scene. Our tests have shown that if the paramétargir are  (ij), the reference Point Cloud Graphs are shown in Figs,g)( respectively.
arbitrarily chosen the number of |OOpS of the graph may Var)}n these examples, the chosen scalar function is the heightién in thez-axis

. .. direction.
(e.g., Fig. 13). Moreover, the valugaffects the connectivity of
the graph: this is not surprising because wheimncreases the
t—connected sets become larger and the corresponding nodiagt that we code the evolution of the strips instead of the co

are connected. tours, which are more sensitive to local perturbations ¢t 5o
In our data set, we have experimentally verified that a goodndf.
compromise between computational complexity affid@cy of As shown in Figs. 12 and 14, the Point Cloud graph han-

the description is to choodesmaller than 12; to initialize,  dles either irregularly or partially sampled data, due tolwc
from 5 to 10 timesoyp; and to setr as 2rj, wherer; the is  sions during the acquisition process. For instance, Fi¢p)12
the adaptive threshold previously discussed. If nffedently  shows the behavior of the graph with respect to shape asitlier
specified in the text, then we det 10,11 = 50, andr = 27;. In fact, this body scan presents a few points (low-left) teat
be considered as noise. With our standard choice of the pa-
rametersk andrj, the human model and few isolated points
3.3. Robustness (left part) are abstracted as distinct graphs. The smaltast

We now discuss the robustness of the graph to noise, loc®onent disappears only when the chosen paramettows us
deformations, and missed data by experimentally verifiing ~ t0 glue this small component to the body. Moreover, Fig. 14
these factorsfiect the corresponding structure. To this end, wedepicts that, dferently from [61], the flexibility in the choice
simulate a geometric perturbation of the point cloud maddy
the coordinates of the points through random Gaussianrpertu
bations. The variance of noise perturbation of the models iffable 2: Point Cloud Graph complexity. The variationrodndk influences
Figs. 13(b-e) is 2%, 5%, 10%, and 15% of the maximum di_the _connectivity of the graph in terms of number of connectatponent€C, _
ameter ofp, respectively. All these graphs have been 0btaine(iemceslVl, edgegE|, and loops. The Bi-torus, the Hand, and the Scene point

. : A louds are respectively shown in Figs. 13(a), 1(d), and é¢apectively.
usingns = 50 strips. The overall structure of the graph is the| Model | n | = | k || IV | [El [loops] CC]

same even if the numbet of strips varies: Figs. 13(f-h) show . :

the PCGs extracted settimg = 30 and the noise variance is g::g;zz gi ;:' 170 ;% 33 128 1
equal to 5%, 10%, and 15%. Moreover, we notice that when th Biorus | 12K 1071' 7 5173 5 1
bitorus model is perturbed with a noise variation highents% Biiorus | 12K 2T'J 1001 31 1 31 1 1
the corresponding triangle mesh is no more manifold andlsmall —. ]

self-intersections appear; indeed, we are not able toaxtra Bi-torus | 12K | 27; | 102 30 | 29 0 1
Reeb graph from the mesh while this is possible with our PCG Hand 37K | 2r; 10 || 155 154 0 1
Additional examples are depicted in Figs. 13(i,j): thesalale | and 37K | 27 | 7 | 161] 160 O 1
correspond to 2% noise perturbations of the ones in FigggB(b Hand 37K | 27 4 302 | 407 | 106 1
respectively. In all cases, the extraction of the skelétatture Scene | 330K | 2r; | 10 |) 250] 250 | 3 3
remains stable; i.e., the number and position of nodes ared ar| Scene | 330K | 4r; 8 || 253)252| 3 4
do not significantly change. This property is mainly due ® th | Scene | 330K | 10r; | 12 || 232 233| 3 2




(@) (b)

(© (d) (e)

Figure 15: Point Cloud Graph of point sets sampled from (aphilk surface, (b) a plane with three twists, and (c-e) arkbetttle at dfferent resolutions. In (a,b),
the input map is the height function with respect toyrexis. In (c-e), we have selected the first non-trivial Laa eigenfunction.

of t.he paramet_er aUtomatlca”y prowdes an estimation of the Table 3: Statistics on the Point Cloud Graph extraction fine of our test
entity of the missed part. In fact, these examples represent models, the last four rows refer to point clouds of voluntetiata:n number of
sequence of dierent samples of the same statue, whose resoints of?, ns number of strips used to extract the descriptish cardinality
lution increases from (a) to (d). To compute the PCG, we havéf the set of nodesE| number of arcs of. Time is expressed in seconds.

considered the distance from the center of mass and setthe paModel | n [ ns | IVI | [El |Time|
rameter, 1, andr with the default values discussed in Sec- | Monk - 11(a) 30K | 120 137 | 141 | 1,2
tion 3.2. The graph in Fig. 12(a) highlights that the bust tred Camel - 1(c) 35K | 140 241 | 242 | 1,7
bottom of the statue is completely missing: this impliestha | Hand - 1(d) 53K | 100 || 221 | 220 | 4,1

loop of the graph is broken and an additional loop appeatsint | |ppocrates - 10(a)] 102K | 200 || 222 | 226 | 11,9
bottom. The two intermediate PCGs in Fig. 12(b,c) are quali- Human - 11(b) 190K | 120|| 249 | 248 | 41,8

tatively and qualitatively equivalent while the PCG of a fine | Scene - 6(a) 330K | 200 [ 10031 1003 370
sample (Fig. 12(d)) of the statue correctly recognizesWee t [Raptor - 1(a) 1M | 400 || 1164 | 1142 | 435
hands and has an additional loop. Hand - 16(a) 50K | 30 29 28 5
. Vertebrae - 16(b) | 17K | 20 20 19 3
3.4. Non-orientable surfaces and volume data Skull - 16() 38K | 50 65 65 5
In the following, we show that our approach is able to de-"Ear - 16(d) 153K | 20 60 92 | 221

scribe a class of data larger than the Reeb graph, includiimg p
clouds originated by surfaces, volume datarrerdimensional
manifolds embedded iR® with multiple components. For in- cept for the models in Fig 15(c-e) & 10r;) and Figs. 15(c-e)
stance, since the original triangle mesh representing e (k = 25,k = 15,k = 30). Volume data are quite common in
in Fig. 1(a) contains 11 components, it is not possible to-<commedical and FEM applications. Until now, the extractiontod t
pute the Reeb graph directly on the triangle mesh while ouReeb graph description for these data required the geoeaiti
algorithm dfectively runs also on this example. The same re-a tetrahedral representation®f[49] and the identification of
mark holds for the representation of sets of objects as mohs hole cuts [63] to have computationafieiency. In its original
scenes (Fig. 6). definition, the Reeb graph is not able to fully representtesi
Our graph representation also handles point sets represesimilarly the PCG has the same limitation. For instancejin F
ing non-orientable surfaces (Fig. 15) and volume data (Y.  ure 16(c) the skull cavity is simply represented with a segee
without building a manifold representation of the modelalh  of nodes and arcs. Table 3 reports statistics on the PointiClo
these examples, the valueslodndr are the default ones ex- Graph computation for 3D shapes witHffdrent sampling den-

9



@ (b)
(a) (b)

() (d)

Figure 16: (a-d) Point Cloud Graph of volume data. Here, the ia the height
(C) (d) function with respect to the main direction provided by thimé&lpal Compo-

nent Analysis on the input data set. According to the dedfinitf Reeb graph,
(a) highlights a situation for which the choice bfgenerates a PCG which is

Figure 14: (a-d) Point Cloud Graph with respect to irregsiampling density not medial to the shape

and missed part. Slightly increasing the shape resolutiggraves the quality

of the Point Cloud Graph, in terms of a lower number of termaras and a

better alignment with the underlying shape. Here, the hdigfction is in the . . . . L

direction of thez-axis. D is a pseudo-metric, which satisfies positivity, symmetrg an
triangle inequality; identity is not verified (i.eD(G1,G2) =
0 # G1 ~ Gy). More details can be found in [48].

sities and resolution. In our tests, we have selected seven classes (human, cup,
) table, glass, octopus, plier, and bird models) from the SERE
3.5. Shape comparison 2007 benchmark on watertight models [35] and tested the re-

A current limitation of the use of the Reeb graph for match-trieval performance of the Point Cloud Graph using the first
ing purposes is that the existing algorithms [17, 64, 18] andand second non-trivial Laplace-Beltrami eigenfunctiaither
applications to relevance feedback [36] requires the nsoibel singularly or in combination. Table 4 quantitatively comgm
be watertight and without topological artifacts (e.g., glang  the distances between couples of models (three humans, two
edges, multiple components). Indeed, the use of the Reph gracups, and two tables) computed either using the PCG (bottom
is limited to a narrow number of data sets. In this context, wevalue) or the Reeb graph (top value) as shape signatures. De-
outline how the graph matching techniques used for Reelhgragspite the relative relevance of the numerical scores, thesaf
comparison is easily adapted to the Point Cloud Graph, thuthe distances are nearly comparable and in both cases well di
broadening the use of this description to quite a numbertaf da criminate among objects belonging tdfdirent classes. A qual-
sets. In our experiments, we compare the Point Cloud Graphative comparison of the two descriptors is shown in Fig,. 17
using the graph distance [48], which is an extension to set ofvhere the precision-recall diagrams of the PCG and the Reeb
graphs of Laplace-based metric [66], and match both single agraph (RG) [48] are depicted over the benchmark and the hu-
sets of graphs. More formally, we consider the set of elemenman model class. Again, these diagrams confirm that the per-

tary symmetric polynomials: formance of the two descriptors is substantially the same; i

fact, in our feeling the relevance of the PCG graph is in the ex

Sj(Vi,...,Vn) = Z Vi Vip =+ - Vijs j=L1....n tension of the application domain (more objects, even disco
<< nected and polygon soups) rather than one more method that

lightly i h matchi ing Reeb hs.
Then, thefeature vectoof the Point Cloud Grapfs is defined SIghtly Improves graph matching using eeb graphs

as the matrix
4. Future work

B:(fl,l,---,fl,n,---,fn,l’---’fn,n)T B X ) ) X
Differently from the usual Reeb graph description, our Point

where fij = signSj(@4, ..., DPn)) IN(L + [Sj(Daj, ..., Dnj)l) Cloud Graph is able to deal with point sets and multiple con-
and @; ; denotes the entryi,(j) of the matrix® that decom- nected components, without requiring any pre-processey s
poses the Laplacian matrixwith constant weights of the graph Therefore, we approach a larger scenario of applicatiohghw
asL = ®®'. The distance between two Point Cloud Graphsspans from medicine to robotics to ambient intelligencer- Fu
G1, G2 whose feature vectoB;, B, are known, is defined by:  ther investigations are needed to identify which class atfu

tions is the most suitable for a given task and to analyze how
D(G1.Gy) :=|lIBall2 — [1B2ll2| -
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(a) (b)

Figure 17: (a) Precision (vertical axis) versus recall gantal axis) diagrams over three classes of the data spaf@b(b) focus on the class of the human models.

many geometric attributes must be stored feeively ad- [10]
dressing shape retrieval and recognition issues. In gemena
framework dfectively codes shape features independently on; )
the dimension of the underlying manifold and the embedding
space. Moving from these considerations, the Point Clowagbksr
significantly extends the class of shapes to which grapkebas [12]
descriptors may be applied, for instance triangle soupty da

scans, and X-ray crystallography. [13]
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