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Abstract

This paper proposes an iterative computation of sparse representations of functions

defined on Rd , which exploits a formulation of the sparsification problem equiva-

lent to Support Vector Machine and based on Tikhonov regularization. Through this

equivalent formulation, the sparsification reduces to an approximation problem with

a Tikhonov regularizer, which selects the null coefficients of the resulting approxima-

tion. The proposed multi-resolutive sparsification achieves a different resolution in the

approximation of the input data through a hierarchy of nested approximation spaces.

The idea behind our approach is to combine a smooth and strictly convex approxima-

tion of the l1-norm with Tikhonov regularization and iterative solvers of linear/non-

linear equations. Firstly, the iterative sparsification scheme is introduced in a Repro-

ducing Kernel Hilbert Space with respect to its native norm. Then, the sparsification is

generalized to arbitrary function spaces using the least-squares norm and radial basis

functions. Finally, the discrete sparsification is derived using the eigendecomposition

and the spectral properties of sparse matrices; in this case, the computational cost is

O(n logn), with n number of input points. Assuming that the data is supported on

a (d �1)-dimensional manifold, we derive a variant of the sparsification scheme that

guarantees the smoothness of the solution in the ambient and intrinsic space by us-

ing spectral graph theory and manifold learning techniques. Finally, we discuss the

multi-resolutive approximation of d-dimensional data such as signals, images, and 3D
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shapes.
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1. Introduction

Representing a signal as a linear combination of a set of atoms of a given dictionary

is used in a wide range of applications, such as approximation, denoising, and compres-

sion. Two main elements characterize the final representation: (i) the properties of the

atoms such as linear independence, orthogonality, redundancy, signal-awareness and

(ii) the sparseness of the linear representation, which is given by the number of non-null

coefficients. Defining sparse representations with respect to dictionaries reacher than

an orthogonal basis is also fundamental to represent complex data and to adapt this rep-

resentation to the features of the data itself. For instance, dictionaries of curvelets [8, 9]

and bandelets [30, 46] are tailored to the local geometric regularity of the input signal

and the coefficients of the corresponding sparse representations are useful to identify

geometric features; e.g., sharp boundaries and edge orientation in images. Further-

more, the computation of sparse representations with respect to a given dictionary can

be combined with an update of its atoms in order to improve the data fitting [1]. Main

applications of sparse representations in computer vision and image understanding in-

clude face recognition [61], data segmentation [20, 50], image super-resolution [62],

denoising [37], and classification [35, 36].

Given a signal f : Rd ! R and a dictionary B := {ji(x)}n
i=1 of atoms, sparse cod-

ing refers to the problem of computing the coefficients a := (ai)n
i=1 of the function

g(x) = Ân
i=1 aiji(x) that approximates f , involves the smallest number of atoms, and

provides the highest accuracy among all the approximations of f generated by B. In

this context, compressive sampling theory [8, 15] has shown that signals can be accu-

rately approximated from a number of samples that is lower than the one imposed by

the Nyquist sampling theory.

According to [14, 52], the coefficient vector a, which defines the sparse represen-
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tation g : Rd ! R of f , solves the minimization problem

arg min
a2Rn

{E( f ,g)+ ekak0} , g(x) :=
n

Â
i=1

aiji(x), (1)

where the term E( f ,g) is the approximation error between f and g with respect to the

loss function E(·, ·); the sparsification order kak0 is given by the number of non-null

coefficients; and the positive constant e controls the trade-off between these two terms.

To measure the approximation error between the maps f and g, common choices

are the native distance E( f ,g) := 1
2k f �gk2

H in a Reproducing Kernel Hilbert Space

(RKHS) H; the l2-norm E( f ,g) := 1
2kf�gk2

2 of the values f := ( f (xi))n
i=1, g := (g(xi))n

i=1

at the points of P := {xi}n
i=1; and the e-insensitive cost function [14, 52]

E( f ,g) :=
n

Â
i=1

G( f (xi)�g(xi)), G(t) := |t|e :=

8
<

:
0 if |t|< e,

|t|� e otherwise.

Since the minimization of the objective function in Eq. (1) is NP-hard, the sparsifi-

cation term kak0 is usually approximated by the lp-norm kakp := (Ân
i=1 |ai|p)1/p and

the corresponding sparsification results in a convex minimization problem. On the one

hand, for 0  p < 1 the lp-norm is not strictly convex [25, 47, 48, 49] and the corre-

sponding problem has local extrema that might be identified as solutions during the

search of the global minimum. On the other hand, the l1-norm guarantees the unique-

ness of the solution and provides a representation sparser than the l2-norm. To avoid

oversampling, an iterative re-weighted l2-norm minimization, which provides a spar-

sity percentage lower than the l2-norm, has been proposed in [28]. From a general

perspective, the l1-norm is preferable to the l2-norm sparsification term because the

former avoids to penalize outliers in the sampled data and to distribute the residual

error in the objective functional [8, 15, 58]. Although the l0-norm provides the spars-

est solution, the assumption of dealing with a bounded noise generally guarantees that

the l1-norm sparse representations are significative and stable to noise and outliers.

The basis pursuit de-noising [11], regularized logistic regression [24, 41, 45, 51],

standard [39] and orthogonality matching pursuit methods [10, 38, 43] use the l1-norm

as sparsification term. Since the l1-norm is not differentiable at zero, the sparsification

is converted to a constrained optimization problem [32], whose number of unknowns
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is twice the number of input variables. Alternatively, the l1-norm is approximated by

a second order Taylor expansion of the objective function [24], which is minimized

using the least-squares angle regression [18] and the quasi-Newton algorithm [2]. The

sparsification problem is also solved through an incremental approach [32], which is

based on the conjugate gradient and avoids the discontinuity of the first order deriva-

tives of the l1-norm. Alternative approaches apply the maximum a-posteriori estima-

tion [33, 34, 42] and uncertainty criteria [16, 17, 19, 21, 26]. Finally, the probabilistic

Bayesian learning framework [57] is capable of further increasing the sparsification

rate with respect to SVMs and applies to arbitrary kernels.

Aims and contributions. This paper discusses an iterative computation of sparse and

multi-resolutive representations of an arbitrary function, which achieves a different res-

olution through a hierarchy of nested approximation spaces. The proposed approach

exploits a formulation [22] of the sparse approximation problem equivalent to Sup-

port Vector Machine and based on Tikhonov regularization. Through this equivalent

formulation, the sparsification reduces to an approximation problem with a Tikhonov

regularizer, which selects the null coefficients of the resulting approximation. The idea

behind our sparsification is to combine a smooth and strictly convex approximation of

the l1-norm with Tikhonov regularization and iterative solvers of linear or non-linear

equations. The proposed approach also guarantees good generalization performances

and applies to arbitrary function spaces, whose basis is not necessarily associated to a

Mercer kernel. Finally, it provides a sequence of nested approximation spaces, which

are generated by those functions selected during the computation of the sparsified so-

lution. We also discuss the multi-resolutive approximation of d-dimensional data such

as signals, images, and 3D shapes.

To introduce the sparsification scheme, we firstly assume that H is a Reproducing

Kernel Hilbert Space (RKHS) [3]; in this case, the native norm of H allows us to en-

force the accuracy and smoothness of the sparse approximation. Using the equivalence

between Support Vector Machine and Tikhonov regularization [22] in a RKHS, we ap-

proximate a real-valued function with sparse linear models, whose coefficients are fit-

ted using a smoothed version of the l1-regularization. This aim is achieved by replacing
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the l1-norm with a smooth and strictly convex approximation; then, the corresponding

sparsification functional is exactly evaluated and no approximation is required. Finally,

the sparsification problem is converted into a system of non-linear equations, whose

sparse coefficient vector is computed by applying a fixed point iteration and solving a

sequence of linear systems.

Using radial basis functions and least-squares techniques, the second part of the pa-

per generalizes the iterative sparsification scheme to arbitrary function spaces, which

are not necessarily associated to Mercer kernels. Assuming that the data is supported

on a (d �1)-dimensional manifold, we also derive a variant of the proposed approach

that guarantees the smoothness of the solution in the ambient and intrinsic space by

using spectral graph theory and manifold learning techniques. Diagonalizing the Gram

matrix of the sparsification normal equation, the unknown coefficients become inde-

pendent; i.e., each non-linear equation involves only one unknown and its solution is

computed in explicit form.

Applying iterative solvers instead of decomposition methods for constrained con-

vex minimization problems has the following advantages with respect to previous work.

The computational cost of the overall framework is O(r(n+n logn)) instead of O(n3.5),

where n and r, r << n, are the number of input data and steps of the iterative sparsifica-

tion scheme, respectively. The solution of the sparsification system is well-conditioned

as a matter of the underlying regularization framework and based on a global sparsifi-

cation procedure, which avoids time-consuming and a-posteriori local updates of the

model. Furthermore, at each iteration the update of the coefficient matrix involves only

its diagonal elements, takes O(n) time, and preserves its sparsity and symmetric struc-

ture. Finally, the input variables are not duplicated, thus reducing the memory alloca-

tion, which is one of the main drawbacks in case of a large amount of data. Since each

iteration provides an approximate reconstruction of the input function f : Rd ! R, the

iterative solver induces a hierarchy of sparse representations (g(r))r of f , which belong

to a sequence of nested spaces (Hr)r, Hr+1 ✓Hr, r � 1.

The paper is organized as follows. First, we introduce the proposed sparsifica-

tion scheme in Reproducing Kernel Hilbert Spaces (Sect. 2). Then, we derive a least-
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squares variant and its discrete counterpart (Sect. 3). Finally, we outline open issues

and future work (Sect. 4).

2. “Iterative" sparse approximation in Reproducing Kernel Hilbert Spaces

Replacing the l1-norm with a smooth approximation, we define an iterative sparsi-

fication scheme (Sect. 2.1) in a RKHS with respect to its native norm. Then, we discuss

the iterative computation of the sparsified solution (Sect. 2.2), and the multi-resolutive

structure of the sparsification scheme (Sect. 2.3). Finally, the generalization of the

sparsification scheme to arbitrary function spaces is addressed in Section 3.

2.1. Sparsification in Reproducing Kernel Hilbert Spaces

Let H be a Reproducing Kernel Hilbert Space [3] endowed with the scalar product

h·, ·iH and norm k ·kH induced by a positive definite, symmetric kernel K : Rd ⇥Rd ! R.

Common choices of K(·, ·) are the Gaussian K(x,y) := exp(�kx�yk2
2), polynomial

K(x,y) := (1�hx,yi2)s, and compactly supported [40, 53] kernels. Let g : Rd ! R

g(x) :=
n

Â
i=1

aiK(x,xi), a := (ai)
n
i=1 2 Rn,

be a map in the linear space Hn ✓H generated by the basis B := {ji(x)}n
i=1, where

each function ji(x) := K(x,xi) is induced by the kernel K(·, ·) and centered at the

points of P := {xi}n
i=1. The map g that provides the best compromise between approx-

imation accuracy, which is measured by E( f ,g) = 1
2k f �gkH, and sparseness with

respect to the l1-norm is the solution to the minimization problem

arg min
a2Rn

8
<

:
1
2

����� f �
n

Â
i=1

aiK(x,xi)

�����

2

H
+ ekak1

9
=

; . (2)

According to the equivalence between Support Vector Machine and Tikhonov regular-

ization [22], the functional in Eq. (1) can be interpreted as a least-squares approxi-

mation problem along with the Tikhonov regularizer kak1, which controls the sparsity

of the corresponding solution. Since the function sh(t) := (t2 +h)1/2 approximates

|t| as h ! 0+, in Rn the l1-norm kak1 is approximated by y(a) := Ân
i=1(a2

i +h)1/2,

h ! 0+, (Fig. 1). Furthermore, from the upper bound | |t|� sh(t) | h1/2, h > 0,
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(a) (b)

Figure 1: (a) Convergence of the function sh(t) := (t2 +h)1/2 to |t|, as h ! 0+, t 2 [0,1]. Each plot of sh

corresponds to a different value of the h. (b) Graphs of the function j(t) := 1+ e
�
t2 +h

��1/2 in Eq. (16)

for several values of the parameter e.

t 2 R, we get that the error between the l1-norm and its approximation satisfies the

bound |kak1 �y(a)| (nh)1/2, a 2 Rn. Indeed, the order of convergence of y(a) to

kak1 is given by the number n of input points and the parameter h1/2.

Replacing kak1 with y(a) in Eq. (2), we introduce the smooth sparsification func-

tional

F(a) :=
1
2

����� f �
n

Â
i=1

aiK(x,xi)

�����

2

H
+ e

n

Â
i=1

(a2
i +h)1/2 (3)

and verify that its unique minimum solves a system of non-linear equations. To this

end, we notice that the operator (3) is strictly convex because its summands k ·kH
and sh(t) are likewise strictly convex functions; in fact, the second order derivative

s00h(t) = h(t2 +h)�3/2 is always positive. Then, the solution to the approximate sparsi-

fication problem argmina2Rn{F(a)} is unique and satisfies the corresponding normal

equation rF(a) = 0.

Using the reproduction property h(x) = hK(x, ·),hiH, h 2H, x 2 Rd , the func-

tional (3) is rewritten as

F(a) =
1
2
k fk2

H�
n

Â
i=1

yiai +
1
2

n

Â
i, j=1

K(xi,x j)aia j + e
n

Â
i=1

(a2
i +h)1/2,

where yi := f (xi), i = 1, . . . ,n, is the set of f -values. Imposing rF(a) = 0, the critical

points of F satisfy the non-linear equations

n

Â
i=1

K(xi,x j)ai + e
a j

(a2
j +h)1/2 = y j, j = 1, . . . ,n.
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Indeed, the sparsification normal equation is

[K + eD(a)]a = y, a := (ai)
n
i=1, (4)

where K := (ki j)n
i, j=1, ki j := K(xi,x j), is the Gram matrix associated to the input ker-

nel, the diagonal matrix D(a) := diag((a2
i +h)�1/2)n

i=1, involves the unknown coef-

ficients, and y := (yi)n
i=1 is the right-hand side term of the f -values. Note that the

symbol K indicates both the kernel and the corresponding Gram matrix. Finally, the

entries of the Hessian matrix H(F) of F are

Hi j(F) =

8
<

:
K(xi,x j) i 6= j,

K(x j,x j)+
eh

(a2
j+h)3/2 else,

or, in matrix form,

H(F) = K + ehD3(a). (5)

Since the matrices K and D3(a) are positive-definite, the Hessian matrix (5) is pos-

itive definite for all a 2 Rn, h > 0, and e > 0. Then, the unique minimum of the

strictly convex functional F is the solution to Eq. (4). We notice that the sparsifi-

cation Ke := K + eD(a) and Hessian matrices are evaluated in O(n) time by updating

only the diagonal entries of K and preserving its symmetry and sparsity. In particu-

lar, we bypass the approximation of differential operators with divided differences and

related discretizations.

Sparse approximation of noisy data. To analyze the robustness of the sparsification

scheme in case of noisy data, let us perturb the input data as f (xi) = ỹi, ỹi := yi + ei,

i = 1, . . . ,n, where ỹi is the measured value of f at xi and ei is a random variable

with unknown probability distribution. Indicating with e := (ei)n
i=1 the error vector, the

solutions of the noiseless and noisy problems satisfy the equations [K + eD(a)]a = y

and [K + eD(b)]b = y+ e. Using the upper bound

kD(a)ak2 =

"
n

Â
i=1

a2
i

a2
i +h

#1/2

 n1/2, (6)
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(a) Input data (b) nb = 50%

(c) nb = 30% (d) nb = 18%

(e) Input data (f) nb = 23%

Figure 2: (a,e) Input data set (black dots) uniformly- and irregularly-sampled on and around the Bernoulli

lemniscate P ✓ R2. (b-d, f) Reconstructed curves (blue line), selected centers, and iso-contours of the sparse

approximations associated to (a,e), respectively. See also Fig. 3.

and the invertibility of the Gram matrix K, we get that the following relation holds

ka�bk2 = kK�1 [e(D(a)a�D(b)b)+ e]k2

 kK�1k2 [ekD(a)a�D(b)bk2 +kek2]

 l�1
1 (K) [e(kD(a)ak2 +kD(b)bk2)+kek2]

(6) l�1
1 (K)

⇣
2n1/2e+kek2

⌘
.

Therefore, the error ka�bk2 is bounded by the inverse of the minimum eigenvalue

of the Gram matrix K, the sparsification parameter e, and the error magnitude kek2.

Preconditioning (if necessary) K, the resulting matrix has a generally low conditioning
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(a) Input data (b) nb = 25%

(c) nb = 50% (d) nb = 34%

Figure 3: Sparse reconstructed curves using (a) all the input data (black dots) and (b) a set of selected cen-

ters. (c,d) Analogous examples on two different samplings (black dots) using the least-squares sparsification

(Sect. 3.1).

number and the previous error bound is mainly guided by the error magnitude.

In Figs. 2, 3, we reconstruct the curve underlying a regularly- and irregularly-

sampled noisy point set P := {xi}n
i=1 in R2 by computing the smooth and sparse func-

tion g : R2 ! R that approximates the discrete map f : P ! R such that { f (xi) = 0}n
i=1.

In order to avoid the trivial solution f ⌘ 0, we add positive- and negative-valued nor-

mal constraints close to the null boundary conditions at xi and in the directions ni and

�ni, where ni is the normal at xi. These normal vectors are reliably estimated by ap-

plying the principal component analysis to the input data set P [44]. The shape of the

sparse approximations confirms the stability of the sparsification scheme with respect

to irregular samplings. Furthermore, the proposed approach provides both a sparse and

smooth approximation of the input noisy data (Fig. 3) as a matter of the underlying

Tikhonov regularization.
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(a) (b)

Figure 4: With reference to Figs. 3 and 5, the graphs (a,b) show the sparsification induced by the iterative

scheme with different initial guesses; on the x- and y-axis, we report the number of iterations and of null

coefficients, respectively. The trade-off parameter is chosen as e = 0.5.

2.2. Solving the sparsification normal equation

In the following, we discuss the iterative computation of the solution of the non-

linear system (4), the choice of the initial guess, and the stop criteria. First of all,

we derive a bound to the variation of the eigenvalues of the sparsification matrix

Ke := K + eD(a), e > 0, which will be used throughout the following discussion. As-

suming that the eigenvalues of K are increasingly reordered and applying the Wielandt-

Hoffman theorem concerning the eigenvalue sensitivity of symmetric matrices [23]

(Ch. 8), we get that each eigenvalue li(Ke) is related to the corresponding eigenvalues

of K and D(a) by the bound

li(K)+ el1(D(a)) li(Ke) li(K)+ eln(D(a)). (7)

Iterative solver. The solution to Eq. (4) is calculated by applying the iterative sparsi-

fication scheme

h
K + eD(a(r))

i
a(r+1) = y $ a(r+1) =

h
K + eD(a(r))

i�1
y, (8)
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with a(0) initial guess. Let us now verify that the sequence (a(r))+1
r=0 defined in Eq. (8)

is bounded, thus guaranteeing its convergence to the solution of Eq. (4); in fact,

ka(r)k2 =

����
h
K + eD(a(r))

i�1
y
����

2

 l�1
1

⇣
K + eD(a(r))

⌘
kyk2

(7)

h
l1(K)+ el1(D(a(r)))

i�1
kyk2

 l�1
1 (K)kyk2.

(9)

Since l1(K)> 0, the last term of the previous inequality is well-defined and indepen-

dent of r. Therefore, a well-conditioned Gram matrix K, which is obtained through a

pre-conditioner [23] (if necessary), guarantees the well-conditioning of Ke. Further-

more, from the following upper bound to the conditioning number k2(Ke)

k2(Ke) =
ln(Ke)

l1(Ke)

(7)
ln(K)+ emaxi=1,...,n

�
(a2

i +h)�1/2 

l1(K)+ emini=1,...,n
�
(a2

i +h)�1/2
 

 ln(K)+ eh�1/2

l1(K)

= k2(K)+
eh�1/2

l1(K)
,

(10)

we get that the numerical stability of the iterative scheme in Eq. (8) is mainly con-

trolled by the conditioning number k2(K) and the eigenvalue l1(K) of smallest magni-

tude. The conditioning number and the minimum eigenvalue of the matrix K are effi-

ciently computed using iterative methods for the evaluation of the matrix spectrum [23]

(Ch. 10). If K is ill-conditioned, then its preconditioning improves the conditioning of

the matrix Ke (c.f., Eq. (10)) and the computation stability. Our tests have shown that

the matrices K and Ke are generally well-conditioned.

Initial guess. The initial point a(0) can be arbitrarily chosen or set equal to the optimal

guess a(0)opt := K�1y, which is the solution to the normal equation (4) with e := 0. In
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this case, the difference between the solution a to Eq. (4) and a(0)opt is estimated as

ka�a(0)optk2 = ekK�1D(a)ak2

(6) ekK�1k2kD(a)ak2

 en�1/2l�1
1 (K).

Indeed, a well-conditioned Gram matrix guarantees that the vector a(0)opt := K�1y pro-

vides a good initial guess of the iterative scheme. However, the computation of a(0)opt

does not take into account the parameters e, h and might be numerically unstable due

to a possible ill-conditioning of the Gram matrix K.

To bypass these problems, we linearize Eq. (4) and use its solution as initial guess

of the iterative scheme. Using the first-order Taylor polynomial y(t) := h�1/2t of the

function wh(t) := t(t2 +h)�1/2, t ! 0, each entry ai(a2
i +h)�1/2 of the vector D(a)a

is approximated by the linear term h�1/2ai, i = 1, . . . ,n. Replacing D(a)a with h�1/2a,

Eq. (4) is approximated by the linearized sparsification equation

(K + eh�1/2I)a = y, (11)

whose solution is used as initial guess a(0) in Eq. (8). Note that the solution to

Eq. (11) is efficiently computed through direct or iterative solvers of linear systems

and is numerically stable, as a matter of the shift of its eigenvalues from li(K) to

li(K)+ eh�1/2, i = 1, . . . ,n.

To further analyze the dependence of the sparsified solution from the spectrum

S := {(li(K),vi)}n
i=1, Kvi = li(K)vi, of the Gram matrix K, let us rewrite the solu-

tion to the sparsification equation in terms of S . Introducing the orthogonal eigen-

vector matrix V := [v1, . . . ,vn], V TV =VV T = I, and the diagonal eigenvalue matrix

D := diag(li(K))n
i=1, we have K =V DV T and the spectral representation of the solu-

tion to Eq. (11) is

a =V (D+ eh�1/2I)�1V T y =
n

Â
i=1

1
li(K)+ eh�1/2

�
vT

i y
�

vi. (12)

Since the vector a is a linear combination of the eigenvectors of the Gram matrix and

the filters are µi := (li(K)+ eh�1/2)�1, i = 1, . . . ,n, the behavior of a and its null en-

tries are mainly controlled by the eigenvectors related to the lower eigenvalues. The
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effects of the choice of the initial guesses on the convergence and the number of itera-

tions of the sparsification are discussed at the end of Section 2.3.

Sparseness and stop criteria. At the iteration r, we consider the entries of the coeffi-

cient vector a(r) as null if their absolute values are lower than a given threshold s. Our

experiments have shown that s := 10�10 provides a good balance between numerical

accuracy and sparsification percentage. Finally, the iteration stops when the number

of null elements in a(r) becomes stationary or when the residual error between two

consecutive iterations is below a given threshold d, i.e. ka(r+1)�a(r)k1  d.

Approximation accuracy. To evaluate the approximation accuracy of the sparsification

scheme, the values of the sparse approximation g(x) = Ân
i=1 aiK(x,xi) on P are written

in matrix form as g := (g(xi))n
i=1 = Ka, where K is the Gram matrix and a := (ai)n

i=1

is the solution to Eq. (4). Indicating with y the array of the f -values on P , the least-

squares approximation error between f and g on P is estimated as

ky�gk2 = ekD(a)ak2 (6) en1/2.

It follows that the approximation accuracy is proportional to the sparsification param-

eter e and the value
h
Ân

i=1
a2

i
a2

i +h

i1/2
, which depends on the number of null coefficients.

This bound is also useful to tune the parameter e with respect to the expected accuracy.

Computational cost. Assuming that the solution to the linear system (8) is computed

with the conjugate gradient [23], the computational cost is O(r(n+n logn)), where n

and r, r << n, are the number of input data and steps of the iterative sparsification

scheme, respectively. The solution of the sparsification system is also well-conditioned

as a matter of the underlying regularization framework and based on a global sparsifi-

cation procedure, which avoids time-consuming and a-posteriori local updates of the

model. Finally, the input variables are not duplicated, thus reducing the memory allo-

cation, which is one of the main drawbacks in case of a large amount of data.

2.3. Multi-resolutive sparse approximation

We now show that the number of coefficients of a(r) that have been sparsified (i.e.,

considered as null) cannot decrease with respect to r, r � 1. Indeed, the iterative sparsi-
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fication has an intrinsic multi-resolutive structure, which induces a sequence of nested

approximation spaces. More precisely, let Hr be the linear space spanned by the func-

tions {ji, i 2 IC
r }, where Ir := {i : a(r)i = 0} is the set of corresponding null coeffi-

cients. For r � s, we will show that Ir ◆ Is and therefore (Hr)r is a sequence of nested

spaces Hr ✓Hs such that g(r) 2Hr.

Multi-resolutive structure. At each step r � 1, we consider the set Ir := {i : a(r)i = 0}
of indices related to the functions that do not contribute to g(r); then, the sparse approx-

imation g(r) at level r is g(r)(x) = Âi2IC
r

a(r)i ji(x), where IC
r is the complement of Ir.

From Eq. (8), it follows that

n

Â
j=1

ki ja
(r+1)
j +

e
⇣
|a(r)i |2 +h

⌘1/2 a(r+1)
i = yi;

in particular, for i 2 Ir we have

n

Â
j=1

ki ja
(r+1)
j +

e
h1/2 a(r+1)

i = yi,

or equivalently,

a(r+1)
i =

✓
kii +

e
h1/2

◆�1
 

yi �Â
j 6=i

ki ja
(r+1)
j

!
. (13)

Being each component of a(r+1) bounded (c.f., Eq. (9)), the second term of (13) is also

bounded; assuming that a(r)i ⇡ 0 and using the relations kii > 0, h << e, and h ⇡ 0, we

obtain a(r+1)
i ⇡ 0, i 2 Ir. Since a(r)i ⇡ 0 implies a(r+1)

i ⇡ 0, r � 1, we conclude that the

null entries of a(r) are preserved in a(r+1).

We further discuss the previous sparsification property from a numerical point of

view; i.e., assuming that |a(r)i | d, we estimate how much |a(r+1)
i | is close to zero.

Rewriting the ith row of Eq. (4) as

e
(|a(r)i |2 +h)1/2

a(r+1)
i = yi �

n

Â
j=1

ki ja
(r+1)
j ,
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and normalizing the vector y to unitary l2-norm, we get that

���a(r+1)
i

���=

�����e
�1(|a(r)i |2 +h)1/2

"
yi �

n

Â
j=1

ki ja
(r+1)
j

#�����

 e�1(|a(r)i |2 +h)1/2

�����yi �
n

Â
j=1

ki ja
(r+1)
j

�����

 e�1(d2 +h)1/2ky�Ka(r+1)k2

 e�1(d2 +h)1/2(kyk2 +kKk2ka(r+1)k2)

(9) e�1(d2 +h)1/2


1+
ln(K)

l1(K)

�

 e�1(d2 +h)1/2 [1+k2(K)] .

Neglecting the constant term e�1 [1+k2(K)], which is assumed to be small by precon-

ditioning K (if necessary), and recalling that h ! 0+, the term |a(r+1)
i | is close to zero

as much as the corresponding coefficient |a(r)i | at the previous iteration, r � 1. This

means that if a(r)i is considered as null with respect to d then a(k)i , k � r, is also treated

as null. Indeed, we expect that the sparsity of each vector of the sequence generated

by the iterative scheme increases until it converges. This property holds only for the

sparsified entries of the vector a(r) at a given iteration r; in fact, the initial vector a(0)

might be null or have some null entries (Fig. 4). For instance, this situation might

happen with the initial condition a(0) := K�1f and the linearized term (12). In these

cases, we expect that the number of null entries decreases during the initial iterations

and starts to increase when the sparsification starts to recognize redundant functions

in the dictionary. Then, the number of null entries will grow until it becomes constant

and the iteration stops. Our experiments have shown that this behavior is generally

associated to the null initial condition a(0) := 0. With the initial guess a(0) := 1, the

iterative sparsification scheme generally provides a strictly increasing number of null

coefficients. Examples of sparsification curves with respect to different initial guesses

are shown in Fig. 4; here, the choice of a(0) slightly influences the number of iterations.

Convergence speed. To analyze the speed of convergence, we estimate the discrepancy

between two consecutive steps of the iterative sparsification scheme (8). From the
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upper bound

ka(r+1)�a(r)k2 = e
���K�1

h
D(a(r))a(r+1)�D(a(r�1))a(r)

i���
2
 2en1/2l�1

1 (K),

it follows that the speed of convergence is generally higher in case of well-conditioned

Gram matrices. Even though we cannot estimate the number of iterations, our exper-

iments (e.g., Fig. 4) have shown that the number of iterations is generally small (e.g.,

lower than 50) and reduces by increasing the sparsification parameter e.

3. Sparse approximations in arbitrary and discrete spaces

In the following, the iterative sparsification scheme is generalized to an arbitrary

function space using radial basis functions and least-squares approximations, which

replace the native norm in H with the l2-norm (Sect. 3.1). Then, we introduce the

discrete counterpart of the proposed sparsification scheme (Sect. 3.2) and discuss the

main criteria for the selection of the parameters (Sect. 3.3).

3.1. Iterative least-squares sparse approximation in arbitrary spaces

The functional (3) involves a set of basis functions centered at each point of P and

the approximation error has been measured with respect to the RKHS norm. If we deal

with highly redundant dictionaries, or aim at further reducing the computational cost

of the sparsification scheme, or select a set B := {ji(x)}m
i=1 of functions that are not

generated by a kernel, then the error k f �gkH in Eq. (2) is replaced by the least-squares

constraint Ân
i=1 |yi �g(xi)|2. Therefore, we introduce the least-squares sparsification

problem

arg min
g2H

(
1
2

n

Â
i=1

|yi �g(xi)|2 + ekak1

)
, (14)

with g(x) := Âm
i=1 aiji(x), a := (ai)m

i=1, m < n. Here, each map ji(x) := j(kx� cik2),

i = 1, . . . ,m, is radially symmetric, generated by a map j : R+ ! R, and centered at

a point of the set C := {ci}m
i=1, which is achieved by clustering the points of P . The

critical points of the smooth functional

F(a) :=
1
2

n

Â
i=1

|yi �g(xi)|2 + e
n

Â
i=1

(|ai|2 +h)1/2,
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(a) (b) (c)

(d) (e) (f)

Figure 5: (a,c,e) Input and (b,d,f) least-squares sparse approximations of a scalar function f : P ! R defined

on a 3D shape P represented as a triangle mesh. Each sparse approximation uses the 27% of the input func-

tions. The noise magnitude grows from (a) to (c) and (e). The dictionary includes 100 Laplacian eigenvectors

and 500 randomly-generated maps. The corresponding sparsification function is shown in Fig. 4(b).

which approximates the objective function in Eq. (14), are the solutions to the system

⇥
K̃T K̃ + eD(a)

⇤
a = K̃T y, K̃ := (j j(xi))

j=1,...,m
i=1,...,n , y := (yi)

n
i=1,

whose dimension is m⇥m instead of n⇥n. We notice that for each a 2 Rm and e > 0

the coefficient matrix
⇥
K̃T K̃ + eD(a)

⇤
is positive-definite without assumptions on the

matrix K̃. Furthermore, the discussion in Sect. 2.3 still applies to the least-squares

sparsification scheme by substituting K with K̃T K̃, y with K̃T y, and n with m. In this

case, the vector a(0) that solves the linearized sparsification problem

(K̃T K̃ + eh�1/2I)a(0) = K̃T y

converges to the least-squares solution K†y of the linear system K̃a(0) = y, as h ! 0+.

3.2. Discrete sparse approximations

In the Reproducing Kernel Hilbert Space H, the scalar product is defined by the

kernel function, and is related to a specific regularization operator [55, 56]. Assuming

that the data is supported on a (d �1)-dimensional manifold, we derive a variant of the

proposed approach that guarantees the smoothness of the solution in the ambient and
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(a)

(b) (P, f ) (c) nb = 65% (d) nb = 40%

L1 = 0.0046 L1 = 0.0048

(e) (P, f ) (f) nb = 60% (g) nb = 40%

L1 = 0.0093 L1 = 0.0121

Figure 6: (a) Variation (y-axis) of the values assumed by the input (green line) and approximate (black line)

map on P (x-axis). Level-sets of (b) a smooth, (e) noisy scalar function f defined on a 3D shape P and

(c,d;f,g) corresponding sparse approximations (100 Laplacian eigenvectors and 300 random maps) achieved

using a percentage nb of maps selected in a dictionary of 400 maps defined on P .

intrinsic space by using spectral graph theory and manifold learning techniques. Diag-

onalizing the Gram matrix of the sparsification normal equation, the unknown coeffi-

cients become independent; i.e., each non-linear equation involves only one unknown

and its solution is computed in explicit form. In the discrete case, we introduce the

sparsification scheme in a way similar to the continuous case. Since we deal with dis-

crete data, any function f : P ! R is uniquely identified by the vector y := ( f (xi))n
i=1

of its values at the points of P . Given the signal

g =
m

Â
i=1

aivi =V a 2 Rn, V := [v1, . . . ,vm] 2 Rn⇥m, a := (ai)
m
i=1,

defined as a linear combination of the vectors in B := {vi}m
i=1, the functional (3) is

replaced by

F(a) :=
1
2
ky�V ak2

S + e
n

Â
i=1

(a2
i +h)1/2,

where the scalar product and the corresponding norm

hx,yiS := xT Sy, kxkS =
p

xT Sx, x,y 2 Rn,
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are induced by a n⇥n positive definite matrix S. The choice of S will be discussed

later on. Since

1
2
ky�V ak2

S =
1
2

yT y�yTV a+
1
2

aTV T SV a,

the critical points of F satisfy the non-linear equations
⇥
V T SV + eD(a)

⇤
a =V T Sy. (15)

Note that this expression is analogous to (4) with K :=V T SV and y :=V T Sy. Then,

the solution to Eq. (15) is calculated by applying the iterative scheme
h
V T SV + eD(a(r))

i
a(r+1) =V T Sy () a(r+1) =

h
V T SV + eD(a(r))

i�1
V T Sy,

r � 1, with a(0) initial guess.

Special case (S := I and V orthogonal matrix). If S := I is the identity matrix of or-

der n, then Eq. (15) becomes [I + eD(a)]a =V T y, whose coefficient matrix is diagonal.

Therefore, each component ai solves the equation


1+
e

(a2
i +h)1/2

�
ai = vT

i y, i = 1, . . . ,m, (16)

which involves only the unknown ai.

General case. First of all, let us introduce locality relations among the points of the

input data set P := {xi}n
i=1, through its k-nearest neighbor graph T , where each point

xi 2 P is associated to the set {x j} j2Nxi
, Nxi ✓ {1, . . . ,n}, of k-nearest points to xi,

with respect to the Euclidean distance. Once T has been computed in O(n logn)

time [4, 7], we consider the linear averaging operator y 7! Ly, induced by the Laplacian

matrix L := (li j)n
i, j=1 2 Rn⇥n,

li j :=

8
>>><

>>>:

�1 i = j,

ai j/Âk2Nxi
aik j 2Nxi ,

0 else,

with constant or Gaussian weights. For more details on the properties of the Laplacian

matrix, we refer the reader to [5, 6, 12, 54]. Using the Laplacian matrix, we now spe-

cialize the proposed sparsification scheme to discrete data using spectral graph theory

and manifold learning techniques.
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(b)

(a) (b)

Figure 7: L-curves related to the examples in Figs. 5, 6. On the y-axis, we report the L1 approximation error

between the input function and its sparsified approximation. On the x-axis, we report (a) the sparsification

threshold e and (b) the percentage of selected basis functions, respectively.

Choosing S := S1 +S2, where S1 := I and S2 := L, the scalar product

hx,yiS := xT Sy = xT S1y+xT S2y, x,y 2 Rn,

is well-defined and the induced discrete Sobolev norm k ·kS measures the smoothness

of the solution with respect to the ambient space and the intrinsic geometry [5, 13].

Alternatively, we select as S1 the Gram matrix of a kernel function (e.g., the Gaussian

kernel) and S2 := I or S2 := L. The solution of the corresponding normal equation

satisfies the relation
⇥
V T (S1 +S2)V + eD(a)

⇤
a =V T (S1 +S2)y, (17)

and is associated to the minimum g = Âm
i=1 aivi of the functional

F(a) :=
1
2
⇥ky�gk2

S1
+ky�gk2

S2

⇤
+ e

m

Â
i=1

(a2
i +h)1/2.

Computing the generalized eigendecomposition S2V = S1V D of the couple (S1,S2) [23],

where V is the eigenvectors’ matrix such that V T S1V = I and D := diag(li)n
i=1 is the

eigenvalues’ matrix, the normal equation (17) is rewritten as

[I +D+ eD(a)]a = (I +D)V T S1y.

Since the coefficient matrix is diagonal, each unknown ai is the solution to the equation


1+li +
e

(a2
i +h)1/2

�
ai = [1+li]xT

i S1y, i = 1, . . . ,n,
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Query

(a) (b) (c) (d)

Best matches

1st 2nd 3rd 4th

Figure 8: Face matching based on sparse approximations of the query images with respect to the dictionary

provided by the input data set, which contains 144 face images. The input image in (a) has been degraded

with (b) a Gaussian noise and (c,d) black boxes located on feature regions.

and it is computed through an iterative solver. Finally, we notice that the properties

of the continuous sparsification scheme, discussed in Sect. 2, are also valid for the

discrete approach by replacing the functions {ji(x)}n
i=1 with the vectors {vi}n

i=1 (e.g.,

the eigenvectors of L) and the signal f with the array of the f -values on P .

In Fig. 5, we apply the discrete least-squares sparsification scheme to a discrete

noisy signal defined on a 3-torus P; here, the dictionary includes the Laplacian eigen-

vectors related to the first 100 eigenvalues of smaller magnitude and 500 discrete func-

tions randomly generated using a Gaussian distribution on P . The corresponding spar-

sification functions with different initial guesses of the iterative scheme are shown in

Fig. 4(b). We notice that a different initial guess slightly affects the number of itera-
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Method Rate Method Rate Method Rate

PCA 84.65% ICA 88.91% NS 89.01%

L1 95.23% L1-S 95.01% = =

Table 1: Verification rate at 0.1% false acceptance rate over a data set of 144 faces achieved by applying

the Principal [59] (PCA) and Independent [29] Component Analysis (ICA); the Nearest Subspace [31] (NS);

and the l1-norm sparsification (L1) [61]; and the proposed smooth sparsification (L1-S).

tions. A similar example is presented in Fig. 6(b-g); in Fig. 6(a) the point-wise error

related to the smooth (left) and noisy (right) scalar function is visualized using a color

map that varies the hue component of the hue-saturation-value color model. The col-

ors begin with red, pass through yellow, green, cyan, blue, magenta, and return to red.

The l1-error between the input and sparsified approximation is lower than 10�4 (red).

3.3. Choice of the parameters

The positive constant e in Eq. (3) controls the trade-off between the approximation

error and the smooth sparsification term. As e decreases (Fig. 7), the approximation

error dominates the value of the functional F ; therefore, the solution is forced to pre-

cisely approximate all the f -values and the approximation error is minimized. As e in-

creases, the smoothness of the sparse approximation becomes predominant and filters

out the local noise of f . Increasing e, the iterative method converges to the null so-

lution (i.e., complete sparsification) and generates the whole multi-resolutive scheme.

To select the tradeoff e between smoothness and approximation accuracy, statistical

and heuristic methods (e.g., L-curve, best ration criterion) have been extensively dis-

cussed in [27, 60]. As general rule, we choose a value of e enough big to achieve the

whole sparsification and multi-resolutive approximation hierarchy (Hr)r (Sect. 2.3);

then, we consider the sparsification level r that provides a given sparsification rate

or approximation accuracy. In our tests, the f -values have been normalized in [0,1]

and the full approximation hierarchy has been achieved with e := 1. Finally, we have

choosen h := 10�14 and the initial guess of the iterative scheme has been set equal to

the solution of the linearized sparsification equation (c.f., Eq. (11)).

According to [61], we apply the proposed smooth sparsification to face recognition.
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To this end, the input data set D contains 144 face images with a 640⇥480 resolution,

which represent 18 faces in 8 different poses (e.g., frontal, up, down, left view) and with

different expressions (e.g., angry, disgusted). A representative image Ik, k = 1, . . . ,18,

of each class of faces, which does not belong to D, is degraded with Gaussian noise

and with black boxes that cover several face features. Then, the resulting query images

(4 faces for each class) are matched with the whole data set. For the comparison, the

query image is represented as a sparse approximation of the the dictionary provided

by D and the corresponding coefficients are used as image descriptors for matching.

Fig. 8 shows the stability of the matching results with respect to the queries on a face

image whose quality has been degraded in terms of smoothness and features. We no-

tice that the image degradation introduces some wrong results in the query answers;

however, the first matched images are always correctly recognized. The verification

rate at 0.1% false acceptance rate is given in Table 1, which provides the comparison

of the proposed smooth sparsification with the matching results provided by the Prin-

cipal [59] and Independent [29] Component Analysis, the Nearest Subspace [31], and

the l1-norm sparsification [61]. We notice that the l1-norm and smooth sparsification

methods provide comparable results, which outperform previous work.

4. Conclusions and future work

This paper has discussed a multi-resolutive sparsification scheme, which is based

on Tikhonov regularization and uses a smooth and strictly convex approximation of

the l1-norm. It differs from previous work for the use of an approximated formulation

of the sparsification problem, which requires to solve a system of non-linear equations

instead of applying heuristic solvers of convex quadratic optimization problems. Fur-

thermore, it has a lower computational cost; is numerically stable as a matter of the

underlying regularization framework; and provides a hierarchy of sparse approxima-

tions. We have also discussed its numerical properties, robustness to noise data, and

specialization to a discrete space of functions using spectral graph theory and mani-

fold regularization. As main application, we have considered the approximation of d-

dimensional data. Even thought the number of selected functions is set in a simple way
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through a trade-off parameter, the main open issue is to control in an explicit way the

sparsification percentage.
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