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Abstract:

This paper deals with the mathematical background and application understanding that is behind the 
representation and generation of shapes in computer graphics. In particular, special emphasis is given on issues 
related to the definition of abstraction tools for deriving high-level descriptions of complex shape models. 
Among the wide range of shape descriptors, topological graph-like representations not only give a powerful and 
synthetic sketch of the object, but also capture its inner structure, that is how features connect together to give 
the overall shape. This aspect make them useful to describe complex 3D objects in various applications as 
modelling, morphing, matching and recognition. 
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1 Introduction

A possible approach to the problem of shape classification and understating is to represent 

shape properties of a given object through shape descriptors which are useful to detect those 

properties, which are invariant to position, orientation, local noise and other distortions. 

Among all, descriptors based on geometry and topology seem to be suitable for dealing with 

the definition of basic models for representing and generating shapes. Computational 

topology has been recently proposed as a branch of Computer Graphics, which aims at 

solving problems related to topological issues, without forgetting the feasibility and the 

computational complexity of the problem. For instance, topology can be successfully applied 

as a basis for the compression of dense meshes where the knowledge of the adjacency 

relationship among facets is locally exploited to decrease the amount of stored information 

[5]. Furthermore, this theory can be used to locate the main features of the object discarding 

details in the mesh without losing the overall appearance [4]. Finally, content-based search in 

object databases and shape-based processing are conveying an increasing attention on the 

formalization of shape as a combination of geometry and semantics, in order to define tools 

for assessing the similarity among different models [13]. Shape interpretation is especially 

relevant for the perception of complex forms, where the ability of varying the level of 

descriptive abstraction is the key for recognizing and classifying highly complex shapes 
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through a multi-resolution framework which abstracts the object at different levels of detail. 

From a mathematical point of view, Morse theory, homotopy and homology appear to be 

appropriated tools to deal with topological questions in computer graphics applications [8,9]. 

The reminder of the paper is organized as follows: in Section 2, the theoretical background on 

Morse theory is briefly summarized considering all those elements which have a direct 

application for the extraction of the Reeb graph on triangular mesh as described in Section 3. 

Conclusions and future improvements are proposed in the last section. 

2 Theoretical background on Morse Theory 

Our approach to shape description analyses any data that can be modelled as a surface and it 

is mainly related to Morse theory. Given an object surface S and a Morse function :f S ,

Morse theory states that the shape of the pair ( , )S f is represented by the evolution of the 

homology groups of the sets 1: (( , ])xS f x as x varies on . Moreover, the critical points of f
give information about the global topology of S and determine its homology groups. Since 

homology groups codify shape properties as the number of connected components, holes and 

cavities in the object, it follows that a finite collection of level sets is sufficient to fully 

describe the surface shape and is more complete than simply knowing the global homology. 

Focusing on the evolution of Sx
, we obtain a discrete description which effectively represents 

the shape of S and can be encoded in a topological graph, as formalized in the following, [11].  

Definition. Let :f S be a real valued function on a compact manifold S. The Reeb Graph 
G of S with respect to f is the quotient space of S defined by the equivalence relation ,

given by ( , ( )) ( , ( )), ,P f P Q f Q P Q S  iff ( ) ( )f P f Q  and P, Q are in the same connected 

component of 1( ( ))f f P .

The Reeb graph, defined as the quotient space of S wrt the function f, effectively codes the 

topological evolution of the surface contour levels 1( ( ))f f P  at each point P on S by 

considering how cells corresponding to critical points glue together (see Figure 1).

Fig. 1 : The equivalence classes and the Reeb graph of a bi-torus wrt a specific height 
function f.

Since the properties of S and f determine that of G, the quotient function f  has to be chosen in 

order to extract characteristics which fully describe the object with respect to the application 

needs. From a topological point of view, the continuity of f ensures that two homeomorphic 
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manifolds are mapped into homeomorphic graphs thus guaranteeing their identification. Even 

if previous considerations enable to fully identify topological properties of S through G,

different application fields, such as matching, compression, etc., require to select, among 

different but equivalent representations of S, that more suitable for the application context. 

For instance, matching requires an input graph with a minimal number of redundant leaves in 

order to avoid a pre-processing for pruning. These needs result in searching for a function f
which produces an affine-invariant graph of 3D shapes [10], which enables to extract 

geometric information on S such as section length, area, etc. Usually, the function f is chosen 

in the family of Morse functions, always taking into account the trade off between calculation, 

invariance and description effectiveness. Possible choices are described in the following 

section.

3 Graph representation for triangular meshes 

A standard choice of f is the height function in the three-dimensional space (see Figure 2) 

which has been extensively studied in [2,3,12]. In this case, the critical points correspond to 

peaks, pits and saddles of the object and the generated graph very intuitively resembles the 

skeleton of the object; unfortunately, it depends on the chosen direction of  the height 

function, so that a different orientation may produce a  different graph. 

Fig. 2: The Reeb graph wrt the direction h with a minimal number of surface sections (right); 
on the surface we highlight those parts of the surface where topology changes (left). 

For this reason, recent efforts are focused on the definition of a map such that its related graph 

is invariant to affine transformations; examples have been proposed in [7,14,15]. 

Surface curvature and geodesic distance seem to be good shape estimators; unfortunately, 

their dependency on second order derivatives makes them numerically unstable preventing 

their direct use for the graph definition. Instead we have proposed a mixed strategy, which 

extracts the skeleton of a surface represented by a simplicial complex, combining differential 

and computational topology techniques. In this context, a multi-resolution curvature 

evaluation [6] is introduced to locate seed points which are sequentially linked by using the 

natural topological distance on the simplicial complex (see Figure 3a). More precisely, once 

computed the approximated Gaussian curvature for the mesh vertices, for each high curvature 

region iR , a representative vertex pi is selected. Starting at the same time from all the 

representative vertices, rings made of vertices of increasing neighbourhoods are computed in 

parallel until the whole surface is covered, in a way similar to the wave-traversal technique 

[1]. Rings growing from different seed points will collide and join where two distinct 

protrusions depart, thus identifying a branching zone; self-intersecting rings can appear 

h
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expanding near handles and through holes. A skeleton is drawn according to the ring 

expansion: terminal nodes are identified by the representative vertices, while union or split of 

topological rings give branching nodes. Arcs are drawn joining the centre of mass of all the 

rings (see Figure 3b). 

Fig. 3: (a) High curvature regions are depicted in red; (b) expansion of the neighbourhood 
rings from the representative vertices; (c) obtained graph.  

We are now concerned with the formalization of the graph construction for triangle meshes as 

quotient space; its generalization to manifolds is analyzed in [10]. Selected a point pi, we 

introduce the function ( ) : min :
ipf x k x k neighborhood which defines the topological 

distance of x from pi. We can extend the previous function to a finite set of vertices 

1, , np p as
1, ,( ) : min ( ) ,

kk n pf x f x x S , i.e. f assigns to x its minimal topological distance 

with respect to more than one vertex. Starting from S and f, we are able to construct the 

relation  as: 
1 1, , ( ( )) ( ( )) .p q S p q f f p f f q

From the previous definition it follows that G=S/  and it is a Reeb graph wrt such a function 

f. The complexity of the proposed graph, in terms of number of nodes and branches, depends 

on the input shape and on the number of seed points which have been selected using the 

curvature estimation criterion. This graph is affine-invariant (translation, rotation, scaling) 

because the chosen function f does not rely either on a local coordinate system or on surface 

embeddings as it happens, for example, using the height function. On the other hand, if the 

curvature evaluation process does not recognize at least one feature region, e.g. surfaces with 

constant curvature value as spheres, our approach is not meaningful for extracting a 

description of the shape; on the contrary, the height function always guarantees to get a result. 

Finally, we observe that the proposed framework works on shapes of arbitrary genus. 

3 Conclusions and future work 

The proposed ideas are starting steps for reconstructing a complete framework available for 

shape abstraction, classification (i.e. feature detection), comparison (i.e. matching) and editing 

(i.e. morphing). As previously highlighted, the choice of different shape descriptors can be 

done according to the application needs allowing certain degree of freedom; indeed, the use of 

topological graphs provides flexible tools for the abstraction of complex shapes with arbitrary 

topology. Currently, we are investigating further improvements in the choice of the 

representative function, which should also guarantee a better differentiability properties. 
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