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Abstract

This paper introduces a skeletal representation, calledPoint Cloud Graph, that generalizes the definition of the Reeb graph to
arbitrary point clouds sampled from m-dimensional manifolds embedded in the d-dimensional space. The proposed algorithm is
easy to implement and the graph representation yields to an effective abstraction of the data. Finally, we present experimental
results on point-sampled surfaces and volumetric data thatshow the robustness of the Point Cloud Graph to non-uniform point
distributions and its usefulness for shape comparison.
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1. Introduction

Shape representation from data samples is a well known
problem in many fields of science and engineering. In most of
cases, the data samples are assumed to approximate a manifold
embedded in a higher-dimensional space. A typical example is
shape reconstruction from range images obtained by scanning
real 3D objects: here, the dimension of the embedding space
is three (i.e., the dimension of the Euclidean space) while the
intrinsic dimensionality of the surface is two.

Generally, point sets are supposed to densely sample the
boundary of a smooth surface, which is reconstructed through
moving least-squares [4, 6, 41], implicit [1] and Voronoi/ De-
launay [5, 29] approximations. Since point sets are able to rep-
resent arbitrarily complex 3D shapes without needing the ex-
plicit storage of the manifold connectivity, they have become a
surface representation alternative to polygonal meshes and have
been widely used for several applications. Among them, we
mention ray tracing [2], surface reconstruction [43, 68], sam-
pling [4], simplification [52], segmentation [8], spectralanaly-
sis [51], machine learning [12, 62], progressive renderingand
streaming [33]

Since only few works address the problem of computing
high-level representations [14] of point clouds, this paper tack-
les the problem of defining graph-based representations of point
clouds. Byskeletal representationwe mean an explicit graph-
like coding of the essential structure of the shape underlying
the input point cloud and the way the shape components glue
together to form the whole.

In general, a skeletal representation yields a compact and
expressive shape abstraction, which attempts to reflect thehu-
man intuition. The use of sufficiently concise, informative,
and easily computable skeletal representations, instead of the
whole models, may facilitate the comparison process. In fact,

the search in a database for an object similar to a query can
be nearly impossible if approached by simply comparing point
clouds or bulks of thousand triangles. Important aspects that
drive the definition of a skeletal representation are the invari-
ance to translations, rotations, and scalings; the identification
and abstraction of shape features; the independence of the rep-
resentation with respect to the shape embedding and discretiza-
tion; the property of being medial with respect to the shape.

From a general perspective, two main philosophies drive the
definition of skeletal representations on triangulated surfaces:
(i) defining amedialstructure representation that always falls
inside the shape and is equidistant from the shape boundary at
each point or (ii) explicitly representing how the basic compo-
nents of the shape are glued together to form the whole. We
highlight that in the latter case, the skeletal representation is
not necessarily medial with respect to the shape.

Main examples of medial representations are: the Medial
Axis [19, 20, 58], which in 3D may contain both curve seg-
ments and sheets with non-manifold connections; the medial
curves computed through segmentation [22, 25, 39]; the medial
geodesic skeleton [30]; the mesh contraction based on Lapla-
cian smoothing [9] and surface-based operations [3, 26, 60].

As a representative of the second class of skeletal represen-
tations, theReeb graph[54] codes the evolution and arrange-
ment of the level sets of a real functionf : M → R, defined
over a manifoldM. The Reeb graph has been proven to be al-
ways a 1-dimensional complex and in its original definition pro-
vides a description that is not invertible. This means that the in-
put shape cannot be exactly recovered from the Reeb graph and
the geometric information stored in its nodes and arcs. Since the
Reeb graph is parametric with respect to the input map, chang-
ing f induces different descriptions of the same surface, which
can be tackled to shape comparison [38], segmentation [13],
and visualization [63]. Examples of functions effectively used
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Figure 1: (a-d) Graph representations of several point-sampled surfaces with different features and sampling densities. The original triangle mesh representing the
model in (a) has 11 components.

in applications are geodesic distances, harmonic and Laplacian
eigenfunctions. Efficient algorithms for the computation of the
Reeb graph exist for polyhedral surfaces [24, 50], volume mod-
els [63], and higher dimensional data [49, 32, 37].

A main limitation of the aforementioned approaches is that
they assume a manifold connectivity for the representationof
the input shape, thus making skeletons unavailable for non-
manifold models, such as triangle soups and point sets in ar-
bitrary dimension. Concerning point sets, the main approaches
for skeletal representations are based on medial-like concepts
and exploit the identification of a rotational symmetry axis[61]
through symmetry detection; the Voronoi diagrams [47]; a thin-
ning process based on the 1D moving least-squares construc-
tion [40]; a Laplacian-based contraction [21]; and the maximal
spheres inscribed inside the input point set [56]. Methods that
approximate the Medial Axis generally assume that the point
cloud densely samples the external surface of a solid [5, 28]. A
few methods generalize the Reeb graph to point clouds, either
using the level sets of geodesic distance functions and a discrete
Reeb graph coding [67, 65] for human body scans, or introduc-
ing a cluster-based multi-resolution structure, which mayadmit
input functions of co-dimension higher than one [59].

Overview and contribution.This paper introduces a skeletal
representation, calledPoint Cloud Graph, which generalizes the
definition of the Reeb graph to arbitrary point clouds sampled
from m-dimensional manifolds embedded in thed-dimensional
space. The input point sets represent single shapes, sceneswith
several objects, and volumetric data, without assumptionson
the quality of the input point sets in terms of noise, missing
data, and low sampling densities.

The proposed approach computes the Point Cloud Graph of
the point setP := {pi}

n
i=1 ⊆ R

d by joining the connected com-
ponents of strips of a real functionf : P → R. To extract
this skeletal representation, we exploit the local connectivity of
thek-nearest neighbor graph ofP, which is also used to iden-
tify the connected components ofP (P may represent a set of
shapes) and of the strips ofP induced by f . Intuitively, the
Point Cloud Graph codes the points according to their nearness
but it might distort large scale distances. This is a desirable
property in those applications where large scale distancescarry
a little meaning. Moreover, the flexibility of the choice of the

function f makes the Point Cloud Graph suitable for several
applications (e.g., shape abstraction, sketching, comparison).

Replacing the level sets with strips leads to a robust compu-
tation of the skeletal curve whenP has deficiencies in terms of
noise, missed data, and multiple components. Additionally, this
choice avoids the need of computing the moving least-squares
surface underlyingP and allows us to extract the skeleton of an
arbitrary set of points inRd, without requiring a local smooth-
ness or connectivity of the underlying shape. Finally, inR

3 the
Point Cloud Graph reduces to the Reeb graph of the underlying
manifold as the point cloud becomes denser. Fig. 1 shows the
results of the proposed algorithm on point-sampled surfaces.

The main contribution of the proposed approach relies on
its generality with respect to (P, f ) and the capability of han-
dling point sets in any dimension. Concerning the first contribu-
tion, our computation of the Point Cloud Graph handles shapes
that are not necessarily described as an assembly of cylindri-
cal patches and joints as in [61]; is restricted neither to point
sets representing 0-genus surfaces nor to a specific scalar func-
tion; does not use any template to drive the graph extraction,
as in [65] for human scans. Finally, we directly compute the
skeletal representation without a graph post-processing,which
is generally required by the Laplacian-based contraction [21].

According to the definition of the Reeb Graph [54], the
Point Cloud Graph codes a point setP in a 1D representation,
whose properties depend on those ones off and the shape un-
derlyingP. Note that reducing the width of the partition of the
interval containing the image off forces the strips to converge
to the corresponding level sets. Even though the Point Cloud
Graph cannot be used to exactly recover the input data (invert-
ibility property), the graph is useful to compute an approxima-
tion of the input point set through an implicit representation
Σ := {p : F(p) = 0} with radial basis functions [61].

Concerning the computation of the Point Cloud Graph for
higher dimensional data, the proposed approach remains un-
changed by substituting surface with volume strips. The Point
Cloud Graph, as well as the Reeb graph, does not distinguish
all the features in higher dimensions [16]; in fact, in case of
volumetric data it may not code cavities. Since the Point Cloud
Graph is intended to generalize the Extended Reeb graph to
point clouds embedded inRd, differently from [59] we consider
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Figure 2: Example ofk-nearest neighborIk
p, which includes thek points ofP

closest top; Ik,r
p is the set of points inIk

p whose distances fromp are lower
thanr .

only R as co-domain of the functionf and we do not admit the
overlap between clusters of points. Admitting overlappingdo-
mains would not be meaningful for the equivalence relation in
Definition 2.2. Furthermore, inR3 the number of loops of the
corresponding Reeb graph would be no more equal to the genus
of the input surface.

The paper is organized as follows. In Section 2, we provide
formal definitions of the point cloud connectivity, introduce the
notion of Point Cloud Graph, and detail our graph extraction
technique. In Section 3, we present our experimental settings,
discuss the robustness of the method with respect to noise and
parameters, and show shape matching as a possible application.
Conclusions and future developments are provided in Section 4.

2. The Point Cloud Graph

Our graph representation broadens to point sets concepts
related to the Reeb graph; in particular, it generalizes theEx-
tended Reeb graph (ERG) originally defined on triangle meshes [15]
and the Discrete Reeb graph [67]. We name this new represen-
tationPoint Cloud Graph(PCG). Similarly to the ERG, the aim
of the method is to extract the PCG of the pair (P, f ), where
P := {pi}

n
i=1 ⊆ R

d is a set of points inRd and f : P → R is a
scalar function defined onP, i.e., f (pi) is known for each point
pi ∈ P. The idea behind our approach is to organize the data
into a family of strips of points ofP, to associate a node to each
connected component of the strip, and to insert an arc between
two nodes if their distance is less than a user given threshold.

In the following, we introduce the connectivity among the
points of P (Section 2.1), the definition of the Point Cloud
Graph of (P, f ) (Section 2.2), and its computation (Section 2.3).

2.1. Connectivity and connected sets of point clouds

Within the k-nearest neighbor graphT of P, each point
pi ∈ P is associated to itsk nearest points ofP, which identify
the neighborIk

pi
:= {p js}

k
s=1 of pi . In a similar way, theσ-

nearest neighbor ofpi is defined as the set of points ofP that
fall inside the sphere of centerpi and radiusσ. Finally, we
introduce the neighbor

Ik,τ
pi

:= {p js ∈ I
k
pi

: ‖pi − p js‖2 ≤ τ},

Figure 3: Connectivity between two point setsP andQ.

which contains the elements ofIk
pi

whose distance frompi is
equal to or lower thanτ (Fig. 2). These different types of neigh-
bors will be used to extract the connected components of the
strips and join the corresponding nodes of the graph without
meshing the point set (Fig. 3). To this end, we adopt the fol-
lowing notions of connectivity and connected components of
point sets.

Definition 2.1. LetP := {pi}
n
i=1 andQ := {q j}

m
j=1 be two point

sets. Given a positive thresholdτ, P andQ are τ-connectedif
exist two pointspi ∈ P andq j ∈ Q such that||pi − q j ||2 ≤ τ.

In particular, a point setP is saidτ-connectedif each non-
empty subsetΩ of P and its complementary setΩC in P are
themselvesτ-connected. Then, aconnected componentof a
point setP is a τ-connected set of points inP. Finally, given
two τ-connected componentsC1 andC2 we define their distance
d(C1,C2) as

d(C1,C2) = min
p1∈C1
p2∈C2

||p1 − p2||2. (1)

2.2. Graph definition

We now generalize the Reeb graph definition to scalar func-
tions defined on point sets. Given the scalar functionf : P →
R, we denote its minimum and maximum with

vm := min
i=1,...,n

{ f (pi), pi ∈ P}, vM := max
i=1,...,n

{ f (pi), pi ∈ P},

andIm( f ) = [vm, vM] is the interval ofR that contains the dis-
crete image Im(f ) := { f (pi), pi ∈ P} of f . For any interval
[a, b], a < b, contained inIm( f ), the discrete striprelated to
[a, b] (Fig. 4(a)) is defined as the setS[a,b] = {pi ∈ P : a ≤
f (pi) ≤ b}. Then, we replace the role of contours in the defini-
tion of the Reeb graph [54] with the concept of strips.

Definition 2.2. Let f : P → R be a real-valued function de-
fined on a point cloudP andJ = {J1, . . . ,Jm} be a parti-
tion of Im( f ) by non-empty intervals, i.e.Im( f ) =

⋃m
k=1Jk,

Ji
⋂

J j = ∅, i , j. Then, thePoint Cloud Graphof P with
respect to f andJ is the quotient space ofP × R defined from
the equivalence relation “∼”: (p, f (p)) ∼ (q, f (q)) if and only
if ∃Jk ∈ J such that:

1. f (p), f (q) ∈ Jk;
2. p, q ∈ P belong to the same connected component of

SJk.
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Figure 4: (a-d) Main steps of the proposed approach; asf , we consider a harmonic function with one maximum and one minimum. (a) A strip (red) and (b) its
connected components are identified with different colors. (c) The nodes of thePoint Cloud Graphare computed as centroids of each connected component and (d)
linked to form the arcs of the PCG. (e,f) PCG with respect to the height function oriented according to they-axis. The same axis frame is used in the rest of the
paper. In (e), the green nodes represent strips with more than one component and (f) the corresponding arcs are identifiedwith three colors.

The connected components of a strip (Fig. 4(b)) correspond
to its τ-connected sets defined in Section 2.1. In particular, we
notice that Definition 2.2 introduces the PCG through an equiv-
alence relation that requires the setJ to be a partition. Indeed,
the elements ofJ cannot intersect and the PCG cannot be im-
plemented through the clustering strategy introduced in [59].

2.3. Graph extraction

To describe how our algorithm extracts the Point Cloud Graph
as a coupleG = (V,E), whereV andE are respectively the set
of the graph nodes and edges, we distinguish four fundamental
steps:

1. choice of the scalar functionf ;
2. extraction of the strips off (Fig. 4(a));
3. identification of the connected components of each strip

(Fig. 4(b)) and creation of the setV of nodes (Fig. 4(c));
4. generation of the setE of arcs (Fig. 4(d)).

Choice of the scalar function f .The graph extraction scheme
can be applied to any mapf defined onP, thus providing a set
of characterizations and different descriptions of the shape un-
derlyingP. The properties of the corresponding skeleton will
reflect those off , thus yielding to a multi-view shape descrip-
tion. Coding the PCG as an attributed graph, the choice of the
function f influences the geometric and topological informa-
tion stored in its nodes and arcs. Scalar functions may be either
induced by the application context or intrinsically definedby
the manifoldM underlyingP. In the following, we briefly re-
view the computation of the geodesic, harmonic, and Laplacian
functions.

Recent works [44, 55] on the computation of geodesics on a
point setP have enriched the class of scalar functions onPwith
geodesics-based maps, previously defined on triangle meshes [38]
and used for shape comparison [27, 45]. For instance, in [55]
piecewise linear approximations of geodesic paths on point-
sampled surfaces are computed by minimizing an energy func-
tion, which takes into account both the geodesic path length

and its closeness to the underlying surface. An alternativeis to
trace the shortest path among the nodes of an extended sphere-
of-influence graph. In this case, the Point Cloud Graph asso-
ciated to the averaged geodesic distance from a set of source
points is useful for the computation of bending invariant shape
signatures [55, 65].

To define harmonic scalar functions on a point setP, the
Laplace-Beltrami operator is discretized by the Laplacianma-
trix L := (Li j )n

i, j=1 as [10, 11, 23]

Li j :=



















−1 i = j,
ai j/αi p j ∈ Npi ,

0 else,



















ai j := exp
(

−
‖pi−p j‖

2
2

h2

)

,

αi :=
∑

j∈Npi
ai j .

We briefly remind that the vectorh, h , 0, is aneigenvector
of L related to theeigenvalueλ if and only if Lh = λh. OnceL
has been built, the computation of the harmonic scalar function
resembles the case of triangle meshes [31, 34, 46]. Choosinga
set of boundary conditionsB := { f (pi) = ai}i∈I, I ⊆ {1, . . . , n},
we solve the linear systemL⋆f⋆ = b, wheref⋆ := ( f (pi))i∈IC is
the vector of unknowns,IC is the complementary set ofI, b is
a constant vector, andL⋆ is achieved by removing theith-row
andith-column ofL , i ∈ I.

The Laplace-Beltrami eigenfunctions [12], or the heat ker-
nel [42], provide a family of maps whose Reeb graphs code
the features ofP in a multi-scale manner; i.e., from global
to local levels of detail. Even though a general choice off
does not guarantee that the corresponding Reeb graph is in-
sideP, specific choices of the input maps such as the Laplace-
Beltrami eigenfunctions provide representations that arecen-
tered and well aligned with generalized cylinders ofP (if any).
Furthermore, non-cylindrical joints are represented as graph edges
without self-intersections. For shape analysis, we mainlyfocus
on functions that are intrinsically defined by the point cloud,
such as the Laplacian eigenfunctions.

Extraction of the strips of f .According to Definition 2.2, the
strips are extracted with respect to a partition{Jk}

m
k=1 of the in-
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Table 1: Computational cost of the main steps of the proposedapproach, where
s is the number of source points used for the computation of thegeodesic dis-
tance.

Task Comput. cost
Load O(n)
Function O(n)-O(snlogn)
k-nearest neigh. graph O(n logn)
Conn. components O(kn)
Arc constructions O(n)

Figure 5: The nodeni
1 is linked to nodeni+1

1 . Similarly, there is an arc between
nodesni

2 andni+1
2 . Sinced(Ci

2,C
i+1
1 ) > τ, we have not a linking edge between

ni
2 andni+1

1 .

tervalIm( f ) (Fig. 4(a)). The easiest way to partitionIm( f ) into
ns sub-intervals is to selectns+ 1 valuesv0 := vm, v1, . . . , vns :=
vM, vi ≤ vi+1, and define each strip asSJi := f −1(Ji), Ji =

[vi , vi+1), i = 0, . . . , ns − 1. This slicing strategy is quite com-
mon in the extraction of discrete approximations of the Reeb
graph because uniform interval subdivisions ofIm( f ) allow us
to approximate the size and the relevance of a feature in terms
of the length of the arcs of the graph; i.e., the longer the arcthe
more important the feature coded by the graph. Furthermore,it
is possible to define an iterative sequence in the interval subdi-
vision that makes the graph multi-resolutive. For more details
on the slicing strategy, we refer the reader to [16, 38].

Connected components of strips and creation of the set V of
nodes. Once we have identified the stripSJi , we detect itsτ-
connected components with respect to Definition 2.1. To ex-
tract aτ-connected componentCi

j of the stripSJi , we select a
point p j1 ∈ SJi that has not been marked as belonging to any
τ-connected component. Then, all the points ofSJi ∩ I

k,τ
p j1

are
marked as belonging toCi

j and we recursively repeat this expan-
sion on all the points ofCi

j . If at the end of this process there
are points ofSJi that are still unmarked, then we select one of
them, identify a new connected component, and continue until
all the points ofSJi have been labeled as visited. The whole
process is applied to all the strips and ends when each point
of P has been assigned to someτ-connected component. Fi-
nally, we associate a nodeni

j to every connected componentCi
j .

As spatial representative ofni
j , we choose the centroid ofCi

j ,
(Fig. 4(c)).

Creation of the set E of arcs.According to Definition 2.2, the
nodeni

j , which codes the connected componentCi
j, must be

linked to the nodes that correspond to the connected compo-
nents of the stripsSJi−1 andSJi+1. Note that these strips{SJi }i

(a)

(b)

Figure 6: Point Cloud Graph of a scene with (a) three and (b) four components.
As scalar function, we have chosen the height function with respect to thez-
axis.

are visited sequentially with respect to the increasing ordering
of the corresponding intervalsJi . According to Equation (1),
two connected componentsCi

s andCi+1
r are linked ifd(Ci

s,C
i+1
r ) ≤

τ; in this case, we add the arc (ni
s, n

i+1
r ) toG (Fig. 4). The extrac-

tion of the setE of arcs ends when all the possible links among
the connected components of two consecutive strips have been
processed (Fig. 5). The construction of the arcs allows us to
easily recognize branching parts. Figs. 4(d,e) show the Point
Cloud Graph of the same point cloud with respect to two dif-
ferent functions. Differently from [57] and in order to extract
the graph of scenes, which are typically composed of several
components (Fig. 6), we do not automatically connect adja-
cent strips that have only one connected component. Finally,
Figs. 7, 8, and 9 show the Point Cloud Graph of the same shape
with different functions.

Computational cost.Our algorithm is computationally efficient
and handles point clouds with hundred thousands of points and
more than one object. Analyzing the single steps of the al-
gorithm (Table 1), the data loading requiresO(n) operations,
wheren is the number of points ofP. The computation of the
input scalar functionf varies fromO(n) to O(n logn). For in-
stance, the evaluation of the height function and the distance
from the center of mass is linear in the number of points; the
computation of the geodesic distance froms source points is
O(snlogn) using the Dijkstra’s algorithm; and the solution of
the Laplace-Beltrami eigenvalue problem is super-linear in n
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(a) (b) (c) (d)

Figure 7: Point Cloud Graph of the same point cloud with respect to different
scalar functions: (a) height function with respect to thez-axis; (b) f (p) :=
log(‖p‖2 + 1); (c) f (x, y, z) := x2 − y2, p := (x, y, z); (d) f (p) := ‖p‖2.

Figure 8: In (a), the graph is represented as two overlappingarcs. (b) Changing
the scalar function, the arcs of the Point Cloud Graph are explicitly coded. Here,
f is the height function with respect to (a) thez-axis and (b)y-axis.

and the number of eigenfunctions computed. The computa-
tion of thek-nearest neighbor graphT takesO(n logn) oper-
ations [7] and the creation of the strips is linear inn. For each
strip, the computation of the connected components takesO(kn)
operations. The extraction of the arcs ofG requires to traverse
two consecutive strips and visit their points at most twice;in-
deed, this step runs inO(n) operations. Finally, the overall com-
putational cost isO(n)+O(n logn)+O(kn) = O(max{kn, n logn}),
which does not considerably differ from theO(n logn) time re-
quired to compute the Reeb graph over triangle meshes [24,
16] and an efficient implementation of the clustering strategy
in [59].

3. Discussion and results

Once our experimental settings have been introduced (Sec-
tion 3.1), we discuss the main properties and degrees of free-
dom in the computation of the Point Cloud Graph; namely,
the choice of the parameters (Section 3.2), its robustness (Sec-
tion 3.3), the generalization to volume data and non-orientable
surfaces (Section 3.4), and the application to shape comparison
(Section 3.5).

3.1. Experimental settings
To analyze the behavior of the Point Cloud graph with re-

spect to the size of the neighbor of each point through the con-
nectivity parameters introduced in Section 2.1, we have applied

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Point Cloud Graphs of the scans of two statues with respect to (a,b,e,f)
Laplacian-Beltrami eigenfunctions and (c,d,g,h) harmonic functions.

our method to point sets with different sampling density, noise
level, distribution of shape features, and missed parts. Most
of point clouds corresponds to 3D scans of real models such
as small statues and human bodies in different poses. We also
consider point samples of volumetric data, i.e., where the un-
derlying manifold is a 3−manifold with boundary embedded in
R

3. For our tests, we have considered 50 points clouds from
the AIM@SHAPE repository1, 30 body scans from the CAE-
SAR Data Samples2, and the 400 models of the SHREC 2007
benchmark3. The non-orientable models have been obtained
from parametric samples of the Moebius surface and Klein’s
bottle and the two scenes have been composed from objects of
the data sets. To evaluate how the Point Cloud Graph depends
on the data quality, the point clouds have been perturbed with
geometric noise, by modifying the point coordinates. To show
the scalability and the efficiency of the method (Table 2), the
size of the data set ranges from a few thousand points to over
one million. All the experiments have been performed over a
mini-laptop equipped with Linux operative system,Mobile In-
tel Celeron 900MHz, and2048MByte Ram.

Beside the choice of the input functionf , the arcs and nodes
of the Point Cloud Graph are determined by the point cloud
connectivity stored in thek-nearest neighbor graph. For point
sets that represent 3D surfaces, we have experimentally verified
that when the sampling ofP is sufficiently dense the number of

1http://shapes.aim-at-shape.net
2http://www.hec.afrl.af.mil/HECP/Card1b.shtml#caesarsamples
3http://watertight.ge.imati.cnr.it/
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(a) (b)

Figure 10: (a) The adaptive selection of the thresholdτi allows us to better
identify through holes in the point clouds as loops of the Point Cloud Graph.
(b) The choice of a constantτ provides a skeleton that codes a lower number of
local details. Here,f is the first non-trivial Laplacian eigenfunction.

loops of the PCG is equal to the genus of the surface underlying
P. Since the sampling density varies from model to model,
it is crucial to automatically select a threshold that identifies
the connected components of both the shapes of a scene and
the strips of each building shape. To this end, we assume that
the 3D shapes arecoherently sampled, i.e., the local sampling
densityσP of P [53] is equal to or lower than the distance used
to identify the connected components of the strips, the sizeof
the through holes and the connected components.

3.2. Choice of the parameters

Since the choice of the parametersτ and k is crucial to
obtain an effective representation of the shape characteristics,
we analyze how their choice influences the Point Cloud Graph
and how to automatically determine them. To deal with non-
uniform point samples or partially missing data, we introduce
an adaptive definition ofτ, which is iteratively tuned according
to the local density of the point cloudP. To guarantee the co-
herence of the point cloud, we fix the value ofτ1 as a multiple
of σP and initialize the connected components ofSJi . Then,
during the expansion process and in a neighbor of a pointp j i of
the i−th stripSJi we iteratively refine the constantτ j+1, j ≥ 1,
as follows:

τ j+1 :=















α j+1+ jτ j

j+1 , |I
k,τ j
p j i
| = k,

2α j+1+ jτ j

j+1 , |I
k,τ j
p j i
| < k,

where |I| is the number of points of the setI and α j+1 =

max
p∈I

k,τ j
p j i

‖p − p j i ‖2. In those shape regions where an irregular

(a) (b)

(c) (d)

Figure 11: Point Cloud Graph of a point set with (a,b) a low andirregular sam-
pling density with missed parts (shoulder and feet in (b)), which are occluded
during the acquisition process. (c,d) Zoom-in. For both examples, the extracted
skeletal representations capture the main features of the underlying surface. In
both cases, we have selected the first non-trivial Laplacianeigenfunction.

variation of the sampling density occurs, the choice ofτ j might
provide problems for the identification of topological handles
whose size is approximatelyτ j (Fig. 10).

A crucial part for the extraction ofG is related to the compu-
tation of the connected components of each strip and the gener-
ation of the arcs of the graph, where multiple components occur.
These two steps of the algorithm are guided by the expansion
radiusτ j of the neighbor of each point ofSJi . The toleranceτ
that identifies the connected component of the stripSJi will be
also defined as a multiple ofτ j .

The adaptive choice of the parameters is also crucial when
we deal with scenes that include components with a different
sampling density. For instance, in Fig. 6(b) the table modelis
denser than the other ones and the dog surface is not uniformly
sampled. In case of a non-uniform distribution of points, the
Point Cloud Graph could present more/less connections than
expected or many connected components (Figs. 11 and 12).
Fig. 12(a) shows how our representation automatically distin-
guishes spurious data, such as regions of the platform on which
the human is standing during the body acquisition, from body
parts partially occluded. Additionally, the rear part of the head
is correctly connected to the main body.

Table 2 summarizes the characteristics of the PCG in terms
of number of elements, loops, and connected components with
respect to different choices ofk and τ. For the computation
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(a) (b)

Figure 12: (a,b) Point Cloud Graph extracted from partiallyoccluded body
scans and in different postures. In these examples, we have selected the first
non-trivial Laplacian eigenfunction.

of these graphs, the number of strips has been fixed to 30 for
the bi-torus model, 100 for the hand model, and 50 for the 3D
scene. Our tests have shown that if the parametersk andτ are
arbitrarily chosen the number of loops of the graph may vary
(e.g., Fig. 13). Moreover, the valueτ j affects the connectivity of
the graph: this is not surprising because whenτ j increases the
τ−connected sets become larger and the corresponding nodes
are connected.

In our data set, we have experimentally verified that a good
compromise between computational complexity and efficacy of
the description is to choosek smaller than 12; to initializeτ1
from 5 to 10 timesσP; and to setτ as 2τ j , whereτ j the is
the adaptive threshold previously discussed. If not differently
specified in the text, then we setk = 10,τ1 = 5σP, andτ = 2τ j .

3.3. Robustness

We now discuss the robustness of the graph to noise, local
deformations, and missed data by experimentally verifyinghow
these factors affect the corresponding structure. To this end, we
simulate a geometric perturbation of the point cloud modifying
the coordinates of the points through random Gaussian pertur-
bations. The variance of noise perturbation of the models in
Figs. 13(b-e) is 2%, 5%, 10%, and 15% of the maximum di-
ameter ofP, respectively. All these graphs have been obtained
usingns = 50 strips. The overall structure of the graph is the
same even if the numberns of strips varies: Figs. 13(f-h) show
the PCGs extracted settingns = 30 and the noise variance is
equal to 5%, 10%, and 15%. Moreover, we notice that when the
bitorus model is perturbed with a noise variation higher than 5%
the corresponding triangle mesh is no more manifold and small
self-intersections appear; indeed, we are not able to extract the
Reeb graph from the mesh while this is possible with our PCG.
Additional examples are depicted in Figs. 13(i,j): these models
correspond to 2% noise perturbations of the ones in Figs. 9(b,g),
respectively. In all cases, the extraction of the skeletal structure
remains stable; i.e., the number and position of nodes and arcs
do not significantly change. This property is mainly due to the

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13: If the original point cloud (a) is perturbed with aGaussian noise (b-
e), then the number of nodes and arcs of the PCGs does not change. The PCGs
in (f-h) correspond to the ones in (c-e) selectingns = 30 instead ofns = 50. For
(i,j), the reference Point Cloud Graphs are shown in Figs. 9(b,g), respectively.
In these examples, the chosen scalar function is the height function in thez-axis
direction.

fact that we code the evolution of the strips instead of the con-
tours, which are more sensitive to local perturbations of bothP
and f .

As shown in Figs. 12 and 14, the Point Cloud graph han-
dles either irregularly or partially sampled data, due to occlu-
sions during the acquisition process. For instance, Fig. 12(a)
shows the behavior of the graph with respect to shape outliers.
In fact, this body scan presents a few points (low-left) thatcan
be considered as noise. With our standard choice of the pa-
rametersk and τ j , the human model and few isolated points
(left part) are abstracted as distinct graphs. The smallestcom-
ponent disappears only when the chosen parameterτ allows us
to glue this small component to the body. Moreover, Fig. 14
depicts that, differently from [61], the flexibility in the choice

Table 2: Point Cloud Graph complexity. The variation ofτ andk influences
the connectivity of the graph in terms of number of connectedcomponentsCC,
vertices|V|, edges|E|, and loops. The Bi-torus, the Hand, and the Scene point
clouds are respectively shown in Figs. 13(a), 1(d), and 6(a), respectively.

Model n τ k |V| |E| loops CC

Bi-torus 12K 2τ j 10 42 43 2 1
Bi-torus 12K 2τ j 7 70 97 18 1
Bi-torus 12K 10τ j 7 42 43 2 1
Bi-torus 12K 2τ j 100 31 31 1 1
Bi-torus 12K 2τ j 102 30 29 0 1
Hand 37K 2τ j 10 155 154 0 1
Hand 37K 2τ j 7 161 160 0 1
Hand 37K 2τ j 4 302 407 106 1
Scene 330K 2τ j 10 250 250 3 3
Scene 330K 4τ j 8 253 252 3 4
Scene 330K 10τ j 12 232 233 3 2
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(a) (b)

(c) (d) (e)

Figure 15: Point Cloud Graph of point sets sampled from (a) a Mobius surface, (b) a plane with three twists, and (c-e) a Klein bottle at different resolutions. In (a,b),
the input map is the height function with respect to they-axis. In (c-e), we have selected the first non-trivial Laplacian eigenfunction.

of the parameterτ automatically provides an estimation of the
entity of the missed part. In fact, these examples representa
sequence of different samples of the same statue, whose reso-
lution increases from (a) to (d). To compute the PCG, we have
considered the distance from the center of mass and set the pa-
rametersk, τ1, andτ with the default values discussed in Sec-
tion 3.2. The graph in Fig. 12(a) highlights that the bust andthe
bottom of the statue is completely missing: this implies that a
loop of the graph is broken and an additional loop appears in the
bottom. The two intermediate PCGs in Fig. 12(b,c) are quali-
tatively and qualitatively equivalent while the PCG of a finer
sample (Fig. 12(d)) of the statue correctly recognizes the two
hands and has an additional loop.

3.4. Non-orientable surfaces and volume data

In the following, we show that our approach is able to de-
scribe a class of data larger than the Reeb graph, including point
clouds originated by surfaces, volume data, orm−dimensional
manifolds embedded inRd with multiple components. For in-
stance, since the original triangle mesh representing the model
in Fig. 1(a) contains 11 components, it is not possible to com-
pute the Reeb graph directly on the triangle mesh while our
algorithm effectively runs also on this example. The same re-
mark holds for the representation of sets of objects as in case of
scenes (Fig. 6).

Our graph representation also handles point sets represent-
ing non-orientable surfaces (Fig. 15) and volume data (Fig.16),
without building a manifold representation of the model. Inall
these examples, the values ofk andτ are the default ones ex-

Table 3: Statistics on the Point Cloud Graph extraction for some of our test
models, the last four rows refer to point clouds of volumetric data:n number of
points ofP, nS number of strips used to extract the description,|V| cardinality
of the set of nodes,|E| number of arcs ofG. Time is expressed in seconds.

Model n nS |V| |E| Time

Monk - 11(a) 30K 120 137 141 1,2
Camel - 1(c) 35K 140 241 242 1,7
Hand - 1(d) 53K 100 221 220 4,1
Ippocrates - 10(a) 102K 200 222 226 11,9
Human - 11(b) 190K 120 249 248 41,8
Scene - 6(a) 330K 200 1003 1003 370
Raptor - 1(a) 1M 400 1164 1142 435

Hand - 16(a) 29K 30 49 48 5
Vertebrae - 16(b) 17K 20 20 19 3
Skull - 16(c) 38K 50 65 65 5
Ear - 16(d) 153K 20 60 92 221

cept for the models in Fig 15(c-e) (τ = 10τ j) and Figs. 15(c-e)
(k = 25, k = 15, k = 30). Volume data are quite common in
medical and FEM applications. Until now, the extraction of the
Reeb graph description for these data required the generation of
a tetrahedral representation ofP [49] and the identification of
hole cuts [63] to have computational efficiency. In its original
definition, the Reeb graph is not able to fully represent cavities,
similarly the PCG has the same limitation. For instance, in Fig-
ure 16(c) the skull cavity is simply represented with a sequence
of nodes and arcs. Table 3 reports statistics on the Point Cloud
Graph computation for 3D shapes with different sampling den-
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(a) (b)

(c) (d)

Figure 14: (a-d) Point Cloud Graph with respect to irregularsampling density
and missed part. Slightly increasing the shape resolution improves the quality
of the Point Cloud Graph, in terms of a lower number of terminal arcs and a
better alignment with the underlying shape. Here, the height function is in the
direction of thez-axis.

sities and resolution.

3.5. Shape comparison

A current limitation of the use of the Reeb graph for match-
ing purposes is that the existing algorithms [17, 64, 18] and
applications to relevance feedback [36] requires the models to
be watertight and without topological artifacts (e.g., dangling
edges, multiple components). Indeed, the use of the Reeb graph
is limited to a narrow number of data sets. In this context, we
outline how the graph matching techniques used for Reeb graph
comparison is easily adapted to the Point Cloud Graph, thus
broadening the use of this description to quite a number of data
sets. In our experiments, we compare the Point Cloud Graphs
using the graph distance [48], which is an extension to set of
graphs of Laplace-based metric [66], and match both single or
sets of graphs. More formally, we consider the set of elemen-
tary symmetric polynomials:

S j(v1, . . . , vn) =
∑

i1<···<i j

vi1vi2 · · ·vi j , j = 1, . . . , n.

Then, thefeature vectorof the Point Cloud GraphG is defined
as the matrix

B = ( f1,1, . . . , f1,n, . . . , fn,1, . . . , fn,n)T ,

where fi, j = sign(S j(Φ1,i, . . . ,Φn,i)) ln(1 + |S j(Φ1,i, . . . ,Φn,i)|)
andΦi, j denotes the entry (i, j) of the matrixΦ that decom-
poses the Laplacian matrixL with constant weights of the graph
asL = ΦΦT . The distance between two Point Cloud Graphs
G1,G2 whose feature vectorsB1,B2 are known, is defined by:

D(G1,G2) :=
∣

∣

∣‖B1‖2 − ‖B2‖2
∣

∣

∣ .

(a) (b)

(c) (d)

Figure 16: (a-d) Point Cloud Graph of volume data. Here, the map is the height
function with respect to the main direction provided by the Principal Compo-
nent Analysis on the input data set. According to the definition of Reeb graph,
(a) highlights a situation for which the choice off generates a PCG which is
not medial to the shape.

D is a pseudo-metric, which satisfies positivity, symmetry and
triangle inequality; identity is not verified (i.e.,D(G1,G2) =
0 ; G1 ≃ G2). More details can be found in [48].

In our tests, we have selected seven classes (human, cup,
table, glass, octopus, plier, and bird models) from the SHREC
2007 benchmark on watertight models [35] and tested the re-
trieval performance of the Point Cloud Graph using the first
and second non-trivial Laplace-Beltrami eigenfunctions,either
singularly or in combination. Table 4 quantitatively compares
the distances between couples of models (three humans, two
cups, and two tables) computed either using the PCG (bottom
value) or the Reeb graph (top value) as shape signatures. De-
spite the relative relevance of the numerical scores, the values of
the distances are nearly comparable and in both cases well dis-
criminate among objects belonging to different classes. A qual-
itative comparison of the two descriptors is shown in Fig. 17,
where the precision-recall diagrams of the PCG and the Reeb
graph (RG) [48] are depicted over the benchmark and the hu-
man model class. Again, these diagrams confirm that the per-
formance of the two descriptors is substantially the same; in
fact, in our feeling the relevance of the PCG graph is in the ex-
tension of the application domain (more objects, even discon-
nected and polygon soups) rather than one more method that
slightly improves graph matching using Reeb graphs.

4. Future work

Differently from the usual Reeb graph description, our Point
Cloud Graph is able to deal with point sets and multiple con-
nected components, without requiring any pre-processing step.
Therefore, we approach a larger scenario of applications, which
spans from medicine to robotics to ambient intelligence. Fur-
ther investigations are needed to identify which class of func-
tions is the most suitable for a given task and to analyze how
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(a) (b)

Figure 17: (a) Precision (vertical axis) versus recall (horizontal axis) diagrams over three classes of the data set [35] and (b) focus on the class of the human models.

many geometric attributes must be stored for effectively ad-
dressing shape retrieval and recognition issues. In general, our
framework effectively codes shape features independently on
the dimension of the underlying manifold and the embedding
space. Moving from these considerations, the Point Cloud Graph
significantly extends the class of shapes to which graph-based
descriptors may be applied, for instance triangle soups, data
scans, and X-ray crystallography.
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