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Abstract

Recent results in geometry processing have shown that shape segmentation, comparison, and analysis can be successfully addressed
through the heat diffusion kernel. In this paper, we focus our attention on the properties (e.g., scale-invariance, semi-group prop-
erty, robustness to noise) of the wFEM heat kernel, recently proposed in [PF10], and its application to shape comparison and
feature-driven approximation. After proving that the wFEM heat kernel is intrinsically scale-covariant (i.e., without shape or kernel
normalization) and scale-invariant through a normalization of the Laplacian eigenvalues, we experimentally verify that the wFEM
heat kernel descriptors are more robust against shape/scale changes and provide better matching performances with respect to pre-
vious work. In the space F (M ) of piecewise linear scalar functions defined on a triangle mesh M , we introduce the wFEM heat
kernel Kt , which is used to increase the degree of flexibility in the design of geometry-aware basis functions. Furthermore, we
efficiently compute scale-based representations of maps on M by specializing the Chebyshev method through the solution of a
set of sparse linear systems, thus avoiding the spectral decomposition of the Laplacian matrix. Finally, the scalar product induced
by Kt makes F (M ) a Reproducing Kernel Hilbert Space, whose (reproducing) kernel is the linear FEM heat kernel, and induces
the FEM diffusion distances on M .

Keywords: Heat kernel, diffusion distances, shape comparison and retrieval, spectral analysis, finite element methods.

1. Introduction

Three main classes of maps are associated to the Laplace-
Beltrami operator D : C 2(N )! C 0(N ), where C k(N ) is
the set of functions defined on a manifold N and with or-
der k of differentiability: the harmonic maps, the Laplacian
eigenfunctions, and the solutions to the heat equation [Ros97].
Focusing on the last class, the scale-based representation
H : N ⇥R! R of the map h : N ✓ Rd ! R is the solution
to the heat diffusion equation
⇢

∂tH(x, t) =�DH(x, t) (a)
H(x,0) = h(x) (b) x 2N , t 2 R, (1)

and it can be written through the convolution operator ? as
⇢

H(x, t) := kt(x, ·)?h =
R
N kt(x,y)h(y)dy, (a)

kt(x,y) := Â+•
i=1 exp(�lit)fi(x)fi(y), (b) (2)

where kt is the heat diffusion kernel. From the spectral de-
composition (2b) of kt , it follows that the Laplace-Beltrami
and the heat diffusion operator have the same eigenfunctions
{fi}+•

i=1. Disregarding a specific ordering of the Laplacian spec-
trum, each eigenvalue exp(�lit) of the heat diffusion operator
is associated to a corresponding Laplacian eigenvalue li.

In geometry processing and shape analysis, several problems
have been addressed through the properties of the heat dif-
fusion kernel. Among them, we mention shape segmenta-
tion [dGGV08] and comparison [BK10; BBGO11; DRW10;

GBAL09; OMMG10] through heat kernel shape descrip-
tors, auto-diffusion maps [GBAL09; SOG09], and diffusion
distances [BBK+10; CL06; LKC06]; dimensionality reduc-
tion [BN03; XHW10] with spectral embeddings; the compu-
tation of the gradient of discrete maps [Wan09] and the multi-
scale approximation of functions [PF10]. In [VBCG10], pro-
longation operators have been used to extend the values of the
heat diffusion kernel, computed on a low resolution representa-
tion of M , to higher resolutions through the hierarchy associ-
ated to multiresolutive simplification algorithms.

Overview and contribution. In this context, we discuss the
main properties of the wFEM heat kernel, recently presented
in [PF10], and its applications to shape comparison and multi-
scale approximation of scalar functions on surfaces. Assum-
ing that the input manifold N is approximated by a triangle
mesh M , let us introduce the space F (M ) of piecewise lin-
ear maps defined on M ; then, any function f : M ! R in
F (M ) is uniquely identified by the array f := ( f (pi))n

i=1 of
its values at the mesh vertices {pi}n

i=1. To guarantee the robust-
ness of the wFEM heat kernel to surface discretization and its
invariance to shape transformations, we replace the L2 scalar
product in F (M ) with the one h·, ·iB induced by the positive
definite and symmetric mass matrix B associated to the linear
FEM discretization L̃ := B�1L of the Laplace-Beltrami opera-
tor [RWP06; VL08]. In this case, the stiffness matrix L is the
un-normalized Tutte-Laplacian matrix with cotangent weights
and the mass matrix B, or its lumped version, encodes the vari-
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ation of the areas of the triangles or of the Voronoi regions
of M , respectively. In F (M ), the weighted scalar product
hf,giB := fT Bg, f,g 2F (M ), generalizes the L2 product (i.e.,
B := I); is intrinsic to the surface on which the scalar func-
tions are defined; and is adapted to the local sampling of M
through the variation of the triangle areas. Then, the wFEM
heat kernel is discrerized as Kt := XDtXT B, where LX = BXD
is the generalized eigen-decomposition [GV89] of the couple
(L,B). Here, X := [x1, . . . ,xn] and D := diag(li)n

i=1 are the ma-
trices of the eigenvalues and eigenvectors of (L,B), respec-
tively. Through h·, ·iB, we also introduce an intrinsic and multi-
scale scalar product h·, ·it in F (M ) that makes Kt self-adjoint
and (F (M ),h·, ·it) a Reproducing Kernel Hilbert Space. Then,
we show that the Hilbert kernel of F (M ) is the linear FEM
heat kernel, whose entries uniquely define the diffusion dis-
tances on M .

In F (M ), the linear operator Kt : F (M )!F (M ), f 7! Kt f,
induced by the wFEM heat kernel Kt , is multi-scale through
the time parameter t; stable under shape perturbations (e.g.,
sampling, connectivity, topological noise); and invariant to
isometries. To efficiently compute the scale-based representa-
tion Kt f, we specialize the Chebyshev method [CMV69; GV89;
MVL03] to the wFEM heat kernel and evaluate Kt f through the
solution of a set of sparse linear systems. In this case (Sect. 2.2)
and assuming exact arithmetic, a rational Chebyshev function
of degree (r,r), with r := 7, provides an error lower than 10�7,
which is satisfactory for the approximation of Kt f on 3D shapes.
If necessary, a higher approximation accuracy is achieved by
slightly increasing the degree of the rational Chebyshev approx-
imation. We also show that the Chebyshev method provides
an accurate approximation of Kt f, which is compared with the
partial spectral representation used by previous work. Further-
more, the proposed computation does not require the spectral
decomposition of the Laplacian matrix, multiresolutive prolon-
gation operators, and user-defined parameters. Finally, we dis-
cuss the approximation accuracy and stability of the wFEM heat
kernel to noise.

Exploiting the isomorphism between F (M ) and Rn, the
canonical basis E := {ei}n

i=1 of Rn can be interpreted as the
set of trivial maps that take value one at a given vertex of M
and zero otherwise. Then, B := {Ktei}n

i=1 can be considered
as a smooth counterpart of E in F (M ), which is a multi-scale
version of the geometry-aware functions [SCOIT05]. In this
case, the definition and properties of B are driven by the geom-
etry of M and not uniquely by its connectivity. According to
the local point signatures [CJ97] and geodesic-based descrip-
tors [HSKK01; GSCO07; OMMG10], each map Ktei, which is
analogous to the diffusion wavelets and maps [CL06], summa-
rizes the shape distribution in a neighborhood of pi. This ba-
sis is also used to compute a topology-driven approximation of
noisy maps and to distinguish their local and global component.
To automatically select the elements of B that better character-
ize F (M ) and encode the geometric properties of M , we con-
sider the basis functions {Ktei}i centered at the critical points of
the Laplacian eigenfunctions [RPSS10] or of the auto-diffusion
maps [GBAL09].

Comparison with previous work. According to the spectral
representation of the heat kernel in Eq. (2b), the spectrum
of the Laplacian matrix with FEM, Voronoi-cot, and cotan-
gent weights is used to compute the discrete heat kernel as
K̃t := XDtXT [BK10; dGGV08; GBAL09; Wan09]. Com-
paring the kernels K̃t and Kt , we notice that Kt = K̃tB and
that the wFEM discretization explicitly involves the mass
matrix B. In this case, K̃t is scale-dependent; i.e., rescal-
ing M to aM , a > 0, K̃t changes according to the relation
K̃t(aM ) = a�2K̃a�2t(M ). It follows that both the geometric
and temporal component of K̃t(aM ) is affected by the surface
rescaling and the corresponding heat kernel shape descriptors
cannot be directly used for matching. To overcome this draw-
back, previous work reshapes the surface to have unit area be-
fore computing the heat kernel or normalizes the kernel itself.
However, shape normalization is not sufficient when dealing
with partially-sampled surfaces or when local re-scalings have
been applied. Alternatively, the scale-invariance of K̃t can be in-
duced in the Fourier domain [BK10] with a normalization that
is neither unique nor inherent to the input shape.

If the mass matrix B is lumped to the positive diagonal ma-
trix D, then the wFEM heat kernel Kt := XDtXT B becomes
equal to the discretization K?

t := XDtXT D, which holds for
Laplacians of type L := D�1W [BBGO11; OMMG10; Rus07;
SOG09; VBCG10]. Here, W has the mask of the mesh adja-
cency matrix and the diagonal entries of D are the areas of the
Voronoi regions associated to the vertices of M . Indeed, Kt
can be considered as the generalization of K?

t . Using the mass
matrix B instead of its lumped version D allows us to accu-
rately encode the geometry of the input surface through the
area of its triangles instead of its Voronoi regions. In this way
(Sect. 5), the wFEM heat kernel descriptors and the correspond-
ing FEM distances have a higher robustness against topologi-
cal and scale changes, irregular sampling, and noise. Further-
more, Kt is intrinsically scale-covariant (i.e., without shape or
kernel normalization) and scale-invariant through a normaliza-
tion of the Laplacian eigenvalues. To show these properties, we
evaluate the matching performances of the wFEM heat kernel
descriptors on the SHREC’10 data set [BBB+10; BBC+10] and
compare our results with previous work.

The paper is organized as follows. The wFEM heat kernel, its
computation, and the corresponding diffusion distances are pre-
sented in Sect. 2 and 3. The canonical basis, the feature-driven
approximation, and applications to shape comparison are dis-
cussed in Sect. 4 and 5. Future work is outlined in Sect. 6.

2. wFEM heat kernel

We briefly recall the weak formulation of the heat equation,
introduce its discretization with respect to linear finite ele-
ments [PF10] (Sect. 2.1), and discuss the computation of its
solution through the Chebyshev method (Sect. 2.2). Finally,
we present the main features of the proposed approach and dis-
cretization with respect to previous work (Sect. 2.3).
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Figure 1: (a) Basis function Ktei centered at the green point, which is located in the upper part of the left wing, and computed with
the generalized Chebyshev method and (b-e) different values of the time parameter t.

2.1. Weak formulation of the heat equation

Multiplying Eq. (1a) with a test function y 2 C 2, integrating
the resulting relation over N , and using the Green formula, we
get the weak formulation

hy,∂tHiL2(N ) + h—H,—yiL2(N ) = 0,

where hh1,h2iL2(N ) :=
R
N h1(p)h2(p)dp is the L2(N ) scalar

product. To apply the Green formula and ensure the differen-
tiability of the solution to Eq. (1a), we assume that the test
functions satisfy trivial value/boundary conditions. For 3D
surfaces, the solution to the previous differential equation is
approximated in the space F (M ) of piecewise linear func-
tions defined over a triangulation M := (M,T ) of N . Here,
M := {pi}n

i=1 is a set of n vertices and T is the mesh adja-
cency graph. Applying the Galerkin method with linear fi-
nite elements S := {yi}n

i=1 on M , the solution H(x, t) is
approximated by H̃(x, t) := Ân

i=1 ai(t)yi(x), where the vector
a(t) := (ai(t))n

i=1 satisfies the system B∂ta(t)+La(t) = 0 of
first order differential equations. Since B is positive definite,
the previous equation becomes

⇥
∂t +B�1L

⇤
a(t) = 0. Then,

the Laplace-Beltrami operator is approximated by the weighted
Laplacian matrix L̃ := B�1L and Eq. (1) is discretized as

⇢
∂tF(p, t) =�L̃F(p, t), p 2M ,
F(pi,0) = f (pi), i = 1, . . . ,n.

According to the linear FEM discretization of the Laplace-
Beltrami operator [RWP06; VL08], the stiffness matrix L is the
un-normalized Tutte-Laplacian matrix with cotangent weights
and the mass matrix B encodes the geometry of M in terms of
triangle areas. More precisely, these matrices are defined as

B(i, j) :=

8
><

>:

|tr |+|ts|
12 j 2 N(i),

Âk2N(i)|tk|
6 i = j,

0 else,

L(i, j) :=

8
<

:

w(i, j) := cotai j+cotbi j
2 j 2 N(i),

�Âk2N(i) w(i,k) i = j,
0 else,

(3)

where N(i) is the 1-star of the vertex i; ai j, bi j are the angles
opposite to the edge (i, j); tr, ts are the triangles that share the
edge (i, j); and |t| is the area of the triangle t.

Recalling that the Laplacian eigenvectors {xi}n
i=1, Lxi = liBxi,

li  li+1, of the couple (L,B) in Eq. (3) are orthonormal with
respect to the scalar product h·, ·iB induced by B, we have that

hxi,x jiB = xT
i Bx j = di j, i, j = 1, . . . ,n () XT BX = I, (4)

with X := [x1, . . . ,xn] the matrix of the eigenvectors. Since the
unknown function F : M ⇥R! R is a n⇥1 vector for each
value of the parameter t, the heat diffusion solution F(·, t)
is expressed as a linear combination F(·, t) = Ân

i=1 ai(t)xi
of the eigensystem of (L,B), where a(t) := (ai(t))n

i=1 is
the unknown vector. Using the previous relation, the
identity f = Ân

i=1hf,xiiBxi, the invertibility of the matrix B,
and the linear independence of the Laplacian eigenfunc-
tions, each component ai(t) satisfies the differential equation
a 0i (t)+liai(t) = 0, with boundary condition ai(0) = hf,xiiB,
i = 1, . . . ,n, f := ( f (pi))n

i=1. Indeed, the scale-based represen-
tation of f : M ! R is

F(·, t) =
n

Â
i=1

exp(�lit)hf,xiiBxi, t 2 R, (5)

which is re-written in matrix form as F(·, t) = Kt f, where

Kt := XDtXT B, Dt := diag(exp(�lit))n
i=1 , (6)

is the weighted linear FEM (wFEM) heat kernel ma-
trix. Lumping the mass matrix B, we get the diago-
nal matrix D := diag(d(i))n

i=1, whose entries are the areas
d(i) := 1

3 Ât j2N(i) |t j| of the Voronoi regions of M , and Kt be-
comes equal to the Voronoi-cot (or lumped FEM) heat kernel

K?
t := XDtXT D, LX = XD, (7)

used by previous work [BBGO11; OMMG10; Rus07; SOG09;
VBCG10]. It follows that the wFEM heat kernel general-
izes K?

t ; i.e., lumping the mass matrix B the corresponding
wFEM heat kernel equals K?

t . Choosing B := I in Eq. (6),
we get the linear FEM heat kernel matrix K̃t := XDtXT . Ta-
ble 1 summarizes the properties of different discretizations of
the heat kernel.

2.2. Computation of the wFEM heat kernel

This section discusses three methods for the computation of
the solution to the heat diffusion equation; i.e., (i) the spec-
tral approach through the computation of the Laplacian spec-
trum of (L,B); (ii) the first order Taylor approximation, for
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Table 1: Definition and properties of different discretizations
of the heat kernel: sparsity, positive definiteness, and symme-
try. The full • and empty � circle means that the corresponding
property is or is not satisfied, respectively.

Method Matrix Kt Sp. Pos. Def. Sym.
Std. HK XDtXT � • •
Vor.-cot HK XDtXT D � • �
wFEM HK XDtXT B � • �

small values of the time parameter; and (iii) the generalized
Chebyshev method. Then, we show how the wFEM heat kernel
has been used to define a geometric basis of F (M ); address
signal approximation; and define shape descriptors capable of
distinguishing local/global features and discriminating similar
shapes.

Spectral approach. The exponential decay of the filter factor
si := exp(�lit) in (5) increases with li and the computational
bottleneck for evaluating the whole Laplacian spectrum im-
poses on us to consider only a part of the Laplacian spectrum.
To this end, the sum in (5) is truncated by considering only the
contribution related to the first k eigenpairs; i.e.,

Fk(·, t) =
k

Â
i=1

exp(�lit)hf,xiiBxi = XkD(k)
t XT

k Bf, t 2 R, (8)

where Xk := [x1, . . . ,xk] is the n⇥ k matrix of Laplacian
eigenfunctions and D(k)

t := diag(exp(�lit))k
i=1 2 GLk(R) is

the diagonal matrix with the filter factors. If t := 0, then
Fk(·,0) = Âk

i=1hf,xiiBxi is the least-squares approximation of f
in the linear space generated by the first k eigenvectors and with
respect to the norm k ·kB. These eigenvalues and eigenvectors
are computed in super-linear time [VL08].

First order Taylor approximation. Firstly, we verify that the
derivative of Kt , at t := 0, equals L̃ := B�1L and generalizes the
first order Taylor approximation, which holds for B := I. From
the identity

I�Kt

t
=

1
t
⇥
I�XDtXT B

⇤

=(4)
1
t
⇥
X(I�Dt)X�1⇤

= Xdiag
✓

1� exp(�lit)
t

◆n

i=1
X�1,

and the relation limt!0+ t�1(1� exp(�lit)) = li, it follows
that

lim
t!0+

I�Kt

t
= XDX�1 = B�1L.

Indeed, the wFEM heat kernel Kt is approximated by the matrix
(I� tB�1L), t! 0+, and Kt f solves the sparse linear system

B(Kt f) = (B� tL)f, t! 0+. (9)

Then, Eq. (9) gives an approximation of F(·, t), t! 0+, that
is independent of the Laplacian spectrum and is valid only for
small values of t.

Generalized Chebyshev approximation. To evaluate
F(·, t) := Kt f, for any f 2 Rn, we specialize the Cheby-
shev method [CMV69; GV89; MVL03] to the wFEM heat
kernel. To this end, we verify that the wFEM heat kernel
matrix is still the exponential of the weighted Laplacian matrix;
i.e., Kt = exp(�tB�1L). We briefly recall that the rational
Chebyshev approximation is based on the extension of the
minmax Chebyshev theory to rational fractions; in this case,
we compute the function crr(x) := arr(x)/brr(x) that provides
the best approximation of the exponential function with respect
to the L • norm over the semi-axis [0,+•); i.e.,

kcrr(x)� e�xkL •([0,+•)) = min
prr2Rrr

{kprr(x)� e�xk•}, (10)

where Rrr is the space of (r,r)-degree rational functions. Us-
ing algebraic rules, the solution to the problem (10) is rewritten
as crr(x) = a0 +Âr

i=1 ai/(x�qi) and the exponential matrix is
approximated by

exp(C)⇡ a0I +
r

Â
i=1

ai(C�qiI)�1. (11)

In this representation, the poles {qi}r
i=1 and the coefficients

{ai}r
i=1 have been computed for r := 5,7 [GS92]. For a general

degree r and a fixed value of t, the coefficients of the rational
approximation of the exponential function are computed using
the Padé method [GV89], which is implemented in standard
numerical software packages.

To apply the Chebyshev method to the wFEM heat kernel, we
firstly verify that Kt is the exponential of the weighted Lapla-
cian matrix with respect to time; i.e., Kt = exp(�tB�1L). From
the matrix representation B�1L = XDXT B of the eigenvalue
problem for (L,B) and the orthogonality relation (4), we get
that (B�1L)k = XDkXT B, k 2 N, and

exp(�tB�1L) : =
+•

Â
k=0

(�tB�1L)k

k!

=
+•

Â
k=0

(�t)k

k!
XDkXT B

= X

"
+•

Â
k=0

(�Dt)k

k!

#
XT B

= Xdiag

 
+•

Â
k=0

(�lit)k

k!

!n

i=1

XT B

= XDtXT B
= Kt .

Through the identity in Eq. (11), exp(C)f is approximated as
exp(C)f⇡ a0f+Âr

i=1 ai(C�qiI)�1f; i.e., exp(C)f is the sum
of the solutions of r sparse linear systems

(C�qiI)gi = aif, i = 1, . . . ,r. (12)

Since we cannot explicitly invert the matrix B and apply the
scheme to C :=�tB�1L, we notice that each vector in Eq.
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Regular data Level-sets of Ktei

(a) t = 0.01 t = 0.05 t = 0.1 t = 0.2 t = 0.3 t = 0.4
Irregular data Level-sets of Ktei

(b) t = 0.01 t = 0.05 t = 0.1 t = 0.2 t = 0.3 t = 0.4
Conditioning number

(c) (d)

Figure 2: Level-sets of the function Ktei, induced by the wFEM heat kernel and computed through the Chebyshev method, on (first
row) the regularly- and (second row) the irregularly-sampled surfaces in (a,b). The anchor point pi (red dot) is placed on the elbow.
(c,d) L2 conditioning numbers (y-axis) of the matrices {(tL+qiB)}7

i=1 in Eq. (13), for several values the time parameter t; the
indices of the coefficients {qi}7

i=1 are reported on the x-axis.

(12) solves the system (tB�1L+qiI)gi =�aif if and only if
(tL+qiB)gi =�aiBf. For any i = 1, . . . ,r, gi is now calculated
as the solution of a sparse linear system and Kt f is recovered as

Kt f⇡ a0f+
r

Â
i=1

gi = a0f�
r

Â
i=1

ai(tL+qiB)�1Bf. (13)

The solution gi is computed by an iterative solver, which ex-
ploits the sparsity of the coefficient matrix (tL+qiB), with-
out pre-factorizing the matrices L and B. Among the main
solvers, we mention the Jacobi, Gauss-Seidel, and minimum
residual methods (minres) [GV89]. Our implementation uses
the minres procedure, which computes a minimum norm resid-
ual solution to the input linear system, whose coefficient ma-
trix is symmetric, large, and sparse but not necessarily posi-
tive definite. Then, the overall cost of the computation of the
value Kt(i, i) = (Ktei)(i) at k feature points varies from O(kn)
to O(kn2), according to the sparsity of the coefficient matrix.
Here, v(i) is the i-th component of the vector v. Selecting B := I
or B := D, the Chebyshev method also provides a new com-
putation of the discrete heat diffusion kernel associated to the
Laplacian matrix with cot and Voronoi-cot weights. We com-

pare these methods in Sect. 2.3.

Assuming exact arithmetic, the approximation error between
exp(�tC) and its rational approximation crr(tC) is estimated as

kexp(�tC)� crr(tC)k2  srr, (14)

where srr is the uniform rational Chebyshev constant [Var90].
Since this constant is known, independent of t, and related to
the degree of the rational Chebyshev polynomial by the re-
lation srr ⇡ 10�r, r := 7 provides an error lower than 10�7,
which is satisfactory for the approximation of Kt f on 3D
shapes. If necessary, a higher approximation accuracy in Eq.
(14) is achieved by slightly increasing the degree r. Accord-
ing to [MVL03], the Chebyshev approximation of the matrix
exp(�tC) might be numerically unstable if ktCk2 becomes
large. From the upper bound ktB�1Lk2  tlmax(L)l�1

min(B),
we get that a well-conditioned mass matrix B guarantees that
ktB�1Lk2 is bounded. These considerations and our exper-
iments confirm that the Chebyshev method provides a good
approximation accuracy and numerical stability for the com-
putation of the discrete heat diffusion kernel. The Chebyshev
method also avoids the evaluation of the Laplacian spectrum,
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(a) t = 0.001 (b) t = 0.01

Cheb. method Lapl. decompos. Cheb. method Lapl. decompos.
(c) t = 0.1 (d) t = 1

Cheb. method Lapl. decompos. Cheb. method Lapl. decompos.

Figure 3: L• error (y-axis) between the Chebyshev approximation and the spectral representation (8) of the function Ktei, com-
puted using a different number k (x-axis) of eigenfunctions and values of the time parameter t.

which is unpractical in terms of computational and storage
costs. These limitations are generally bypassed by approxi-
mating Kt with the eigenvectors related to the eigenvalues of
smaller magnitude (c.f., Eq. (8)). While the Chebyshev com-
putation is free of user-defined parameters, in [VBCG10] the
resolution of the simplified approximation of the input surface,
on which the Laplacian matrix is computed, and the number
of Laplacian eigenpairs are tuned according to the value of the
temporal variable.

2.3. Examples and discussions

Indicating with ei the i-th vector of the canonical basis of Rn,
Ktei is the map achieved by applying the diffusion process to
the function that takes value one at the anchor pi and zero
otherwise. For a detailed discussion on the properties of the
functions {Ktei}n

i=1 and their application to feature-driven ap-
proximation of scalar functions, we refer the Reader to Sect. 4.
Figs. 1, 2 show the level-sets of the map Ktei induced by the
wFEM heat kernel and associated to several values of the time
parameter. In Fig. 2, the analogous behavior of the level-sets
confirms that the wFEM heat kernel is not affected by a dif-
ferent sampling (a,b) of the input surface. In both examples,
Ktei has been computed using the Chebyshev method. Ac-
cording to Eq. (13), the value of t influences the condition-
ing number of the coefficient matrices (tL+qiB), i = 1, . . . ,r.
Our experiments (Fig. 2(c,d)) have shown that the linear sys-
tems in Eq. (12) are generally well-conditioned; in any case,
pre-conditioners and regularization techniques [GV89] can be
applied to attenuate numerical instabilities.

Fig. 3 shows the L• approximation error (y-axis) between the
spectral representation (8) of Ktei, computed using a differ-

ent number k (x-axis) of eigenfunctions, and the corresponding
Chebyshev approximation (13). For small values of t (Fig. 3(a-
b)), the spectral representation (8) requires a large number of
Laplacian eigenvectors to recover local details. For large val-
ues of t (Fig. 3(c-d)), increasing k reduces the approximation
error until it becomes almost constant and close to zero. In fact,
in this case the behavior of Ktei is mainly influenced by the
Laplacian eigenvectors related to the smaller eigenvalues. We
conclude that the spectral representation generally requires a
high number of eigenpairs without achieving an accuracy of the
same order of the Chebyshev approximation, which involves
only the solution of r := 7 sparse linear systems.

Figs. 4 and 5 show the stability of the wFEM heat diffusion
with respect to the surface sampling density and noise, respec-
tively. In Fig. 4, a higher resolution of M improves the qual-
ity of the level-sets of the canonical basis function, which are
always uniformly distributed around the anchor (black dot).
In Fig. 5, an increase of the noise magnitude does not affect
the shape and distribution of the level sets. Fig. 6 shows a
canonical basis function Ktei associated to the wFEM and the
Voronoi-cot heat kernel, computed using the corresponding par-
tial spectral decomposition; e.g., (8) for the wFEM heat kernel.
Fig. 7 shows the same basis function for the heat kernels associ-
ated to different weights of the Laplacian matrix and evaluated
through the Chebyshev approximation; e.g., Eq. (13) for the
wFEM heat kernel. Firstly, we notice the analogous behavior
of the map Ktei computed using the wFEM heat kernel through
the Chebyshev approximation (Fig. 7(c,f)) and the generalized
eigendecomposition of (L,B) (Fig. 6(a-c,g-i)) on the regularly-
and irregularly-sampled surfaces M in Fig. 2(a,b). Compar-
ing these results with Figs. 6(d-f) and Figs. 7(a,b), on regularly
sampled data the cot, Voronoi-cot, and wFEM heat kernels pro-
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Figure 4: Smoothness of Ktei with respect to the sampling den-
sity of the input surface.

vide analogous results in terms of the level-sets of Ktei. These
results are also analogous to those achieved using the wFEM
heat kernel on irregularly-sampled data (Figs. 6(g-i), 7(f)). Due
to the uneven sampling of M and the wide variation of the ar-
eas of its triangles, the quality of the approximation provided by
the cot (Fig. 7(d)) and Voronoi-cot weights (Figs. 6(j-l), 7(e)) is
lower.

We now compare the basis function KD
t ei := XDtXT Dei and

Ktei := XDtXT Bei, which are induced by the lumped FEM
and wFEM heat kernel, respectively. As shown in Fig. 8,
irregularly-sampled patches on M generally affect the smooth-
ness of KD

t ei at smaller scales; increasing t improves the
smoothness of KD

t ei in terms of regularity of the level-sets and
of a lower number of critical points. Comparisons with respect
to the Taylor approximation (9) are shown in Fig. 9 and tim-
ings are reported in Table 2. Finally, the analogous behavior of
the level-sets of Ktei (Fig. 10) and almost overlapped graphs of
its values (Fig. 11) confirm the robustness of the wFEM heat
kernel with respect to different shape transformations.

Figure 5: Smoothness of Ktei with respect to surfaces with an
increasing noise magnitude.

3. wFEM heat kernel: properties and diffusion distances

As detailed in Proposition 3.1, in F (M ) we introduce a time-
depending scalar product h·, ·it that makes Kt self-adjoint and
we verify that (F (M ),h·, ·it) is a Reproducing Kernel Hilbert
Space. Furthermore, its reproducing kernel Ht : M ⇥M ! R,
which satisfies the reproduction property

hHt(·,pi), fit = f (pi), i = 1, . . . ,n, (15)

is Ht := K̃�t , where K̃t is the linear FEM heart kernel
(Sect. 2.1). In this way, computing the scalar product between
Ht(·,pi) and f is equivalent to evaluate f at pi.

For the wFEM heat kernel, the diffusion distances cannot be
defined by decomposing Kt as Y TY or Y T BY ; in fact, Kt is
no longer symmetric. However, the self-adjointness of Kt
with respect to the scalar product h·, ·iB allows us to introduce
a time-depending scalar product h·, ·it , which is induced by
a symmetric and positive definite matrix St . Rewriting the
entries of this matrix as St(i, j) := hht

i,ht
jiB, or the entries of

the Reproducing kernel as Ht(i, j) := hgt
i,gt

jiB, we extract the
linear and wFEM diffusion distances on M and show that
the corresponding embeddings gt

i := Ht/2ei, ht
i := Kt/2ei of

each vertex pi of M are evaluated through the Chebyshev ap-
proximation and without computing the generalized Laplacian
spectrum.

Proposition 3.1. Given a triangle mesh M , let LX = BXD be
the matrix representation of the linear FEM eigenvalue prob-
lem on M . Here, X := [x1, . . . ,xn] and D := diag(li)n

i=1 are the
matrices of the generalized eigenvectors and eigenvalues of the
couple (L,B), respectively. Then, the following relations hold:

(A) the wFEM heat kernel Kt := XDtXT B is self-adjoint with
respect to the scalar product induced by the mass matrix B.
Furthermore, for any f,g 2F (M ),

hf,git := hKt f,giB = hf,KtgiB = fT BXDtXT Bg, (16)
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Regular data: Fig 2(a)
wFEM HK Voronoi-cot HK

(a) k = 5 (b) k = 20 (c) k = 300 (d) k = 5 (e) k = 20 (f) k = 300
Irregular data: Fig. 2(b)

wFEM HK Voronoi-cot HK

(g) k = 5 (h) k = 20 (i) k = 300 (j) k = 5 (k) k = 20 (l) k = 300

Figure 6: Approximation of the basis function Ktei, t = 0.1, whose anchor is placed on the elbow (red point) of the regular and
irregular surfaces in Fig. 2(a,b), with respect to the (a-c,g-i) wFEM and (d-f,j-l) Voronoi-cot weights, with a different number k of
eigenfunctions. The Chebyshev approximation is shown in Fig. 7.

is a scalar product in F (M ). In particular, the linear
FEM Laplacian eigenfunctions {xi}n

i=1 satisfy the relation

kxi�x jk2
t = exp(lit)+ exp(l jt), i 6= j; (17)

(B) (F (M ),h·, ·it) is a Reproducing Kernel Hilbert Space.
The Hilbert kernel Ht : M ⇥M ! R that verifies the re-
production property (15) is the linear FEM heat kernel
Ht = K̃�t = XD�tXT ;

(C) indicating with St := BXDtXT B the matrix that induces
the scalar product (16), we have that

⇢
Ht(i, j) = hgt

i,gt
jiB, gt

i = Ht/2ei (a)
St(i, j) = hht

i,ht
jiB, ht

i = Kt/2ei (b) (18)

where the values of the linear and wFEM diffusion maps
gt

i,h
t
i : M ! R are induced by the linear K̃�t/2 = Ht/2 and

wFEM heat kernel Kt , respectively.

Proof. (A) To prove that Kt is self-adjoint with respect to h·, ·iB
(i.e., hKt f,giB = hf,KtgiB, f,g 2 Rn), we notice that

hf,git = hKt f,giB
= fT BXDtXT Bg

= fT BKtg
= hf,KtgiB, f,g 2 Rn.

To prove that the scalar product in (16) is well-posed, we show
that the matrix St := BXDtXT B is symmetric and positive def-
inite. From the identity St =(4) X�T DtX�1, we get that St is
symmetric with strictly positive eigenvalues (exp(�lit))n

i=1; in-
deed, St is also positive definite. To verify Eq. (17), we notice

that

hxi,x jit = hKtxi,x jiB
= hexp(�lit)xi,x jiB
= exp(�lit)di j.

(B) The reproduction property (15) is verified as follows

hHt(·,pi), f it = hHtei, fit
=(16) eT

i HtBXDtXT Bf

= eT
i XD�tXT BXDtXT Bf

=(4) eT
i XXT Bf

=(4) eT
i f

= f (pi).

We now show the uniqueness of the reproducing Hilbert kernel.
Assuming that the matrices At and Bt satisfy the reproduction
property and applying this property to the functions associated
to each vector of the canonical basis {ei}n

i=1 of Rn, we get that

eT
i (At �Bt)

T BKte j = 0, i, j = 1, . . . ,n  ! At = Bt .

From the representation Ht = XD�tXT = K̃�t , it follows that Ht
is symmetric and positive definite.

(C) For the identity (18a), we notice that

Ht/2BHt/2 = (XD�t/2XT )B(XD�t/2XT )

=(4) XD�tXT

= Ht

(19)

and therefore

Ht(i, j) = eT
i Hte j =(19) hHt/2ei,Ht/2e jiB.
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For the relation in Eq. (18b), we proceed in a similar way. From
the identity

St = BXDt/2Dt/2XT B

=(4) BXDt/2(XT BX)Dt/2XT B

= (BXDt/2XT )B(XDt/2XT B)

= Y T BY, Y := XDt/2XT B = Kt/2,

we get that

St(i, j) = eT
i Ste j = hht

i,h
t
jiB, ht

i := Kt/2ei.

To evaluate hf,git = fT B(Ktg) in Eq. (16), we compute Ktg
through the Chebyshev approximation; then, the resulting vec-
tor is multiplied by fT B. Let us now focus on the computation
of the embedding of each vertex pi of M as gt

i := Ht/2ei, in Eq.
(18a). From the identity

Htei =XD�tXT BB�1ei()
⇢

By = ei (a)
Htei = XD�tXT By = K�ty (b)

(20)
we get that Htei is computed by applying the Chebyshev ap-
proximation (c.f., Eq. (20b)) to the vector y that solves the
sparse linear system in Eq. (20a). We also notice that the
computation of K�t is stable; in fact, it is achieved through
the Chebyshev method and in a way analogous to the evalua-
tion of Kt . The embedding of each vertex pi of M associated
to the Reproducing Kernel Ht is the canonical basis function
ht

i := Kt/2ei, whose properties are discussed in Sect. 4.1. Fi-
nally, the corresponding linear and wFEM diffusion distances

⇢
kgt

i�gt
jk2

B = Ht/2(i, i)�2Ht/2(i, j)+Ht/2( j, j),
kht

i�ht
jk2

B = Kt/2(i, i)�2Kt/2(i, j)+Kt/2( j, j),

are uniquely defined by the entries of the matrices Ht and Kt ,
respectively. Indeed, the evaluation of the scalar product (16),
the diffusion distances, and the embeddings are performed
through the Chebyshev approximation and without computing
of the Laplacian spectrum. The properties discussed in Propo-
sition 3.1 apply to the wFEM heat kernel and are analogous to
those that hold in the continuous case. This analogy confirms
that the proposed discretization and the choice of the intrinsic
scalar product h·, ·iB in F (M ) maintain the main features of
the heat diffusion kernel, together with a higher robustness to
data discretization as compared to previous work.

4. Canonical basis and feature-driven approximation

In the space F (M ) of piecewise linear maps defined on M ,
the wFEM heat kernel is associated to the linear operator

Kt : F (M ) ! F (M )
f 7! Kt f = XDtXT Bf. (21)

Regular data: Fig. 2(a)

(a) cot HK (b) Voronoi-cot HK (c) wFEM HK
Irregular data: Fig. 2(b)

(d) cot HK (e) Voronoi-cot HK (f) wFEM HK

Figure 7: Chebyshev approximation of Ktei, t = 0.1, with dif-
ferent weights of the Laplacian matrix.

In the following, Kt indicates both the wFEM heat kernel matrix
and the induced linear operator (21). To introduce the canonical
basis of F (M ) (Sect. 4.1) and the feature-driven approxima-
tion (Sect. 4.2), we first show that the composition and the in-
verse of wFEM heat kernels is easily computed through the re-
lations Kt1 �Kt2 = Kt1+t2 (semi-group property) and K�1

t = K�t
(inversion property). In fact,

Kt1+t2 f = XDt1+t2XT Bf

= XDt1Dt2XT Bf

=(4) XDt1(X
T BX)Dt2XT Bf

= Kt1Kt2 f.

In particular, the wFEM heat kernel satisfies the commutative
property; i.e., Kt1 �Kt2 = Kt2 �Kt1 . For the inversion property,
we notice that Kt = XDtXT B = XDtX�1 and therefore

K�1
t f = XD�tX�1f = K�t f.

The wFEM heat kernel satisfies the heat equation
∂t(Kt f) =�B�1LKt f as well; in fact,

∂tKt f =�
n

Â
i=1

li exp(�lit)hf,xiiBxi,

LKt f =
n

Â
i=1

exp(�lit)hf,xiiBLxi

=
n

Â
i=1

exp(�lit)hf,xiiB(liBxi)

=�B∂tKt f.

4.1. Canonical basis in F (M )

Even though the Laplacian eigenvectors are intrinsic to the in-
put surface, they can be computed only for a small set of eigen-
values and do not provide a flexible alignment of the function
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(a) Vor.-cot HK

(b) wFEM HK

Figure 8: Level-sets of the basis Ktei induced by the (a)
Voronoi-cot and (b) wFEM heat kernel on the irregularly-
sampled surface in Fig. 2(b) with respect to different values
of the time parameter. In (a,b), we have used the Chebyshev
method and the same values of the time parameter.

behavior to specific shape features. Furthermore, the global
support of the Laplacian eigenfunctions is a possible limita-
tion to applications such as shape modification and compres-
sion, which benefit for a compact support in order to guarantee
the locality of the deformation and improve the quantization
effects. The geometry-aware maps [SCOIT05] provide a com-
putationally efficient way to encode the local geometric infor-
mation of M ; however, they are designed for compression and
based only on the connectivity of the input mesh.

Since Kt is invertible, the basis E := {ei}n
i=1 is mapped to a

new canonical basis B := {Ktei}n
i=1 of F (M ), whose ele-

ments have a smooth behavior on M and are intrinsically de-
fined by M . Starting from t := 0 and increasing t, the map Ktei
changes from the Dirichlet function to a constant map. In fact,
recalling that the eigenvalue l1 = 0 is associated to the eigen-
vector 1 and using the relation

Ktei = h1,eiiB1+
n

Â
i=2

exp(�lit)hei,xiiBxi!t!+• (eT
i B1)1,

we get that Ktei converges to the constant function
K+•ei = Ân

j=1 B(i, j) on M , as t!+•. Finally, for any
f 2F (M ) the map Kt f = Ân

i=1 f (pi)Ktei is a linear combina-
tion of the canonical basis with the f -values as coefficients.

4.2. Feature-driven basis functions and approximation

To define a set of shape-driven canonical basis functions, as
feature points {pi}i2A of a 3D shape we select the max-
ima and minima of the Laplacian eigenfunctions related to
the smallest eigenvalues [RPSS10] or of the auto-diffusion
maps [GBAL09]. Computing the corresponding canonical ba-
sis functions {Ktei}i2A , we get a set of maps that are intrinsi-
cally defined by the input shape and invariant to isometries. In

Figure 9: Comparison of the canonical basis functions com-
puted with the (a,b) partial Laplacian eigendecomposition (8),
(c) first order Taylor approximations in Eq. (9), and (d) gener-
alized Chebyshev computation in Eq. (11).

Table 2: Timings (s:ms) related to the computation (Fig. 4)
of the Laplacian matrix L, the mass matrix B, and the multi-
scale function Kt f with the generalized Chebyshev approxima-
tion. Tests have been performed on a 1.83 GHz Intel Core Duo
with 1GB 667 Mhz DDR2 SDRAM memory.

n Comp. (L,B) Feat. map Kt f
1K 0.0734 0.26
5K 0.0821 0.94
20K 0.3438 11.36
40K 0.6067 13.20
80K 0.7044 16.98
100K 0.9781 54.56
200K 2.8119 67.44
400K 4.138 98.36
500K 5.5434 112.22

this way, their supports are located on prominent features of M
and identify semantically meaningful regions (e.g., protrusions,
symmetries). Similarly to [GCO06; GMGP05; HK03; LG05;
MS05; OFCD02; RPSS10], these functions provide local shape
descriptors that are useful for matching, stable to noise and non-
intrinsic deformations.

The shape-driven canonical basis is used to decompose a noisy
scalar function f : M ! R into the sum of a global compo-
nent, which is defined by the f -values at the critical points
with a given persistence, and a local component, which en-
codes the details of f . The difference between this approach
and the least-squares projection on the Laplacian eigenvectors
is the approximation of specific f -values through the use of
the shape-driven canonical basis previously introduced. To this
end, we select the feature values { f (pi)}i2A , A ✓ {1, . . . ,n},
associated to the critical points of f with highest persis-
tence [Ban67; EMP06; PF09]. This choice is aimed at guar-
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Almost isometric deformation

Local re-scaling

Sampling density

Noise

Figure 10: Robustness of the computation of the basis function
induced by the wFEM heat kernel and centered at the spike of
the tail. The transformation strength increases from left to right.

anteeing that a global persistent information on the behavior of
the input map is preserved during the approximation. For more
details on the relation between persistent critical points and the
characterization of the behavior of the input map, we refer the
Reader to [EMP06; PF09]. Combining the functions {Ktei}i2A
with the feature values, we define the global component of f
constrained to A as fglob := Âi2A f (pi)Ktei. Introducing the
local component floc := f � fglob of f , we expect that floc en-
codes the local features, or noise, of f and fglob identif ies its
global behavior. As shown in Fig. 12, the global component
of the input scalar function is a smooth approximation of the
input scalar function and the local component encodes its local
details and noise. To estimate the robustness to noise, we per-
turb the f -values as f̃ := f+ e, e 2 Rn and bound the difference
between the corresponding embeddings as follows

kKt f�Kt f̃kB = kKtekB

=

�����

n

Â
i=1

exp(�lit)he,xiiBxi

�����
B



�����

n

Â
i=1
he,xiiBxi

�����
B

= kekB.

Indeed, the upper bound is proportional to the norm kekB. For
more details, we refer the Reader to [PF10].

Our experiments have shown that selecting as A the set of in-
dices of the critical points of f with a high persistence gener-
ally provides results that are smoother than using all the crit-
ical points and with an approximation accuracy of the same

Figure 11: Behavior of the basis function Ktei centered at the
extreme of the tail in Fig. 10. On the y-axis (logarithmic scale),
we report the value assumed by Ktei at the point p j (x-axis).
The transformation strength increases according to the follow-
ing color variation: red, green, blue, yellow, and black.

order. Increasing the persistence provides a lower number of
preserved critical points. In Fig. 13(a,b), the critical points of a
noisy f have been simplified from 40% to 10%. Then, the set A
of preserved critical points defines the approximation fglob; (d)
shows the level-sets of the approximations with respect to a dif-
ferent choice of A and the final approximation is depicted in
(c). For each example, the L• error between the input and
approximated map is below 2%. In our implementation, the
multi-scale hierarchy is generated by varying the parameter t
on an uniform sampling of the interval [0,l�1

k ] (e.g., k := 20);
generally, from five to ten scales {ti := i

10 l�1
k }10

i=1 are enough
to provide a satisfactory decomposition of the input map into
local and global components.

5. wFEM heat kernel descriptors for shape comparison

In the following, we prove that the wFEM heat kernel is in-
trinsically scale-covariant (i.e., without surface normalization)
and scale-invariant through a normalization of the Laplacian
eigenvalues. Finally, we experimentally verify that the wFEM
discretization improves the robustness of the corresponding de-
scriptors for shape matching.

Using the heat kernel, a shape M is associated to a diffusion
metric that measures the rate of connectivity among the points
of M with paths of length t and characterizes the local/global
geometric behavior of M with small/large values of t. The
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f fglob floc

f fglob floc

Figure 12: Level-sets of a noisy map f , its global fglob and
local floc component.

heat kernel also induces multi-scale [SOG09] and isometry-
invariant [BBK+10; BK10; M0́9] signatures, which are used
to rewrite the shape similarity problem as the comparison of
two metric spaces [Rus07; MS09] equipped with diffusion dis-
tances [CL06; LKC06]. Before testing the performance of the
wFEM heat kernel for shape matching, we verify that the pro-
posed discretization is scale-invariant and scale-covariant; in
this way, it satisfies two important properties for the definition
of shape descriptors.

The wFEM heat kernel Kt is intrinsically scale-covariant;
i.e., reshaping M to aM only the time component of the
kernel is rescaled. In fact, the rescaling of M to aM
changes the mass matrix B and the eigensystem {(li,xi)}n

i=1
of M into a2B and {

�
a�2li,a�1xi

�
}n

i=1, respectively. Indeed,
Kt(aM ) = Ka�2t(M ) without an a-posteriori normalization.
The scale-covariance of Kt is guaranteed by the mass matrix,
which changes according to the surface rescaling and compen-
sates the variation of the corresponding Laplacian spectrum.
The kernel becomes scale-invariant (i.e., Kt(aM ) = Kt(M ))
by normalizing each eigenvalue by ln. In this way, the ratio
li/ln belongs to the interval [0,1] and the eigenvalue ln is effi-
ciently computed using the inverse method [GV89; VL08].

To verify how the proposed discretization improves the robust-
ness of heat kernel descriptors for shape matching, the wFEM
heat kernel and diffusion distances have been evaluated using
the SHREC’10 data set [BBB+10; BBC+10]. It consists of
shapes modified through transformations of different strength
(five degrees): the higher the number, the stronger the transfor-
mation. The transformations are: null transformation, isome-
try (non-rigid almost isometric deformations), topology (weld-
ing of shape vertices resulting in different triangulation), micro
holes and big holes, global and local scaling, additive Gaussian
noise, shot noise, down-sampling (less than 20% of the original
points), partial occlusion, and mixed transformation.

In our experiments, we have normalized the Laplacian eigen-
values with respect to the eigenvalue of maximum magnitude

(a) (b) (c)

(d)

Figure 13: (a) Level-sets and (b) critical points of a noisy
map f and (c) its smooth approximation Kt f: the maxima, min-
ima, and saddles are shown in red, blue, and green, respec-
tively. (d) Level-sets and number of critical points (y-axis) of
the projection of f onto the basis functions associated to a dif-
ferent persistence (x-axis) of simplified critical points of f .

instead of the surface-area l := l/area(M ). Figs. 14(b,c;d,e)
show the behavior of the first 200 normalized linear FEM
Laplacian eigenvalues of a set of five shapes, which have been
achieved by removing small (Fig. 14(b)) and large (Fig. 14(d))
regions of a template (Fig. 14(a)). Our tests on the SHREC’10
data set have shown that normalizing the linear FEM Laplacian
spectrum with respect to the eigenvalue of maximum magni-
tude generally provides normalized eigenvalues (Fig. 14(e,g))
that are much closer to the normalized linear FEM eigenvalues
of the template. This choice is also suitable for the SHREC’10
data set because it does not contain 3D shapes when large sub-
parts of the data have been removed.

For the robust feature detection and description bench-
mark [BBB+10], the number of transformations per shape
was 45 and the total data set size was 138. Three classes of fea-
ture description methods have been compared: (i) the heat ker-
nel signature [SOG09] with Voronoi-cot weights in Eq. (7) and
feature points detected as local maxima of the signature with-
out/with (SHK1/SHK2) simplification based on persistence ho-
mology [ZC05]; (ii) the dense signature [BBGO11] based on
the Voronoi-cot (DHK1) and wFEM (DHK2) heat kernel; (iii)
the spin image signatures [JH99] (SP).

For the robust large-scale shape retrieval bench-
mark [BBC+10], the total number of transformations per
shape was 55 and the total number of query shapes was 715.
Three classes of methods have been compared: visual simi-
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(a)

(b) Area normaliz. (c) Eigenv. normaliz.

(d) Area normaliz. (e) Eigenv. normaliz.

Figure 14: First 200 linear FEM Laplacian eigenvalues (col-
ored graphs) normalized with respect to (b,d) the surface area
and (c,e) the eigenvalue of maximum magnitude on a 3D shape
with (b,d) holes of different sizes [BBB+10; BBC+10]. The
black line represents the normalized linear FEM Laplacian of
(a) the input template.

larity [LGS10; LRS10]; part-based bags of features [TCF09];
Shape-Google [BBGO11] based on the heat kernel shape
descriptor using Voronoi-cot [DMSB99; PP93] or wFEM
weights, with or without kernel normalization [BK10]. For
the evaluation of the results, we have used the mean average
precision (mAP); i.e., mAP := Âi P(i)rel(i), where rel(i)
is the relevance of a single rank and the precision P(i) is
computed as the percentage of relevant shapes in the first i
top-ranked retrieved shapes. Ideal retrieval performance results
in mAP = 100%.

The quality of the feature detection was measured using the re-
peatability criterion [BBB+10; BBC+10]. For each shape Y ,
let A (Y ) := {yk}k be the set of detected feature points. As-
suming for each transformed shape Y in the data set the ground
truth dense correspondence to the null shape X to be given in
the form of pairs of points C0(X ,Y ) = {(x0k,yk)}

|Y |
k=1 (similarly

for C0(Y,X)), a feature point yk 2A (Y ) is said to be repeatable
if a geodesic ball BR(x0k) of radius R around the corresponding
point x0k such that (x0k,yk) 2C0(X ,Y ) contains a feature point
x j 2A (X). The subset AR,X (Y )✓A (Y ) of repeatable fea-

Table 3: Shape comparison results. Winning feature descrip-
tion algorithms across transformation classes and strengths.
Heat kernel signature with cotangent weights and feature
points detected as local maxima of the signature without/with
(SHK1/SHK2) persistence (homology) simplification. Dense
signature based on Voronoi-cot (DHK1) and wFEM (DHK2)
heat kernel discretization in Eqs. (7) and (6). Spin image sig-
natures (SP).

Strength degree
Transf. 1 2 3 4 5
Isometry DHK2 DHK2 DHK2 DHK2 DHK2
Topology DHK2 DHK2 DHK2 DHK2 DHK2
Holes DHK2 DHK2 DHK2 DHK2 DHK1
Micro holes DHK2 DHK2 DHK2 DHK2 DHK2
Scale SHK2 SHK2 SHK2 SHK2 SHK2
Local scale DHK2 DHK2 DHK2 DHK2 DHK2
Sampling DHK2 DHK2 DHK2 DHK2 DHK2
Noise DHK1 DHK1 DHK2 SHK1 SHK2
Shot noise DHK2 DHK2 DHK2 DHK2 DHK2
Average DHK2 DHK2 DHK2 DHK2 DHK2

tures is given by

AR,X (Y ) = {yk 2A (Y ) :A (X)\BR(x0k) 6= /0,
(x0k,yk) 2C0(X ,Y )}.

Then, the repeatability rep(Y,X) of A (Y ) in X is defined as
the percentage rep(Y,X) = |FR,X (Y )|/|F(Y )| of features from
A (Y ) that are repeatable. For a transformed shape Y and the
corresponding null shape X , the overall feature detection qual-
ity was measured as (rep(Y,X)+ rep(X ,Y ))/2. The value of R
used in the benchmark is equal to the 5% of the shapes’ di-
ameter. Features without ground truth correspondence (e.g., in
regions in the null shape corresponding to holes in the trans-
formed shape) were ignored. In the following, we briefly
present the results on shape matching with wFEM heat kernels
and comparison with previous work. Due to space limitation,
we refer the Reader to [BBB+10; BBC+10; BBGO11] for more
details on the comparison results with respect to the different
shape transformations.

According to Table 3, heat kernel signatures show the best re-
sults among the compared algorithms; on average, the wFEM
heat kernel provides the highest robustness among all the trans-
formations of different strength. As reported in Table 4, among
sparse descriptors (SHK1, SHK2, and SI) the best results in av-
erage repeatability are achieved by SHK1. According to the
results and discussion reported in [BBB+10; BBC+10], the
best results in average repeatability in local scale and sampling
classes are achieved by SHK1; in micro holes and scale, the best
results are provided by SHK2; in isometry, holes, noise classes,
SHK1 and SHK2 have similar performances; and spin image
(SI) feature descriptor performs the best in topology and shot
noise classes. Among dense descriptors (DHK1� 3), DHK1
and DHK2 show equal average performance, with FEM-based
descriptor (DH2) being slightly better in the topology, local
scale, sampling, and noise classes; the scale-invariant heat ker-
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Table 4: Robustness of different heat kernel signature feature
description algorithms, with an average number s of feature
points. As metric, we use the average L2 distance between
descriptors at corresponding points. Robustness of (SHK1,
s = 23), (SHK2, s = 9), (SI, s = 205) heat kernel feature de-
scription algorithms based on features detected by the heat
kernel-based feature detection algorithms [SOG09], whose
feature points are detected using (i) local maxima [EMP06;
CGOS09] of the heat kernel at large scales, or (ii) persis-
tent maxima (HK2), or (iii) the salient points feature detec-
tion method described in [CCFM08; TCF09]. Robustness of
(DHK1-3) dense heat kernel signature feature description al-
gorithms using Voronoi-cot, wFEM, and cot weights for the dis-
cretization of the heat kernel.

Strength degree
Method 1 2 3 4 5
SHK1 0.06 0.06 0.08 0.09 0.12
SHK2 0.05 0.06 0.08 0.10 0.13
SI 0.13 0.13 0.14 0.14 0.15
DHK1 0.04 0.04 0.04 0.05 0.06
DHK2 0.04 0.04 0.04 0.05 0.06
DHK3 0.10 0.10 0.11 0.12 0.13

nel signatures (DHK3) perform the best in the scale class.

As shown in Table 5, the compared methods have different per-
formances across transformation classes. On average, simi-
larity sensitive hashing (SS1) and Shape-Google using scale-
invariant heat-kernel signatures (SG3), which represents 3D
shapes as binary codes through bag-of-features embedded in
the Hamming space, have the best performances on all class of
transformations. In this case, we have 98,27% mAP on the full
query set. Second best in all strengths is VS2 with 94.33% mAP
and at the third place we have SG3 with 90.79% mAP. Finally,
VS2 and Shape-Google using heat kernel shape descriptors
based on the wFEM discretization have the best robustness to
sampling density; VS2 also has the best performance in mixed
transformation class. Detailed shape matching results with re-
spect to all the transformations, which have been summarized
in Tables 4, 5, are reported in [BBB+10; BBC+10; BBGO11].

6. Conclusions and future work

Using the linear FEM discretization of the Laplace-Beltrami
operator, we have shown that the wFEM heat kernel Kt , to-
gether with the corresponding FEM diffusion distances, is ro-
bust to the local sampling density; is efficiently approximated
through the Chebyshev method; and improves the performances
of matching algorithms based on heat kernel shape descriptors.
In fact, the wFEM heat kernel is intrinsically scale-covariant
and scale-invariant through a normalization of the Laplacian
eigenvalues. The scalar product induced by Kt also makes the
space F (M ) of piecewise linear scalar functions on a triangu-
lated surface M a Hilbert Space, whose reproducing kernel is
the linear FEM heat kernel. Finally, the wFEM heat kernel Kt

Table 5: Performances with respect to all the transformations.
Visual similarity: clock matching bag of features with/without
(VS1/VS2) modified manifold ranking; (VS3) geodesic sphere
based multi-view descriptor. Part-based bas of features:
part-based bag of words with (PB1) large number of visual
words; (PB2) words with visual vocabulary computed from
the training set; (PB3) visual vocabulary computed from the
test set. Shape-Google using HKS local descriptor computed
with (SG1) Voronoi-cot weights; (SG2) wFEM weights; (SG3)
SI-HKS local descriptor computed with Voronoi-cot weights;
(SS1) HKS local descriptor computed with Voronoi-cot weights
and 96 bit similarity sensitive hash (mAP in %).

Strength degree
Method 1 2 3 4 5
VS1 95.92 90.81 86.48 81.94 77.78
VS2 99.03 97.73 96.71 95.66 94.33
VS3 96.93 93.89 92.24 90.56 89.29
PB1 95.28 92.11 88.41 85.06 82.20
PB2 94.64 90.52 86.19 82.35 78.72
PB3 94.25 90.16 86.09 82.78 79.57
SG1 94.94 93.12 90.84 87.82 85.00
SG2 95.73 93.81 90.46 87.40 84.71
SG3 97.05 95.16 94.03 92.54 90.79
SS1 99.84 99.48 99.30 99.10 98.27

defines a canonical basis of F (M ), which locally describes the
geometry of M and is useful for both shape characterization
and function approximation. As main future work, we foresee
the generalization of the proposed approach to point-sampled
surfaces and d-dimensional data.
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janikov, G. Patanè, M. Spagnuolo, and R. Toldo. Shrec 2010: ro-

14



bust large-scale shape retrieval benchmark. Eurographics Work-
shop on 3D Object Retrieval, 2010.

[BBGO11] A. M. Bronstein, M. M. Bronstein, L. J. Guibas, and M. Ovs-
janikov. Shape google: Geometric words and expressions for in-
variant shape retrieval. ACM Transactions on Graphics, 30, 2011.

[BBK+10] A. Bronstein, M. Bronstein, R. Kimmel, M. Mahmoudi, and
G. Sapiro. A Gromov-Hausdorff framework with diffusion ge-
ometry for topologically-robust non-rigid shape matching. Inter-
national Journal of Computer Vision, 2-3:266–286, 2010.

[BK10] M. M. Bronstein and I. Kokkinos. Scale-invariant heat kernel sig-
natures for non-rigid shape recognition. Proc. Computer Vision
and Pattern Recognition, 2010.

[BN03] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimension-
ality reduction and data representation. Neural Computations,
15(6):1373–1396, 2003.

[CCFM08] U. Castellani, M. Cristani, S. Fantoni, and V. Murino. Sparse
points matching by combining 3D mesh saliency with statistical
descriptors. Computer Graphics Forum, 27(2):643–652, 2008.

[CGOS09] F. Chazal, L. J. Guibas, S. Y. Oudot, and P.z Skraba. Analysis
of scalar fields over point cloud data. In Proc. of Symposium on
Discrete Algorithms, pages 1021–1030, 2009.

[CJ97] C. S. Chua and R. Jarvis. Point signatures: A new representation
for 3D object recognition. International Journal of Computer
Vision, 25(1):63–85, 1997.

[CL06] R. R. Coifman and S. Lafon. Diffusion maps. Applied and Com-
putational Harmonic Analysis, 21(1):5–30, 2006.

[CMV69] W. J. Cody, G. Meinardus, and R. S. Varga. Chebyshev rational
approximations to exp(�z) in (0,+•) and applications to heat-
conduction problems. Journal of Approximation Theory, 2:50–
65, 1969.

[dGGV08] F. de Goes, S. Goldenstein, and L. Velho. A hierarchical seg-
mentation of articulated bodies. Computer Graphics Forum,
27(5):1349–1356, 2008.

[DMSB99] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit
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[PF09] G. Patanè and B. Falcidieno. Computing smooth approxima-
tions of scalar functions with constraints. Computer & Graphics,
33(3):399 – 413, 2009.
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