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Abstract

This paper investigates the relations between the least-squares approximation
techniques and the Fuzzy Transform. Assuming that the function f : Rd → R
underlying a discrete data set D := {(xi, f(xi))}si=1 has been computed with in-
terpolating or least-squares constraints, we prove that the Discrete Fuzzy Trans-
form of the sets {f(xi)}si=1 and {f(xi)}si=1 is the same. This result shows that
the Discrete Fuzzy Transform is invariant with respect to the interpolating and
least-squares approximation of D. Additionally, the Fuzzy Transform of f out-
side P is approximated by simply resampling the continuous map f at a set of
points of Rd\P. Using numerical linear algebra, we also derive new properties
(e.g., stability to noise, additivity with respect to P) and characterizations (e.g.,
radial and dual membership maps) of the Discrete Fuzzy Transform. Finally,
we define the geometry- and confidence-driven Discrete Fuzzy Transform, which
take into account the intrinsic geometry of the input data and the confidence
weights associated to the f -values or the points of P.

Keywords: Fuzzy Transform, Discrete Fuzzy Transform, least-squares
approximations, radial basis functions, dual basis, Laplacian matrix, intrinsic
geometry.

1. Introduction

During the last decades, several transformations have been proposed to solve
problems which spread from signal analysis to the solution of differential equa-
tions and the approximation of scalar functions. Among them, we mention the
Fourier and wavelet transform in signal and image processing, linear transfor-
mations associated to the Laplace and the heat diffusion operator in differential
analysis. In all the aforementioned cases, the underlying idea is to compute an
approximation of the solution as member of a linear space, which is generated
by a set of basis functions and whose properties (e.g., continuity, reproducing
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property in Hilbert spaces) are strictly related to the input data and problem.
For instance, the basis functions of the Fourier and wavelet transform are sinu-
soidal, the function space associated to the Laplace and heat diffusion operator
is generated by the eigenfunctions of the Laplace-Beltrami operator. We can
also consider the wavelet, time-scale and time-frequency basis induced by the
Haar and Gabor atoms (Daubechies, 1992).

In fuzzy modeling, the Fuzzy Transform F : C0 → Rn provides a relation be-
tween the space C0 of continuous functions defined on the real line and Rn. In
a similar way, the Inverse Fuzzy Transform F−1 : Rn → C0 identifies any vector
of Rn with a continuous map. Even though F−1 is not the inverse of F (i.e.,
F ◦ F−1 is not the identity functional), under mild conditions on the input f -
values the Inverse Fuzzy Transform fF,n approximates f up to an arbitrary
precision (Perfilieva, 2006). In particular, discrete input data can be converted
to a continuous approximation through the Inverse Fuzzy Transform and com-
putations on C0 are changed into discrete operations on Rd through the Fuzzy
Transform.

The ubiquity of the Fuzzy Transform is provided by its different construc-
tions, which exploit the linear algebra in vector spaces of finite dimension and
the residuated lattice. Among the main applications, we mention data min-
ing (Agrawal et al., 1993; Hong et al., 2003; Mitra et al., 2002; Zhang et al.,
2006); knowledge discovery (Fayyad et al., 1996; Piatetsky-Shapiro, 2000); the
analysis of linguistic expressions (Novák et al., 2008); the approximation of dis-
crete data (Perfilieva, 2005, 2006; Perfilieva et al., 2008; Stepnicka and Polakovic,
2009); image analysis and compression (Di Martino et al., 2008).

In this context, we investigate the relations between the least-squares approx-
imation of a set of scattered data D := {(xi, f(xi))}si=1 and the Fuzzy Trans-
form. Here, P := {xi}si=1 is a set of points in Rd and the corresponding f -values
are associated to an unknown function f : Rd → R. Using least-squares tech-
niques, we compute the function f : Rd → R underlying f , which is defined
as a smooth map that locally approximates D. Since exactly reproducing all
the f -values generally leads to unstable approximations with low generaliza-
tion properties and to recover the noise component, we focus our investigation
on the least-squares framework (Golub and VanLoan, 1989). In order to pro-
vide a good approximation accuracy and robustness to noise, the approxima-
tion f(x) :=

∑n
i=1 αiAi(x) is searched in the linear space generated by the set

A := {Ai(x)}ni=1, where each map Ai is (i) a membership function of a fuzzy par-
tition of the input data set or (ii) a radial basis function Ai(x) := ϕ(‖x− xi‖2)
generated by a kernel map ϕ : R+ → R (Aronszajn, 1950; Dyn et al., 1986; Far-
wig, 1986; Micchelli, 1986; Schoelkopf and Smola, 2002; Wendland, 1995). The
main reason we use the radial membership functions is that they provide a rep-
resentation of the approximating function which is efficiently computed through
the solution of a sparse linear system and is oblivious of the organization, sam-
pling, and connectivity (e.g., real line, regular grid) of the input data.

In the second part of the paper, we study the relations between the approx-
imation f : Rd → R, the direct, and the Inverse Fuzzy Transform of D and f .
Assuming that f has been computed with interpolating or least-squares con-
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Figure 1: Scheme of the relations between the least-squares and the Fuzzy Transform that
will be analyzed throughout the paper.

straints on D, we prove that the Discrete Fuzzy Transform of the two sets
{f(xi)}si=1 and {f(xi)}si=1 is the same. This result shows that the Discrete
Fuzzy Transform is invariant with respect to the interpolating and least-squares
approximation of D. Furthermore, resampling the continuous map f at a set
of points of Rd\P allows us to approximate the Discrete Fuzzy Transform of f
outside P. Numerical properties (e.g., stability to noise, additivity with re-
spect to P) and characterizations (e.g., radial and dual membership maps) of
the proposed framework will be derived by introducing a matrix formulation of
the Discrete Fuzzy Transform. Finally, to better analyze the relation between
the Inverse Fuzzy Transform fF,n and the approximation f , the membership
functions are converted in a dual form by making the f -values explicit in the
expression of fF,n and f . More precisely, fF,n (or f) is rewritten in terms of the
dual basis B := {Bi(x)}si=1 as fF,n(x) :=

∑s
i=1 f(xi)Bi(x), x ∈ Rd.

Observing that the Discrete Fuzzy Transform involves the f -values and the
membership functions without any information on the distribution or confidence
of the input data D, we define the geometry- and confidence-driven Discrete
Fuzzy Transform. These two formulations, which take into account the intrinsic
geometry of P and the confidence weights associated to the f -values, generalize
the Discrete Fuzzy Transform while preserving its main properties. We will
show that enriching D with geometric and confidence information, which is
extracted with statistical and graph-based techniques, is crucial to improve the
approximation accuracy of f and the Inverse Fuzzy Transform for structured
data (e.g., functions, images, manifold surfaces). For instance, this is the case of
the values of a function sampled on a manifold surface, whose dimension is lower
than that of the embedding space; the pixels of an image; the points generated
by physical processes; or the maps that are solutions of differential equations.
Figure 1 summarizes the main steps of the proposed framework.

Paper organization. We briefly introduce previous work on the Fuzzy Trans-
form and its specialization to radial membership functions (Section 2). Then,
we study the relation between the Fuzzy Transform and function approxima-
tion techniques (Section 3). Using these results, the approximation and Fuzzy
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Transform are enriched with geometric and confidence information (Section 4).
Finally, limits and possible extensions of the proposed approach are presented
(Section 5).

2. Fuzzy Transform: definitions and specialization to radial member-
ship functions

Firstly, we introduce the theoretical background on the Fuzzy Transform and
function approximation (Section 2.1); then, we generalize the Fuzzy Transform
to the case of radial membership functions (Section 2.2).

2.1. Theoretical background and previous work
We briefly review previous work on the Fuzzy Transform; for more details,

we refer the ready to (Perfilieva, 2006; Perfilieva et al., 2008). Let I := {Ωi}ni=1

be a partition of a compact set Ω of Rd and C := {pi}ni=1 a set of points such
that pi ∈ Ω, i = 1, . . . , n. A family of functions A := {Ai : Ω→ [0, 1]}ni=1 is a
fuzzy partition of Ω if the following properties hold for each i

• Ai(x) 6= 0, x ∈ Ωi and Ai(pi) = 1;

• Ai is continuous and has its unique maximum at pi;

• for all x ∈ Ω,
∑n
i=1Ai(x) = 1.

Under these assumptions, the Fuzzy Transform (Perfilieva, 2006) of a func-
tion f : Ω ⊆ Rd → R is defined as the array Fn := (Fk)nk=1 ∈ Rn whose compo-
nents are

Fk :=

∫
Rd f(x)Ak(x)dx∫

Rd Ak(x)dx
, k = 1, . . . , n. (1)

From now on, we omit the integration domain. Among the properties of the
Fuzzy Transform, we mention the linearity with respect to the input function
and the least-squares property, which guarantees that the kth component of Fn
minimizes the quadratic least-squares error Φk(t) :=

∫
|f(x)− t|2Ak(x)dx, t ∈ R,

associated to Ak.
In real situations, where the function f is known only at a given set of points

P := {xi}si=1, the definition (1) is replaced by the Discrete Fuzzy Transform
Fn := (Fk)nk=1 ∈ Rn, whose components are

Fk :=

∑s
j=1 f(xj)Ak(xj)∑s

j=1Ak(xj)
, k = 1, . . . , n.

In this case, the number s of samples is smaller than or equal to the number n
of membership functions. The Discrete Fuzzy Transform can be used to recover
an approximation fF,n of the function f underlying the set of values {f(xi)}si=1

through the Inverse Fuzzy Transform (Perfilieva, 2006), which is defined as

fF,n(x) :=
n∑
k=1

FkAk(x), x ∈ Rd.
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Finally, for any given approximation accuracy ε there exists a number nε of nodes
and a set {Ak(x)}nεk=1 of nε membership functions such that the discrepancy
‖f − fF,nε‖∞ between f and its Inverse Fuzzy Transform fF,nε is lower than ε.

2.2. Fuzzy Transform using radial membership functions
In the following, we specialize the Fuzzy Transform to the case of radial

membership functions and show the relations between this specialization and
previous work. In this way, we address the computation of the Fuzzy Transform
of functions defined on subsets of Rd, which are not necessarily organized on
regular (e.g., rectangular, voxel, tetrahedral) grids. To this end, let us assume
that the membership functions {Ai(x)}ni=1 of the fuzzy partition are generated
by a kernel ϕ : R+ → R as

Ai(x) := ϕ(‖x− pi‖2), x ∈ Rd, i = 1, . . . , n. (2)

Indeed, each membership map Ai is centered at pi, radially symmetric, and gen-
erated by ϕ. Note that several membership functions can be written as Equation
(2); for instance, for the Gaussian case the kernel function is ϕ(t) := exp(−t/h),
where h is the kernel support. Other examples include the triangular and sinu-
soidal shaped basis functions, where ϕ is given by ϕ1(t) := 1−t

h , ϕ2(t) := t
h and

ϕ(t) := cos t
h , t ∈ R, respectively. We now show that a set of simple constraints

on ϕ guarantees that the corresponding radial basis functions satisfy the prop-
erties of the membership maps listed in Section 2.1. More precisely, we have
that for any i = 1, . . . , n,

• ϕ(0) = 1 implies Ai(pi) = 1;

• if ϕ is positive/increasing/decreasing, then Ai has the same behaviour;

• if ϕ has compact support supp(ϕ) := {t ∈ R : ϕ(t) 6= 0}, then Ai has com-
pact support. In fact, if supp(ϕ) = [a, b] we have that the support of Ai is
a closed subset of the compact set {x ∈ Rd : a ≤ ‖x− pi‖2 ≤ b}; indeed,
the support of Ai is compact in Rd;

• if ϕ is continuous, then Ai is (at least) continuous;

• the partition of the unity property is achieved by normalizing the mem-
bership function Ai(x) as Ãi(x) := Ai(x)Pn

j=1 Aj(x) . In particular, we have that

|Ãi(x)| ≤ 1, x ∈ Rd, i = 1, . . . , n.

Assuming that the kernel ϕ satisfies the previous properties and that f is
continuous, we define the continuous Fuzzy Transform of the map f : Rd → R
as the function F : Rd → R given by

F (x) :=
∫
f(y)ϕ(‖x− y‖2)dy∫
ϕ(‖x− y‖2)dy

, x ∈ Rd. (3)

First of all, we verify that the value F (x) in (3) is well-defined; in fact, let
us indicate with ϕx(y) := ϕ(‖x− y‖2) the membership function centered at x.
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Then, the support Σx := {y ∈ Rd : ‖x− y‖2 ∈ supp(ϕ)} of ϕx is compact; from
the continuity of f , it follows that for any x ∈ Rd the value maxy∈Σx{|f(y)|} is
finite and |F (x)| ≤ maxy∈Σx |f(y)| is well-defined.

Since F (xk) is the kth component of the Fuzzy Transform of f , the func-
tion F interpolates the values Fn := (Fk)nk=1 of the Discrete Fuzzy Transform
associated to the set {f(xi)}si=1 of f -values. Finally, F still verifies the least-
squares property by minimizing the energy function defined as

E(y, t) :=
∫
|f(x)− t|2ϕ(‖x− y‖2)dx, y ∈ Rd, t ∈ R.

In fact, deriving the function E with respect to t, we have that ∂tE(y, t) = 0 if
and only if t = F (x). The interpolation of the Fn-values and the least-squares
property allow us to consider F as a generalization of the Fuzzy Transform for
radial membership functions.

Let us consider the Fuzzy operator defined as

F : C0 → C1, f 7→ F(f) := F,

where we consider the L∞-norm on both spaces C0 and C1. From the previous
definition and the assumption that ϕ has a compact support, we have that
the F -values are bounded by the L∞-norm of f ; in fact,

|F (x)| =
∣∣∣∣∫ f(y)ϕ(‖x− y‖2)dy∫

ϕ(‖x− y‖2)dy

∣∣∣∣ ≤ ‖f‖∞, x ∈ Rd. (4)

In particular, F is well-defined at each point x of Rd. Since F is the compo-
sition of linear operators, it is linear; i.e., ∀f, g ∈ C0, ∀α, β ∈ R, the identity
F(αf + βg) = αF(f) + βF(g) holds. The continuity of F follows from the re-
lation (4) and ‖F(f)‖∞ ≤ ‖f‖∞, ∀f ∈ C0.

3. Fuzzy Transform and function approximation

In the previous section, we have provided a continuous function F that inter-
polates the values of Fn. In the following, we investigate the properties of both
the Fuzzy Transform and its discrete version in the context of the approximation
theory. To this end, we approximate the input data set D := {(xi, f(xi))}si=1

with a continuous representation f : Rd → R and prove the invariance of the
Discrete Fuzzy Transform of f with respect to the interpolating/least-squares
approximation of D. As detailed in Section 4, this result also motivates the
use of the least-squares approximation as basis for the insertion of additional
constraints in the definition of the Fuzzy Transform. Among these constraints,
we mention the geometric distribution of the input data or confidence weights
associated to the f -values.

To address the aforementioned aims, we introduce a matrix formulation of
the Discrte Fuzzy Transform, estimate its energy, and discuss its stability to
noise (Section 3.1). Then, we investigate the relations between the Fuzzy Trans-
form and the least-squares approximation (Section 3.2).
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3.1. Matrix formulation of the Discrete Fuzzy Transform: energy estimation
and stability to noise

To define the matrix formulation of the Discrete Fuzzy Transform, let us
introduce the coefficient matrix K := (Ak(xi))

i=1,...,s
k=1,...,n ∈ Rn×s, n ≤ s, and the

n× n diagonal matrix D := diag(d1, . . . , dn) with entries dj :=
∑s
i=1Aj(xi),

j = 1, . . . , n. Then, we have that the Discrete Fuzzy Transform Fn of f , with
respect to the set of points P := {xi}si=1, is represented in matrix form as

Fn := (Fk)nk=1 = D−1Kf , f := (f(xi))si=1 ∈ Rs. (5)

From the previous relations, we have that

|Fk| =
|
∑s
i=1 f(xi)Ak(xi)|∑s

i=1Ak(xi)

≤
∑s
i=1 |f(xi)|Ak(xi)∑s

i=1Ak(xi)

≤ ‖f‖∞, k = 1, . . . , n;

indeed, ‖Fn‖∞ ≤ ‖f‖∞ and ‖Fn‖2 ≤
√
n‖f‖∞. It follows that each value Fk is

bounded by the maximum absolute value of f . We now derive an estimation of
the energy ‖Fn‖2 of the Discrete Fuzzy Transform using its matrix formulation
(5); in fact,

‖Fn‖2 = ‖D−1Kf‖2
≤ ‖D−1‖2‖K‖2‖f‖2

=

 min
i=1,...,n


s∑
j=1

Ai(xj)


−1

σmax(K)‖f‖2,

where σmax(K) is the maximum singular value of the matrix K. We conclude
that the l2 energy of Fn is proportional to the energy of the input signal and
σmax(K). Finally, we notice that the values of the Inverse Fuzzy transform fF,n
at the points of P can be written as (fF,n(xi))si=1 = KTD−1Kf .

Stability of the Discrete Fuzzy Transform to noise. To study the stability of
the Discrete Fuzzy Transform with respect to the input data, let us consider
the f -values f := (f(xi))si=1 and its perturbation f? := (f(xi) + ei)si=1, where
e := (ei)si=1 is the noise vector. Then, the Discrete Fuzzy Transform of f and f?

is given by
Fn := D−1Kf , F?n := D−1Kf?,

respectively. From the previous relations, it follows that

‖Fn − F?n‖2 = ‖D−1Ke‖2
≤ ‖D−1‖2‖K‖2‖e‖2

≤

 min
i=1,...,n


s∑
j=1

Ai(xj)


−1

σmax(K)‖e‖2.
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a) Input 50× 50 image and Inverse Fuzzy Transform (b) sampled on the same grid.
Inverse Fuzzy Transform with (c,e) interpolating and (d,f) least-squares constraints on a (c,d)
200× 200 and (e,f) 500× 500 grid.

Then, the discrepancy between Fn and F?n is proportional to the norm ‖e‖2 of
the perturbation vector and the maximum singular value of the matrix K.

3.2. Fuzzy Transform and least-squares approximation
Assuming n < s and that the membership functions {Ai(x)}ni=1 are linearly

independent, we search the map f(x) :=
∑n
i=1 αiAi(x) that is the best least-

squares approximation with respect to the f -values; i.e., the map f : Rd → R
that solves the minimization problem

arg min
f


s∑
j=1

|f(xj)− f(xj)|2
 . (6)

Inserting the expression of f in Equation (6) and deriving the quadratic func-
tional with respect to the parameters α := (αi)ni=1, the vector α is the unique
solution to the normal equation

KKTα = Kf ←→ α = K†f , K† := (KKT )−1K, (7)

where K, f are the matrices introduced in Section 3.1 and K† is the pseudo-
inverse ofK (Golub and VanLoan, 1989). SinceK is the Gram matrix associated
to a set of basis functions, it has full rank; in particular, KKT is positive
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definite and (7) has a unique solution. If the number of sampled values and
basis functions is the same (i.e., n = s), then the normal equation (7) becomes
Kα = f and the function f interpolates the input f -values; i.e., f(xi) = f(xi),
i = 1, . . . , s.

The assumption that the membership functions are linearly independent is
not restrictive; for instance, this condition is satisfied by the triangular, sinu-
soidal and Gaussian membership functions. If the membership functions are not
linearly independent or their properties (e.g., number, regularity, support) are
not good for the approximation scheme, then the previous framework is updated
by selecting a set of basis functions that are different from the input membership
maps. For instance, we can choose the functions {ϕi(x) := ϕ(‖x− xi‖2)}ni=1

generated by a positive or semi-positive definite kernel ϕ : R+ → R (Aronszajn,
1950; Schoelkopf and Smola, 2002; Wendland, 1995). For the membership func-
tions that are generated by Gaussian or compactly-supported kernels, the coef-
ficient matrix K is sparse and the memory allocation is linear in the number of
samples.

Evaluation of the discrepancy error. Comparing the least-squares approxima-
tion with the Inverse Fuzzy Transform, we have that

|fF,n(x)− f(x)| =

∣∣∣∣∣
n∑
i=1

(Fi − αi)Ai(x)

∣∣∣∣∣
≤

n∑
i=1

|Fi − αi| |Ai(x)|

≤ ‖Fn − α‖1
≤
√
n‖D−1Kf − (KTK)−1Kf‖2

≤
√
n‖
[
D−1 − (KKT )

]
K‖2|f‖2

≤
√
n‖D−1 − (KKT )−1‖2σmax(K)‖f‖2

≤


 min
i=1,...,n

{
s∑
j=1

Ai(xj)}

−1

+ λ−1
min(KKT )

σmax(K)‖f‖2.

For the interpolating case, the last error bound reduces to

|fF,n(x)− f(x)| ≤
√
n‖Fn − α‖2

= ‖(D−1K −K−1)f‖2
≤
√
n‖D−1K −K−1‖2‖f‖2,

≤
√
n
[
‖D−1‖2‖K‖2 + ‖K−1‖2

]
‖f‖2

≤
√
n

[
λmax(K)

mini=1,...,n{
∑s
j=1Ai(xj)}

+
1

λmin(K)

]
‖f‖2 x ∈ Rd.

It follows that the error ‖fF,n − f‖∞ depends only on the input f -values and
the spectral properties of the Gram matrix K.
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(a) 50× 50 (b) 100× 100 (c) 260× 260

Figure 3: (a) Input noisy image and (b-c) re-sampling of its Inverse Fuzzy Transform with
least-squares constraints and at different resolutions.

Discrete Fuzzy Transform of f and linearity with respect to the approximation
of D. Once the approximation f : Rd → R has been computed, we proceed in
two different ways by (i) applying the continuous definition of the Fuzzy Trans-
form to f ; (ii) computing the Discrete Fuzzy Transform of f .

In the first case, we have that

F k :=
∫
f(x)Ak(x)dx∫
Ak(x)dx

=
∑n
i=1 αi

∫
Ai(x)Ak(x)dx∫
Ak(x)dx

, k = 1, . . . , n.

Through this last relation, the evaluation of F k requires to pre-compute (only
once) the integral values and then calculate the component F k, k = 1, . . . , n,
for several f . Furthermore, assuming that each membership function is gener-
ated by a kernel the previous computation reduces to evaluate the integrals of
functions of one variable.

In the second case, we show that the Discrete Fuzzy Transform of the array
f := (f(xi))si=1 is equal to the Discret Fuzzy Transform of f := (f(xi))si=1; i.e.,
the Discrete Fuzzy Transform is invariant to the interpolating and least-squares
approximation of discrete data. To this end, we compute the Discrete Fuzzy
Transform of f as

Fn := (F k)nk=1, F k :=
∑s
i=1 f(xi)Ak(xi)∑s

i=1Ak(xi)
, k = 1, . . . , n.

If f interpolates the f values, then the Discrete Fuzzy Transform of f and f
on P is the same; i.e., Fn = Fn. If we consider the least-squares case, then we
have that the kth component is

F k =

∑j=1,...,n
i=1,...,s αjAj(xi)Ak(xi)∑s

i=1Ak(xi)
, k = 1, . . . , n.

In matrix form, the previous relations can be written as Fn = D−1(KKT )α,
with K := (Ak(xi))

i=1,...,s
k=1,...,n ∈ Rn×s, and D := diag(d1, . . . , dn) ∈ Rn×n diagonal
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matrix with entries dk :=
∑s
j=1Ak(xj), k = 1, . . . , n. Since α := (KKT )−1Kf

(c.f., Equation (7)), we have that

Fn = D−1(KKT )(KKT )−1Kf = D−1Kf =: Fn.

From the last identity, it follows that the input map f and its least-squares
approximation f have the same Discrete Fuzzy Transform.

To show that the computation of the Discrete Fuzzy Transform of f is
still linear, it is enough to verify that the least-squares approximations is lin-
ear. To this end, let f := (f(xi))si=1, g := (g(xi))si=1 be the values of two
maps f, g : Rd → R at the points of P and let f , g be the corresponding least-
squares approximations. Our aim is to prove that the least-squares approxi-
mation of the discrete set {af(xi) + bg(xi)}si=1 is af + bg with a, b ∈ R; i.e.,
af + bg = af + bg. From the previous assumptions, we have that

f(x) :=
∑n
i=1 αiAi(x), (KKT )α = Kf , α := (αi)ni=1,

g(x) :=
∑n
i=1 βiAi(x), (KKT )β = Kg, β := (βi)ni=1,

and the linearity of the least-squares approximation follows from the equalities

(KKT )(aα+ bβ) = aKf + bKg = K(af + bg).

An example of computation of the Inverse Fuzzy Transform and stability to
noise is shown in Figure 2 and 3, respectively. In both cases, a different sampling
set has been used to show the capability of recovering information outside the
sampling grid P.

Additivity of the Discrete Fuzzy Transform associated to P. Since f is a contin-
uous approximation of the f -values, we can compute the Discrete Fuzzy Trans-
form of f with respect to a new set of points P := P ∪ {xs+1, . . . ,xq} =: P ∪ P?.
In this case, the difference between the Discrete Fuzzy Transform associated to P
and P is evaluated as

F k :=
∑q
i=1 f(xi)Ak(xi)∑q

i=1Ak(xi)

=
∑s
i=1 f(xi)Ak(xi) +

∑q
i=s+1 f(xi)Ak(xi)∑s

i=1Ak(xi) +
∑q
i=s+1Ak(xi)

≤
∑s
i=1 f(xi)Ak(xi)∑s

i=1Ak(xi)
+
∑q
i=s+1 f(xi)Ak(xi)∑q

i=s+1Ak(xi)

≤(a) Fk +
∑q
i=s+1 f(xi)Ak(xi)∑q

i=s+1Ak(xi)

≤(b) Fk + max
i=s+1,...,q

{|f(xi)|}, k = 1, . . . , n.

From the inequality (a), it follows that F k is bounded by Fk and the Discrete
Fuzzy Transform associated to the set of new samples in P?. From (b), the
upper bound to F k is given by Fk and the maximum of the absolute values of f
at the points of P?. Indeed, we estimate an upper bound to Fn using the values
of Fn and the l∞-norm of the new f -values {f(xi)}qi=s+1.

11



3.3. Dual basis for the Inverse Fuzzy Transform
We rewrite the Inverse Fuzzy Transform as a linear combination of the f -

values and the dual basis BFT := {BFTi (x)}si=1, which is defined as the set of
functions such that fF,n(x) :=

∑s
i=1 f(xi)BFTi (x). Introducing the function

vector A(x) := (Ai(x))ni=1 ∈ Rn×1, x ∈ Rd, we get that

fF,n(x) := FTnA(x) = (D−1Kf)TA(x) = fT KTD−1A(x)︸ ︷︷ ︸
:=BFT (x)

,

where the components of BFT (x) := KTD−1A(x) are the dual membership
functions

BFTi (x) :=
n∑
j=1

Aj(xi)∑s
r=1Aj(xr)

Aj(x), x ∈ Rd, i = 1, . . . , s.

For the interpolating and least-squares case, the approximating function in
Equation (6) and (7) can be written as

f(x) := αTA(x) =
[
(KKT )−1KT f

]T
A(x) = fT K(KKT )−1A(x)︸ ︷︷ ︸

:=BLS(x)

.

As done before, the components of BLS(x) are the dual basis functions of the
least-squares approximation f . While the evaluation of BFT (x) takes linear time
in n, the computation of BLS(x) requires to invert the positive-definite matrix
KKT . In most of the cases, each membership function Ai(x), i = 1, . . . , n,
decreases with the distance of its center xi from the evaluation point x ∈ Rd. In
this way, only the data in a neighborhood of xi affects the evaluation of Ai(x),
thus providing a local approximation scheme. In a similar way, the dual basis
functions are bell-shaped; in fact, fF,n and f are linear combinations of these
maps with the f -values as coefficients. The bell-shape is also enforced by the
term D−1 and (KKT )−1 in fF,n and f , respectively. From the dual formulation,
we deduce that the Inverse Fuzzy Transform preserves the local features of the
input data.

4. Enriching the Discrete and Inverse Fuzzy Transform with geomet-
ric and confidence information

The invariance of the Discrete Fuzzy Transform with respect to the least-
squares approximation suggests us to use this framework as basis for inserting
additional information on the input data in the approximation scheme. In this
way, the Fuzzy Transform is enriched with geometric information on P (Sec-
tion 4.1) and confidence weights associated to the discrete f -values (Section 4.2).
For instance, this is the case of the values of a function sampled on a manifold
surface, whose dimension is lower than that of the embedding space; the pixels
of an image; the points generated by physical processes; or the maps that are
solutions of differential equations.

12



(a) (b)

(c) (d)

Figure 4: (a) Input image and (b-d) geometry-driven Inverse Fuzzy Transform with a dif-
ferent k-nearest neighbor graph used to compute the Laplacian matrix; i.e., (b) k = 10, (c)
k = 15, and (d) k = 20.

4.1. Enriching the Fuzzy Transform with geometric information
Until now the approximation of the f -values has been driven by the only

membership functions, thus neglecting the distribution of the input data P. To
introduce the geometric organization of P, let us now define the approxima-
tion f : Rd → R that minimizes two conflicting criteria: the least-squares error∑s
i=1 |f(xi)− f(xi)|2 and the intrinsic geometric term ‖f‖2L := f

T
Lf , where L

is a s× s semi-positive definite matrix and f := (f(xi))si=1 is the array of f -
values at the points of P. Roughly speaking, the intrinsic penalty term must
reflect the intrinsic geometry of the input data; as detailed at the end of this
section, a possible solution is to choose L as the Laplacian matrix associated to
the k-nearest neighbor graph of P.

Assuming that the approximation f(x) :=
∑n
i=1 αiAi(x) is a linear combina-

tion of the basis functions A := {Ai(x)}ni=1, f is the solution to the minimization
problem

Φ(α1, . . . , αn) :=
s∑
i=1

|f(xi)− f(xi)|2 + λ‖f‖2L, λ ≥ 0,

where λ is the trade-off between the least-squares and the intrinsic term. As λ in-
creases, the effect of the geometry of the data increases and alters the complexity
behavior of the dual basis functions; for λ := 0, we get the least-squares func-
tional (6). Since f := (f(xi))si=1 := KTα, where K := (Ai(xj))

j=1,...,s
i=1,...,n ∈ Rn×s

13



is the Gram matrix associated to the set A, the functional Φ is rewritten as

Φ(α1, . . . , αn) : = ‖f − f‖22 + λ‖f‖2L
=
[
fT f − 2αTKf + αT (KKT )α

]
+ λ‖KTα‖2L

= αT
[
K(I + λL)KT

]
α− 2αTKf + fT f ,

whose normal equations ∇Φ = 0 are

K(I + λL)KTα = Kf ↔ α :=
[
K(I + λL)KT

]−1
Kf . (8)

If L is semi-positive definite, then (I + λL) is positive definite for any λ ≥ 0.
Since K has maximal rank (i.e., K is the Gram matrix associated to the mem-
bership functions), the matrix K(I + λL)KT is positive definite for any λ > 0
and α is the unique solution to Equation (8). Then, we derive the expression of
the geometry-driven Discrete Fuzzy Transform FGn as follows

FGn := D−1(KKT )α

= D−1(KKT )
[
K(I + λL)KT

]−1
Kf︸ ︷︷ ︸

:=y

.

To compute FGn without explicitly inverting the matrix K(I + λL)KT , which is
computationally unfeasible, the previous relation is rewritten as the system{ [

K(I + λL)KT
]
y = Kf (a)

FGn := D−1(KKT )y (b). (9)

Indeed, firstly we compute y by solving the sparse linear system (9a) inO(s log s)
time; then, FGn is evaluated in linear time through (9b). Finally, the vector
FGn := (FGi )ni=1 uniquely identifies the corresponding geometry-driven Inverse
Fuzzy Transform, which is defined as fGF,n(x) :=

∑n
i=1 F

G
i Ai(x). Figure 4 shows

the level-sets of the geometry-driven Inverse Fuzzy Transform fF,n of the con-
fidence map δ, defined on a 2D curve which is represented in (a). Since the
highest confidence value is one, the reconstructed curve is achieved as f−1

F,n(1).
Finally, notice that increasing k provides smoother results which might appear
blurred (e.g., Figure 4(d)).

As suggested in (Sindhwani et al., 2006), a natural way to estimate the
correlation among points and the geometry of the underlying data set is to use
the graph Laplacian (Chung, 1997), which is defined as L := D −W where D
is a diagonal matrix and W is the adjacency matrix induced by the k-nearest
neighbor graph of P. Here, the s× s matrices D and W are defined as

Wij :=

{
exp

(
−‖xi−xj‖2

4h

)
, xj ∈ Nxi ,

0 else,
Dij :=

{ ∑
xj∈Nxi

Wij , i = j,

0 else,

where h is the support of the Gaussian weight function andNxi is the set of the k
points of P that has the shortest Euclidean distance from xi, i = 1, . . . , n. Alter-
natively, we can use constant weights Wij := 1 if (i, j) is an edge of the k-nearest

14



(a) (b) (c)

(d) (e) (f)

Figure 5: Level-sets of the confidence-driven Inverse Fuzzy Transform associated to a set of
points (black dots), which is (a-e) characterized by a different sampling density and (f) affected
by noise.

neighbor graph of P. In both cases, the Laplacian matrix is sparse and the num-
ber of non-null element is (k + 1)× n. Finally, the k-nearest neighbor graph is
efficiently computed in O(kn log n) time using efficient data structures (Arya
et al., 1998).

4.2. Enriching the Fuzzy Transform with confidence information
In the following, we discuss how confidence maps associated to the input

data can be used in the context of the Fuzzy Transform for data modeling and
analysis. Let us assume that P is enriched with a confidence map δ : P → [0, 1],
which associates to each value f(xi) or point xi of P its degree of reliability
δ(xi) := δi. This map is a-priori known, or provided by the acquisition process
(e.g., through laser scanners), or computed by analyzing the data variability
through a likelihood estimation (Jolliffe, 1986). A higher value of δ corresponds
to a higher reliability. For more details on the computation of δ for point-
sampled surfaces, we refer the reader to (Grigoryan and Rheingans, 2004; Pauly
et al., 2004).

Assuming that δi is the confidence weight associated to the value f(xi), we
rewrite the least-squares functional (6) as

Φ(α1, . . . , αn) :=
s∑
i=1

δi|f(xi)− f(xi)|2 =
s∑
i=1

δi

∣∣∣∣∣∣f(xi)−
n∑
j=1

αjAj(xi)

∣∣∣∣∣∣
2

.
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Then, the stationary points of Φ are the solutions to the linear equations

s∑
i=1

δiAk(xi)f(xi) =
j=1,...,n∑
i=1,...,s

δiAj(xi)Ak(xi)αj , k = 1, . . . , n.

These last relations can be written in matrix form as

(K∆KT )α = K∆f ←→ α = (K∆KT )−1K∆f ,

where ∆ := diag(δ1, . . . , δs) ∈ Rs×s is the diagonal matrix whose entries are the
confidence values associated to the points of P. Finally, the confidence-driven
Discrete Fuzzy Transform is

FCn := D−1(KKT )−1α = D−1(KKT ) (K∆KT )−1K∆f︸ ︷︷ ︸
:=y

. (10)

Assuming that δi 6= 0, i = 1, . . . , s, we have that ∆ is invertible; from this prop-
erty, it follows that K∆KT is positive definite and the solution α to (10) is
unique. To compute FCn without explicitly inverting the matrix K∆KT , the
previous relation is rewritten as the system{

(K∆KT )y = K∆f (a)
FCn := D−1(KKT )y (b). (11)

To solve (11), firstly we compute y by solving the sparse linear system (11a) in
O(s log s) time; then, FCn is evaluated in linear time through (11b). The values of
the vector FCn := (FCi )ni=1 ∈ Rn uniquely identify the corresponding confidence-
driven Inverse Fuzzy Transform, which is defined as fCF,n(x) :=

∑n
i=1 F

C
i Ai(x).

Finally, notice that we can combine the geometric- and confidence-driven Dis-
crete Fuzzy Transform in a unique framework. Figure 5 shows the results of the
confidence-driven Inverse Fuzzy Transform on a data set P with (a,b) a regular,
(c,e) an irregular sampling density, and (f) noise. Until the noise remains low,
the level sets of the corresponding confidence-driven Inverse Fuzzy Transform
remain smooth and well-distributed around P; with a high noise, the level-sets
become almost circular and centered at the barycenter of P.

5. Conclusions and future work

This paper has discussed the relation between the least-squares approxima-
tion and the Fuzzy Transform, its specialization to radial membership functions,
and the invariance of the Discrete Fuzzy Transform to interpolating and least-
squares constraints. Then, we have shown how geometric information on the
input data and confidence weights associated to the f -values can be inserted
in the computation of the Discrete Fuzzy Transform. The exploitation of this
information, which is extracted with statistical and graph-based techniques,
generally provides an Inverse Fuzzy Transform that recovers the features of the
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function underlying the input data. Furthermore, the main properties of the
Fuzzy Transform are preserved by these enhanced formulations.

The proposed approach, which is oblivious of the dimension and organization
of the input data, uses numerical linear algebra as main tool and requires the
solution of sparse linear systems, thus resulting computationally feasible in real
applications. Even though the O(n log n) computational cost of the geometry-
and confidence-driven Discrete Fuzzy Transform is higher than the linear time
needed to compute the Discrete Fuzzy Transform, the proposed extensions are
meaningful in terms of cost and results.

As future work, we plan to analyze the analogies between the Fuzzy Trans-
form and other approximation techniques, which include the Partition of the
Unity and moving least-squares techniques, and to provide an interpretation of
the proposed approach using residuated lattice or analogous paradigms.
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