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Abstract

This paper addresses the definition, contouring, and viaian of scalar functions on unorganized point sets, Whie sampled from a surface
in 3D space; the proposed framework builds on moving legqséies techniques and implicit modeling. Given a scalactfan f : P — R,
defined on a point seP, the idea behind our approach is to exploit the local corwvigctstructure of thek-nearest neighbor graph @@
and mimic the contouring of scalar functions defined on giammeshes. Moving least-squares and implicit modelingrtiegies are used to
extendf from P to the surfaceM underlyingP. To this end, we compute an analytical approximatianf f that allows us to provide an exact
differential analysis off, draw its iso-contours, visualize its behavior on and adoti, and approximate its critical points. We also compare
moving least-squares and implicit techniques for the didimiof the scalar function underlyin§ and discuss their numerical stability and
approximation accuracy. Finally, the proposed framewsrk istarting point to extend those processing techniquedtlia on the analysis
of scalar functions on 2-manifold surfaces to point sets.

Key words: Approximation of surfaces and contours, nearest neighbaplg graph algorithms, point-sampled geometry, topoldgand shape modeling,
computational geometry and object modeling.

1. Introduction The proposed framework builds on moving least-squares and
implicit modeling techniques.
Point-sampled surfaces, generated either by scanningPeal  On the one hand, in point-based graphics the aforemen-
objects with optical devices, or polygonizing implicit fttions, ~ tioned problems have not been investigated; furthermoee, t
or sampling parametric surfaces, are discrete models with Broposed solution provides a link between previous work on
high number of points and the underlying surfaces can havéurface-based scalar functions and the ongoing research on
an arbitrary genus and curvature. Point sets become a surfagoint-sampled surfaces. On the other hand, the theoretical
representation alternative to polygonal meshes, due tsithe  terest on those problems is accompanied by applicatiorts suc
plicity of dealing with complex 3D shapes as point sets andiS surface reconstruction from slices (12; 13; 44) and the de
using points as rendering primitives (40; 62; 66; 76). Thekla Sign of high-level structures oP (69) (e.g., Reeb graphs,
of connectivity and the atomic definition of point sets poe/i  Morse complexes), which are commonly used for shape com-
a built-in multi-scale surface representation (61), thumidging ~ Parison (18; 38; 19) and analysis (55; 56).
to process the connectivity of polygonal meshes. Pointazets It is worth mentioning that scalar functions are extensivel
widely used for ray tracing (2), surface reconstruction @&, used in mathematical modeling, engineering simulatioiensc
sampling (3), simplification (60), spectral analysis (58g- tific visualization, bio-medicine, and geographic infotioa
mentation (10), progressive rendering and streaming (30).  Systems. In each of these research fields, a variety of phenom
Given a point seP sampled from a 2D manifold surface, this €na is described by a large set of measurements: the result-
paper addresses the definition, contouring, and visualizaf ~ ing scientific data is usually given as a set of samples over a
an arbitrary scalar functiofi : P — R, defined orP, without ~ domain of interest and the measurements are represented as a
convertingP to a simplicial representation. This aim is achievedscalar function. Finally, in shape modeling, computer brap
by studying the level-sets and critical points ffaccording ics, and engineering, a large number of functions are géetera
to the case of scalar functions defined on 2-manifold susface also by restricting implicit maps frof® to 3D shapes, solving
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Fig. 1. Overview of the proposed approach. Given a scalactiom f : P — R, defined on a point seP, the figure shows the main steps that compute
the level-setyq :={p € M : f(p) =a}, where M and f are the surface and the scalar function underlyfdgand f respectively. (a) Computation of a
point-wise approximatiorS (red points) ofya by searching those points such thatf(q) = a on the edges of th&-nearest neighbor graph of P; to this
end, we linearly or implicitly interpolate thé-values along the edges @f. (b) Then, each poing € S is “projected onto a pointq := pr(q) of yq and
the setC := {q:=pr(q) : g € S} (blue points) gives a discrete sampling yf. (c) Identification of the subsets @f that correspond to a sampling of the
connected components g. Each sampled connected component is converted to a pidwear contour (blue curves).

differential equations related to simulation problemg(ethe triangle meshes. We considg?, 7 ) as a rough approximation

Laplace and heat equation (14; 52)) or decomposing the speof the surfaceM underlying? and we show that it is pre-

trum of data-dependent kernels (14). cise enough to compute a s&t(Fig. 1(a)) of approximated
Choosing a point s&®, hereinaftetM will generally be the  samples of the level-sgt := {p € M : f(p) =a}. For each

surface underlyin@®, i.e. any surface the points #fbelongor pointg € S, the volume-based approximatiénof f and the

are close to. Our framework does not make assumptions on theplicit representatiofx : g(x) = 0} of M in a neighborhood

way M is built from P: both moving least-squares (1; 3; 5; 6; of g are used toproject’ g (Fig. 1(b)) ontoq € yq by solving

43) and implicit (51; 68; 70) techniques can be adopted.ddde the following non-linear system

we assume thai is locally represented by the zero-set of an . : _ :

implicit function g; that is, a pointx in a neighborhoodV, gr)=0 (ie.reM), F{rj-a=0 (ie,rev)

of p € P belongs taM if and only if g(x) = 0. Furthermore, we  As starting point of the iterative solver of the aforemenéd

admit boundary components, noise, outliers, and an iraggul System, we choose :=q. Finally, C is converted to a family

sampling density of. of piecewise linear curves, one for each connected componen
First of all, the scalar functiofi : P — R is arbitrary and de-  Of Ya (Fig. 1(c)).

fined by its values on the points 8 Then, we define the scalar ~ Since the computation of the critical points of an arbitrary

function f : M — R, underlying f, as a map that locally in- scalar function on a point-sampled surface is sensible o th

terpolates or approximates the valydgp;) }"_,. This smooth local noise that affect® and the function values, we introduce

approximationf of f allows us to provide an exact differen- the concept ofuzzy critical pointsMore precisely, we associate

tial analysis off and visualize its behavior on and around.  to M a probability measure: M — [0, 1] such thati(p) is the

To define such a functionf is locally approximated by an probability thatp is a critical point off. Then, the analysis of

implicit and smooth mag- : R® — R such thatf := Flp is  the level-sets of improves the reliability of the classification

the restriction ofF to M. Among the several maps defined of the critical points.

on P, specific attention is devoted to the analysis of smooth The choice of using the neighbor graph/fs motivated by

functions, such as harmonic maps and Laplacian eigenfunéhe analogy among its structure, the edge-based représenta

tions (14; 15; 16; 41). These functions have been used in se@f polygonal models, and the classification of the criticaihts

eral applications that include shape comparison (64) and suof scalar functions defined on triangulated surfaces (1) F

face quadrangulation (27; 28). thermore, the modularity &f with respect t.k ando avoids the
Oncef has been computed, we are ready to trace the levePeed to recompute the neighbor graph when we decrease those

sets off on M. The idea behind the contouring algorithm is to parameters for approximating the normalgdnd the gradient

exploit the local connectivity structure of thenearest neigh- field of f, or tracing the level-sets. The proposed approach also

bor graph7 of P and mimic the contouring of functions on represents a starting point to extend those methods thiat bui
on the analysis of a scalar function on a 2-manifold surface t



point sets. Among them, we mention the surface reconstruaefined by a projection operatdrp : R® — M, which maps

tion from slices (12; 13; 44), quadrilateral remeshing 28},  an arbitrary poinfp onto M (3; 5; 6; 43). In particular, each

parameterization (57; 75), and shape comparison (18; 38; 64point of M is a stationary point ofyp; i.e., p € M implies
The paper is organized as follows. In Section 2, we briefly in1p (p) = p. In this paper, we use the explicit definition (5; 6)

troduce the theoretical background and previous work on-mowof the MLS surface in terms of the critical points of an energy

ing least-squares techniques, implicit modeling, and #fand  function along lines induced by a vector field. More pregisel

tion of scalar functions on point sets. Section 3 discugses t the energy functior: R x S? is defined as

computation of the mag underlying an arbitrary scalar func- n

tion f defined orfP and the visualization of its behavior on and e(x,a) = Zl| (pi — x,a) [8(||x — pil|2),

around the surfac#1 underlyingP. In Section 4, we introduce i=

a contouring algorithm of, which traces the level-sets with- i.e., the sum of weighted squared distances of point®in

out degenerate segments. In Section 5, we analyze theatritic’ "h | . b d th | ¢ £ th

points of f and introduce the concept of fuzzy critical points to .t ep ane2 given byx an € hormal vectoa ot the

for functions defined on point-sampled surfaces. In Sedion unit sphereS®. Here, 8 is a decreasing weighting function,

: o e.9.8(t) := exp(—t?/h?), whereh is a Gaussian scale parame-
we address the numerical _stab|I|t_y of th_e proposed framlgwor ter that defines the width of the kernel. A possible choich of
its accuracy, and the choice of its main parameters. Finall

. yis h:=0/+/3, whereo is the distance betwegmn and the points
Section 7 concludes the paper. of its k-nearest neighborhood; for more details on the choice
of h, we refer the reader to (26). Then, for each paitite un-
oriented normal field is defined agx) := argmin ) ,—1 €(X, &)
and it is the unit eigenvector related to the smallest eigkem
In this section, we briefly review the main results on mov-of the 3x 3 symmetric covariance matrig := (Cij)?j:l of

ing least-squares techniques, surface approximationradtial  the directions inx. The entrie<Gj of C are defined as
basis functions (Section 2.1), and the definition of scalac{

2. Theoretical background and related work

tions on point sets (Section 2.2). For more details, we rker _ k NN o
reader to the state-of-the-art reports (4; 37). Gij = |Zl(pl =X)(p =x)B(Ix—=pill2), 1,j=1.23,
2.1. Approximation of point sets with p; == (pt, p?, p?) andx := (x1,x2,x3). Successively, the

normal vectors are coherently oriented by imposing that the

Hereinafter, we focus our attention on the main methods use@ngles between the normal atand at the points that fall
to compute thé-nearest neighbor graph, moving least-squared? @ neighborhoodVx of x are less tharr/2. The plane
surfaces, and implicit approximations of point sets. Hx: (p—x,n(x)) =0, p € R through x and orthogonal

to n(x) is calledreference plan@nd is used to compute a local
k-nearest neighbor graph. First of all, we introduce the bivgriate polyr_mmial approxi_mati(.)n. of the ;urface. If the c
k-nearest neighbor graph of a pointse® := {p;,i = 1,...,n} variance matrix of the directions s not singular, then the
of R3. In T, each pointp; € P is associated with the neigh- vector_n(x) is uniquely deflned._U_nder th!S as_s_umptlon (74),
borhood A, := {pj.,s=1,...,k} that includes the nearest the pointx belongs taM and satisfies the implicit equation

points to p;, or those that fall inside the sphere of cen- n (X — pi,n(X))|2

ter p; and radiuso. In both cases, the proximity relations  9(X):= Z{l—+ (X —pi,n(x))x 1
among the points oP are computed with respect to the Eu- i= ()
clidean distance. If we choodeinstead ofo, then we set B(lIx —pill2) =0,
0= max_1__ k{||Pi —Pjs|2}. To simplify the notation, once
has been fixed we implicitly assume th¥s, containsk:= k(o)
points and we omit the dependencekobn o. As described
in (26; 50), the choice af can be adapted to the local sampling
densitye := %2 and the curvature of the surface underlying

where®0 is the Gaussian kernel. This expressiorgdfas been
used to compute the curvature of point-sampled surfaces and
will be exploited to trace the level-sets of a scalar functio
defined orP. Changing either the energy function or the vector
field provides variants of the MLS surface. For instance, the

thus improving the approximation Of. the ngrmalsﬁb The RMLS variant (30) preserves sharp features\df which are
computation of7 requiresO(nlogn)-time (9; 17), wheren commonly removed by the Gaussian weighting.

Is the number of input points, ?‘”d the neighbor graph can be Previous work on MLS surfaces indirectly assumes that the
adapted to the surface sampling through the paranketar L .
normal of the approximating tangent frame is the surface nor

}26 g/lé?wrytr:ﬁ]llgzlng C?na?e'p;gre'(;ggr?at;ﬁg zgéreof#erl;xge mal. Since this assumption is generally not satisfied, (&} pr
9 ' y ' 'poses a different expression of the implicit functigthat al-

they are deduced from the sampling density. Finally, we sa .
that (i, ) is an edge off" if and only if p; € ij or pj € Afy. Yows us to exactly compute the surface normals. More prigise

the implicit functiong that defines the surfackt as the zero-
) . . set{x: g(x) =0} is

Moving least-squaressurfaces. Given a point seP, themov-

ing least-square$MLS, for short)surfaceM implied by P is g(x) := (x —b(x),n(x)), (2)



wheren(x) is the oriented normal at, which is computed the Laplacian eigenfunctions. A generally low number of-cri
as previously discussed, ahdx) is the weighted average of ical points, the regular variation of the shape of the laetb,
points atx, i.e. b(x) := Zzi”_zleél(lﬁ)(—f’ijillT)?i_ and a smooth transition among them (34; 49; 52) make those
=1 1z functions a natural choice dsfor several applications such as
quadrilateral remeshing (27) and shape matching (39).

Surface approximation with radial basis functions. Choos-
ing a pointp; € P, implicit modeling (20) provides an al- ) _
ternative approximation oM in A, by defining an implicit ~ Geodesic functions.  Recent works (46; 65) on the computa-
function g: R® — R such that in\p, the following relation tion of geodgsws on a point sgt have enriched the clags of
holds: x € M if and only if g(x) = 0. In this context, im- sca]ar funcuqns orP with geodesics-based maps, previously _
plicit approximation techniques (8; 29; 48; 58; 63) computedefined on triangle meshes (38) and used for shape compari-
g(x) = Zik:1Gi¢i(X) as a linear combination of the basis ele- SON (25; 47). qu instance, |n_(65) piecewise linear appnaxi
mentsB = {i(x) == d(|[x — pill2) ik:1’ where¢ is the kernel tions _of_ge_o_desm paths on pomt_—sample_d surfaceg are dewchpu
function. Depending on the properties dfand of the corre- by minimizing an energy functlon,lwh|ch takes into account
sponding approximation scheme, we distinguish globally (2 _both the geodesic path !ength and its closeness to the ynderl
70) and compactly (51; 54: 71) supported radial basis fonsti "9 surface. An alternative is to trace the shortest pathramo
(RBFs, for short), and the partition of unity (53; 72). There the nodes of an extended sphere-of-influence graph.
fore, ¢ is not necessarily the Gaussian kernel; for instance, we
can choose the bi-harmonic kerrgl) :=|t/h 3. Harmonic functions and Laplacian eigenfunctions. To de-
Assuming that\V, := {pj, s=1,...,k}, in the following  fine harmonic scalar functions on a point #&twe remind the
we computey as done in (51; 68; 70). To avoid the trivial so- relation between the Laplace Beltrami operator for diffiere
lution g = 0, we add a positive- and negative-valued normaltiable functions on the 2-manifold surfage and the heat flow
constraint apj,, close to the boundary constraigipj,) =0,  problem (d; +A)u(p,t) = 0. Here,u(p,0) = f(p), pe M, is
and in the normal directions(pj;) and—n(pj,), s=1,...,k,  the initial heat distribution. Then, on the point sBtthe Lapla-
respectively. Then, the functiamis defined as a linear com- cian matrixL := (Lij)]'j=1 is defined as (14; 16)
bination of X radial basis functions, whose centers belong to

Ny U{pjs£8n(pj,) }X_;, whered is an off-set value propor- -1 i=j ai = exp(— [pi —pj ||§)
tional to the diagonal of the bounding box®f The coefficients L . h? ’

of the combination are computed by imposing the interpolat- " "~ aij/ai pj € Ny, aj = aj.

ing conditionsg(pjs) =0, 9(pjs =0n(pj;)) =+1,s=1,... Kk, 0 else €N,

and solving a B x 3k linear system. For more details on the (3)

construction ofg, we refer the reader to Section 3.2. Clearly, As shown in (16; 23), if the number of samplesends to in-
positive- and negative-valued constraints can be chosen in finity and the kernel widtth goes to zero then the eigenvectors
subset of pj, +3n(pj,) }5_;, thus reducing the size of the corre- of the Laplacian matrix tend to those of the Schroedinger op-
sponding linear system. For instance, a variation of t&ste  eratorA + E, whereE is a scalar potential that depends on the
is to center the basis elements only at the pofptg}5_; and  density of 2. We briefly remind that the vectdr, h # 0, is
impose that the resulting functiog satisfies the aforemen- an eigenvectonf L related to theeigenvalue\ if and only if
tioned X conditions in a least-squares sense. In this case, Weh = \Ah; in this caseh is also calledeigenmapon P. To re-
solve ak x k linear system and the least-squares formulation igjuce the dependency of the Laplacian eigenmaps representat
preferable to the implicit interpolation in those cases !¢ from the density of the data points, (41) suggested to nermal

is affected by noise. ize the Gaussian weights with an estimate of the point densit
and computed the Laplacian matrix with respect to these new

2.2. Geodesics, harmonic functions, and Laplacian weights. Therefore, the new Laplacian matrix that replg8gs
eigenfunctions on point sets is built in two phases as follows

Given a point sef? := {p;j,i =1,...,n}, there are roughly aij -1 - =1
two distinct categories of functions defined Bnvolume-and P FGJ Pi € Npi, . i b € Ny,
surface-based scalar functionl the former case, the val- ! 0 els N EkeNpi Lik p"
ues of f on P are computed by sampling an implicit func- & 0 else

tion W:V D P — R, defined on a regiow that containsp.

Main examples are the height function with respect to a givenn this case, in the limit of large sampled points and smalless
directionN, i.e. W(p) := (p,N); the Euclidean distance from the eigenvectors of the new Laplacian matrix converge tegho
a pointb, i.e. W(p) := ||p — bJ|2; the distance from a refer- of the Laplace-Beltrami operator owt. OnceL has been built,
ence plane, i.aV(p) := [(p — b,N)|. Therefore, we have that the computation of the harmonic scalar function resemties t
f :=W/|p. In the latter casef is defined directly or?; in the  case of triangle meshes (28; 33; 52). An alternative dimaret
following, we discuss the definition of the geodesic distanc tion of the Laplacian matrix is described in (42). Choosirsga
from a set of source points @, the harmonic functions, and of boundary condition®3 := {f(pi) = a }icz, Z C {1,...,n},
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(@ (b) (c)k=5

(d) k=10 (e)k = 20 (f) k=50

Fig. 2. Level-sets of harmonic scalar functions achievedirbposing the
same boundary constrains and using (a) Gaussian (14) artiff(igion (41)
weights. In both examples, we have chosen the size okhearest neigh-
borhood of each point ds= 20. (c-f) Level-sets of harmonic scalar functions
with the same boundary constraints and a diffedemiighborhood. In this
example, the Laplacian matrix entries are the diffusionghts. We used
one maximum and minimum as boundary constraints; note tenumber
of critical points, i.e. one maximum, one minimum, and twaldia points,
remains constant in each discretization.

we solve the linear systein*f* = b, wheref* := (f(pj));czc
is the vector of unknowng° is the complementary set @t b
is a constant vector, ard* is achieved by canceling thi8-row
andi-column ofL, i € Z (Fig. 2(a,b)).
The maximum principlgrovides the main motivation to de-

vide an alternative to harmonic functions. Laplacian efgeo-
tions still guarantee a low number of critical points, whaote
not clustered, and a smooth behavior of their level-setdoin
In fact, the eigenvectors related to the smallest eigegadue
smooth and slowly varying functions, while the eigenmaps co
responding to the largest eigenvalues show rapid osoitiati
and a higher number of critical points.

In Fig. 2, we have computed several harmonic functions by
fixing the same Dirichlet boundary conditions and using a dif
ferent k-nearest neighbor graph for the discretization of the
Laplacian matrix. Tests in Fig. 2(a,b) show that the isotcors
calculated with the diffusion weights (41) are regularlg-di
tributed on the input surface and smoother than those pedvid
by the Gaussian weights (14). As shown in Fig. 2(c-f), thellev
sets related to the diffusion weights become smoother while
increasing the parametkr

3. Scalar functions on point-sampled surfaces

Given a scalar functiorf, we define the mag : M — R,
underlying f: P — R, as the function that locally and
smoothly interpolates or approximates the sampled values
{f(pi), pi € P}. Note that if f is a volume-based scalar
function andW is known (Section 2.2), therf::W|M is
already the function underlyindg. However, the family of
surface-based scalar functions includes important majyh s
as geodesic, harmonic, and Laplacian functions, which are n
associated with explicit underlying maps. For each of those
functions, we usd to trace its level-sets oM.

To build f, we discuss three methods: the first two approaches
(Section 3.1) are based on the moving least-squares approac
and the third one (Section 3.2) builds on implicit approxima
tion. In all the aforementioned cases, the differentiaperties
of f are derived analytically, thus allowing us to provide an ex-
act differential analysis of. Furthermore, the approximation
schemeis local, i.e. the definition bfp), p € M, is influenced
only by those points oP that belong to a neighborhood pf
Finally, we analyze and compare the approximation errors of
the f-values induced by the moving least-squares approxima-
tion and the implicit interpolation (Section 3.3). For thisalis-
sion of the numerical stability and approximation accuraty
the aforementioned methods, we refer the reader to Section 6

fine harmonic functions on point sets. In fact, once we have

fixed the Dirichlet boundary conditions this principle alt®
us to build functions with a minimal (i.e., one maximum, one
minimum, and g saddles) or a pre-defined number of critical
points. We briefly remind that theritical points of a smooth
functiong: M — R, defined on a surfacé, are the solution
of the equatiorvg(p) = 0, p € M, and correspond to thmaax-
ima, minimg andsaddlesof g. For more details, we refer the
reader to Section 5. In the case that all constrained minmma a

3.1. Approximating scalar functions via moving least-squares
modeling

Givenf : P — R, in the following we describe two methods
for the computation of the scalar functidnunderlyingf and
based on the moving least squares approachpahameterized
MLS approacmefmesf(p) through the approximation of the
f-values in a neighborhooll, of p and with respect to a local

assigned the same global minimum value and all constraine@@rameterization of on a reference domain. Tleplicit MLS
maxima are assigned the same global maximum value, all th@Pproachdirectly computes thd-values in\p.

constraints will be guaranteed to be extrema in the resultin
function. If there is not a predefined choice of the Dirichlet
boundary conditions, then the Laplacian eigenfunctiorts pr

5

Parameterized MLS approach. Let A := {pj;,s=1,...,k}
be thek-nearest neighborhood @f Then, we defind (p) by



Fig. 3. Computation of the scalar functidt M — R underlying f : » — R
in a neighborhoodV,, of a pointp with respect to the reference plaf
at p (c.f. Equation (4)). HereM is the surface underlying.

using the local reference domahy, as follows. Indicating
with p;, the orthogonal projection abj, € N, s=1,....k

ontoHp, we compute a polynomial approximatiorthat min-
imizes the weighted least-squares error (Fig. 3)

k
E(ag,...,0m) = lef(xs,ys) — f(pi)P8(IP —picll2),  (4)

where(Xs,Ys) is the representation @;_ in a local coordinate

Fig. 4. Computation of the scalar functidn M — R underlyingf : P — R
in a neighborhood\, of a point p with respect to the formulation (6).
Here, M is the surface underlying.

and its least-squares definition guarantee a fast apprdigima
of f in A, and a smooth behavior without oscillations. For in-
stance, ifr is a polynomial of degree 3 or 4, then= 10 or
m= 15 respectively. Iff (pj,) := (pjs — pP,n(p)) is the signed
distance opj, from Hp, s=1,...,k, then the functiom is the
local parameterization of the MLS surfagd with respect to
the reference plane. However, in this pajpas arbitrary.

Oncer has been computed, we define the values$ odit

system inHp. Since the functional (4) is quadratic and its un-q ¢ A, asF(q) := r(q), whereq is the orthogonal projection

knowns are then coefficients of the polynomial, we get that

the minimum of (4) is achieved by solvingnax mlinear sys-

tem. More precisely, we write the polynomial function in é%)
m

rxy) = I;mbl (xy), o= (o)l

where{bi(x,y)}|", is a basis of the linear space of the poly- —

nomials of degree at last in the variablesx andy; then,

m— (d+1)2(d+2)

tion of the linear system

k
0o E =2 Z(r(xs,ys) = F(Pis)) bj (Xjs:Yis)8([P = Pjsll2) = O,
S=

j=1,...,m,

with respect to the unknowrns, | = 1,...,m. A direct compu-
tation shows that th¢!" equation can be written as

m k k
IZ (Zlbl (Xs,Ys)Dj (Xs, YS)es(p)> a = Zlf(ij)bj (%s,Ys)0s(P),
=1 \s= S=

with 8s(p) :=8(||p — pjsll2), s=1,...,k. This is equivalent to
solve them x mlinear system
BOB'a = BOf,

whereBT is the transpose @,

()

O :=diag(61(p),.-,Bk(p)) € R,
fi=(f(pjs))sy € R,
and the coefficient matrix of (5) is symmetric and positivé-de

. The minimum of the function (4) is the solu- —

of g on Hp. Then, inN, we setf(q) := F(q), g€ M. The

following properties ofF in (4) motivate our definition.

— Locality. The sum in (4) considers only those points7f

that belong to th&-nearest neighborhood of each point and

that have been already computed to define the MLS surface

underlyingP.

Least-squares propertyrhe definition ofF guarantees the

robustness oF to noisy f-values.

Continuity of f with respect to the sampling dens&ynce

the coefficients ofr are the solutions of a linear system,

which continuously depend on the input data, we have that if

the kernel widthh tends to zero then ligLo f(pi) = f(pi),

i=1,...,n

— Gradient field and higher order derivative®nce the poly-
nomial functionr has been computed, we can analytically
evaluate its gradient vector and Hessian matrix by deriving
with respect to the two variabl€g,y) in the local frameF
associated tbly. Then, we apply to this vector and matrix the
rotation that maps to the canonical reference frameRs.

Explicit MLS approach. An alternative approach is to de-
fine f directly, without using the reference plane (Fig. 4). More
precisely, we consider the implicit function

_ >t F()6([p — pill2)
Y18(lp—pil2)

andf is defined ad := F| . ThereforeF (p) is the weighted
average of thd -values at a locatiop and the influence of the
noise on the approximation df is smoothed by the Gaussian
kernel. Note the analogy between the definition (6f @nd the

F(p): peRS, (6)

nite. As observed in (3), the choice of alow degree polynbmia weighted averagle(x) of points atx in (2), where the pointp;
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(&) n=50K (b)n=11&K (c)n=14XK (d) n=994K

Fig. 5. (a-d) Given four noisy point setBnoise With a different numbem of vertices and sampling densig; we have evaluated thle-error between the
input function f on Pnoise and its approximatiorF |p, ... Here,F is given by (6) ando is the kernel width. The noisy surface is definedRgise=P + G,
where P is a set of points sampled on the torus surface @ni$ the noise displacement, which has a normal distributidgih wean zero and standard
deviation one. The functiori has been achieved by evaluating the functiiip) = log(||p|l2+1) +x% —y?, p = (X,Y,2), at the points ofPnoise Numerical
values are reported in Table 1; see also Fig. 6.

Table 1 —pi .
The table reports the parameters of the example shown in5Fig. have thatf% <1, i=1...,n and therefore
‘Test ‘ﬁVerticesn‘Kernel width o|Sampling density:’l‘loo-error ‘ HF||\|fO|T < Herl]’ |||']fyoo)|§ [f[loc- Here, thel;-norm is defined
as||fl|l1:= it | f(pi)]-
Fig. 5(2)50K 252x107° |7.93x10°° 7:36x 1072 - Continuityiolff;L with respect to the sampling densitf/the
- 90K 1.97x 1073 |6.21x10°° 6.65x 1072 sampling density, and therefore the kernel wiblitiiends to
Fig. 5(b) 116K 195% 10-3  |6.32% 10-5 598 x 10—2 zero, then the?-valueNS atP converge to the corresponding
Fig. 5(C)145  |4.02x 104 |[7.11x 1075 5.02% 102 f-values, i.e. lim_o f(pi) = f(pi),i=1....n.
' ' i : — Gradient field and higher order derivative3eriving (6), we
- 16K |452x10* [6.15x10°° 254x 1072 analytically compute the gradient field Bf which will be
Fig. 5(d)994K 1.265x 10~3 [3.97x 10~5 2.69x 102 used in Section 5 to define the fuzzy critical point$ @h M.
A direct computation shows that the following relation reold
in b(x) have been replaced by tlievalues at these points. The 2 n
following properties ofF in (6) motivate our definition. VFE(p) =— — > Kzle(ﬂp - Dilz)) X
— Linearity. LetF (resp.,H) be the scalar function underlying [hy L1 8(lp—pill2)]” | \i

the mapf (resp.,h) on the point sef® and defined by (6);
then,aF +BH is the function underlying f + h, Va, B € R.

— Locality. Since the weight functio® is close to zero in a
certain distance fronp, the sum in (6) can be reduced to
the indices of the points dP that belong to the&-nearest
neighborhood op.

N
=}

— N
IM>= |

f(pi)8(llp —pill2) (P — pi)) -

F(pi)8(llp— pi||2)> X

~ n
— Point-wise variationFrom the definition off, it follows that Zle(Hp —pill2)p-p) ||, pe R3.
the maximum variation betweehand f on P is bounded i=
by the maximum of thef-value onP, i.e. @)
1f=Floo <Iflloes fi=(FiNy, Fi=(F(pi)y, The least-squares property guarantees Ehas robust to

noise; the local property improves the efficiency of the com-
putation ofF (p) by reducing the sum in (6) to the indices of
the points that belong to tHenearest neighborhood pof The
continuity of f with respect to the sampling density implies
that f converges tof onP, h— 0. Fig. 5, Fig. 6, and Table 1

wheref (resp.f) is the vector of the -values (resp.f-values).
Here, thdo-normis defined af ||  := max-1_._n{|f(pi)|}.
Furthermore, we have thaff —f||o, is bounded by the
maximum variation of thef-values, i.e.

1f(pi) — f(pj)| < Yitalf(pi) — f(pj)I6(lpi — Pill2) confirm that the expression (6) is stable to noise; another ex
J Ve >it18(lpi —pjll2) ample is given in Fig. 7. Even though both approaches are de-
< YT‘#&}X{“(Di) —f(pj)l} fined according to the projection procedure that is behired th

moving least-squares methods, they do not guaranted that
— Bound on the global variation of FThe F-values are terpolates the function values at the points®fTherefore, in
bounded by thel;- and I-norm of f; in fact, we the following section we discuss a local interpolation sohe



Fig. 6. With reference to Fig. 5 and Table 1, the variation ref It -error Fig. 7. The picture shows the increasing reordering of ltheerror on a
on the various point setBnoise and P is shown by the black and red curves scanned point seP with several holes and noise; the number of points
respectively. The behavior of the two curves is similar amel érror between 1S N=87CK. The corresponding color-map highlights that the appratiom
the input and the approximatettvalues remains low while increasing the €rfor between the input scalar functidh and F|» is equally distributed
noise magnitude and the number of sampled points. onP; F has been computed as (6).

which is based on implicit modeling. ars := O (||pj, — Pjsll2), r.s=1,...,k The last four rows of the
coefficient matrix in (10) correspond to timatural additional

3.2. Approximating scalar functions with radial basis constraints

functions k k

k
;Gsp)j(s =0, ;qsp)l{s =0, glasp?s =0

In the following, we describe how is locally approximated

by an implicit smooth funCtiOTFé R® — R on a neighbor-  These relations guarantee that the coefficient matrix ify (10
hoodAp = {pj,,...,pj} of p € R®, i.e. is invertible; in fact, thek x k sub-matrixA is conditionally
(pjo) = f(pjs), s=1,....k (8)  positive-definite on the subspace of vectors that are octhalg

) ) ] to the last four rows of the full matrix. Then, iV, we have
Choosing a kernel fu.nc'uor:b:R+ —R (e.g., the Gaus§|an that f is computed ag (p) := F(p), p € M. We visualize the
¢(t) := exp(—t/h) or bi-harmoniop(t) := t/h|* kernel),F is  pepavior of (P, f) aroundp by samplingF on a voxel grid
the implicit scalar function (63) centered ap and extracting the iso-surface Bfrelated to the

k iso-valuef(p), i.e. Z¢(p) :={q € R3: F(q) = f(p)}. In anal-
F(q) = _Zai¢i (@-+n(a), n(a) :=Bo+Px+Bay+Bsz, ogy with the local apprOX|mat|on of smooth surfaces, werrefe
= 9) to >¢(,) asosculating paraboloiaf f related tof (p) (Fig. 8(a-
q:= (x,Y,2). ThereforeF is defined as a linear combination ¢)). Indeed, the approximatidn is useful to make predictions
of the radial basis functror‘q;s( ):=6(]lq - picll2), centered about the phenomenon behavior measuretl by’P. The com-
at each poinpj,, s=1,...,k, plus a first-degree polynomial mon way of analyzing the properties 6fis to visualize the

n(q). The linear functlom av0|ds that the first term in (9) tries evolu_tion (_)f it_s Ievel-sets_ and can be en_hanced_ by adding als
to fit f over regions ofP where f is linear or constant (e.g., the visualization of the iso-surfaces Bf in a neighborhood

at plateauy. Therefore, the coefficients in (9) that uniquely ©f P- Deriving (9), we have that

satisfy (8) are the solution of the followingk+ 4) x (k+ 4) o/ (lp—pill2) 3
square linear system VF(p) = 'Ziai W(p —pi) + (B1,B2,B3), PER?,
=
_ y N U
ajy ... a1 Pj; p)jll Pi, ay f(pjl) where d)/(t) — _%exq_tﬁ) (resp.,d)’(t) = 3;:_;) if ¢ is the
L oo : : Gaussian (resp., bi-harmonic) kernel; therefore, we get
aa - a1 pj P P || ok f(pj,) 10 exp(”p p.llz)
1...100 0 O BO =10 ) (10) h Z h”p Pi ”2 (p_pl)+(BlaB27B3)a
P, - P, 00 0 O B1 0 VF(p) = gd)nls the Gaussian kernel
Pl P00 0 OB |0 5 2 Gillp=Pill2(p =)+ (s Bz o).
‘o 00 0 O] 0
[Pl Pl [Bs] L - if ¢ is thebi-harmonic kernel

where pj, := (pj,, p{s pi.), s=1,....k, and the entries of (11)
the non-singular matriA : (ars),sﬁl Kk are set equal to

8



(@) (b) (c)

(d) (e) (f)

Fig. 8. (a-c) Point set® representing three noisy torii; the noise decreases fréimdeight. Choosing a scalar functioh on P and an iso-valuel, we have
computed the implicit approximatioR, the osculating paraboloilly := F ~1(a) (yellow surface), and the sé& of points that belong tdq and to the edges of
the k-nearest neighbor graph &f. (d-f) Level-sets of the restriction df to the least-squares plapethat approximatesS. The black curves are the connected
components of the contOLl?hjl(a) and provide an approximation of the corresponding iso@manbn the surface underlying. In each case, the implicit
approximation off is smooth on and aroun®; if the noise magnitude is low (b,c), theﬁﬂ\gl(a) is a smooth approximation d?*l(a). See also Fig. 9.

The entries of the Hessian matrix are computed in an analjuires to solve a sparse linear systemQfklogk)-time (35)

ogous way; i.e., (Ch. 4, 12). Fig. 8(d-f) and Fig. 9(a-c) show the level-séthe
. functionF restricted to the least-squares plane that contains the
ai A
2 _F(p) = i (D — D —Dillot level-sets in Fig. 8(a-c). For completeness, we recall¢bat-
e (P) i; Ipi —pjli3 [cb (lp=rill2)llp =il mon sparse kernels atg(t) := (1—t)4 (4t +1) (71) and the

functiond(t) := (1—t)4 (4+ 16t + 122+ 3t3) (51; 67), where
= M andh is the kernel support. In this case, each ker-
nel belongs taC?([0,1]) and the corresponding sparse matrix

—

F o o2 (o (oo [y L UP=Pill2)
(ef (p—p) <¢ (Ip—pill) P )]

(12) is built using thek-nearest neighbor graph of the input point
n a; set. If we select one of the aforementioned kernels, then we
e, F(P) = 21_7' (& (P—pi) (ef (P—pi)) x update the relations (11), (12), and (13) with the derieativ
& IPi—pill2 (13) of the kernel function and the sum is related to the points tha
[0"(lp—pill2) —¢'(lP—pill2)],  k#1, belong to the kernel support. Finally, the interpolatiohesne

wheredq F is the partial derivative of with respect to the with RBFs satisfies the properties listed in Section 3.1.eNot
direction &, (e); := &;. Here,&; =0 if i # j and & =1, that the level-sets in Fig. 9(b) are not nearly as smooth as th

i,ji=1,...,3. level-sets in Fig. 8(e). This is due to the fact that a locas@o
Before discussing the properties of the implicit interpola @nd a rough sampling density &f might reduce the accuracy
tion scheme, we remind that tiseipportof g: R3 — R is de-  and smoothness of the MLS approximation of the scalar func-
fined as sup(@) := {p € R3: g(p) # 0}, i.e. the closure of the tion underlyingf with respect to the implicit scheme. We can
set whereg is not null, and the functiory has global sup- Overcome this problem by enlarging the widttof the kernel
port if supgg) =R3. If ¢ has global support, then the cor- functhn or increasing the sampling densﬂy?@fthrough. re-
responding coefficient matrix is full and the solution of the Sampling techniques. In fact, a small value foresults ina
linear system (10) is computed @(klogk)-time using spe- fast decay of the Gaussian kernel and the appr_OX|_rnat|ors(6) i
cialized techniques such as fast multipole methods (36) fofore local. Large values df attenuate local oscillation of the
RBFs (21; 22). The choice of a locally-supported kernel re-f-values, guarantee thétin (6) is a global approximation of
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(a) (b) (c) (d)

Fig. 9. (a-c) Level-sets of the moving least-squares appration (6) of f related to the example shown in Fig. 8. Comparing Fig. 8(difh (a-c), we see
that the moving least-squares approximatlerof f is also smooth. If we decrease the noise magnitude, thenstieontours related ta have a similar
shape. Since the MLS function underlyirfgdoes not interpolate the function values, the black curme@) are smoother than the corresponding contours in
Fig. 8(d). (d) Comparing the left and right side of the image, see that duplicating the width of the kernel in (b) we gebather level-sets.

the f-values, and smooth sharp features of the corresponding} Level-sets of scalar functions defined on point sets
level-sets. For instance, duplicating the width of the kéin

Fig. 9(b) we get smoother level-sets, which are shown on the From a general point of view, a contouring algorithm of a
right side of Fig. 9(d). scalar function defined on a triangle mesh traces the |etgis
related to the iso-value, starting from a seed point € vy,
evaluating the intersection points betwegnand the edges
3.3. Moving |east-squares versus |mp||c|t approximation of of M, and iterating the intersection search through the trian-
scalar functions gles adjacent to the intersected edges. Given an arbittatars
function f : P — R on a point set, we mimic this approach to

In this section, we derive two characterizations of the rerro race the Ievel-s_eyu = {peM g f(p) =aj, Wh'Ch. belongs
between the moving least-squares approximation and the int© M The algquthm IS summarlzed by th? foI[owmg steps:
plicit interpolation. For the discussion on the main diffleces () computation of point-wise approximatidh of yu by
between the MLS and implicit approximation of scalar func- searching t_hose p0|nq_ssuch thatf (q) = a on the edges
tions and the choice of the main parameters used by the pro- of 7. To thls_ en_d, we mterpolate t_hbvalu_es along the
posed approaches, we refer the reader to Section 6.2. edges_ofT with linear or radial basis functions. Roughly

Choosingi € P, let us suppose th&thas been computed by speakmg, We say ”3%‘ Intersects the edgeiﬁi Then,
using the implicit approach, where as kertele have chosen each poing € S is pr(ﬂected onto a po'”tq = pr(q)
the decreasing weighting functiérof the moving least-squares of Yo and th_e seC = {q = pr(a) - g .ES} gives a dis-
scheme (i.e., the Gaussian kernel). Without loss of geityeral f:ret_e S?mp"”_g Ofq (Section 4.'1)' This generalized pro-
and for simplicity, we omit the linear term in Equation (9). J_ectlon is defined by a non-linear system WhOSQ caua-
In this case, we have that thex 1k vector of thd; -values at the ﬂagzrﬁiﬁrge;e:;éﬁerzgg:ﬁ,;;%?e é:ilstrlglrjln(iz(;;h
\?V%IQE gf{\ipi (Siiki/f?sbi/rgg(géjz}t%ﬁ _of( fég:fnggﬁ ag)__ I'_Aeot(,us (ii) identification of the subsets of that correspond to a
now computd= by using the moving least-squares formulation sampling of the connected compc_)nentsqprhen, each
in (6); here, we neglect the points that do not belong/p In Sampl_ed connected component _'S converted to a piece-
this case, we have thas = (F(pj,))<_, = D~ 'Ab, where ~ __ Wise linear contour (Section4.2);

D :=diag0y,...,6k) is thek x k diagonal matrix whose non- (iii) coding of the evolution of the fam'MY"i =1 (ai.)}i
null entries ared; .= 5X_, 6(|pi — PLll2), i=1.. ..k Ais of level-sets of M, f) (Section 4.3). Fig. 10 and Fig. 11

thek x k coefficient matrix in (10), and := (f(pj,))X_, is the give an overview of the method on a 2D test.

set of f-values on the points o¥/,. From the identity

4.1. Sampling level-sets
e:=bus—b=D"1Ab—b=D"1(A-D)b,
_ . ) As first step of the contouring algorithm, we evaluate the
we have thate =0 if and only if (A—D)b=0, i.e. b be-  ges of the intersection points betwegm and the edges df .
longs to the null-space of the matrfA — D). Indeed, without 1, computeS, we consider the set of the edges of” along

additional overhead we can compute the approximation erqhich the scalar functiori assumes values of opposite signs,
aseys:=|lell2=||( —D~*A)b||, at each point ofP. In this

case, we run the implicit scheme only in the neighborhood of
those points of? whereey s is greater than a given threshold. £ :={(i,j) € 7 : (f(pi) <a < f(p;)) || (f(p;) <a < f(pi))}.
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€Y (b)

() (d)

Fig. 10. This example shows the idea behind the iso-conmtguechnique. (a) Given the point sBt we consider an input scalar functidn: ? — R whose
iso-contours are represented by black lines. (b) Choosings@valuea, we compute a poing that belongs to an edge of thenearest neighbor grapf

of P and such thaf (q) = a; here, f has been linearly interpolated along the edge§ ofn a neighborhoodVy of g, we approximate the input curve as the
zero-set of the implicit functiom; the corresponding contog—1(0) is shown in yellow. In a similar way, the red curve shows theslkset f*l(a), where f

is the scalar function underlying in Nq computed using the MLS approach described in Section 4.&refére, the poinfj € M such thatf(ﬁ) =ais
the intersection point between the red and yellow curve. fitiat q is the starting point used to compuieas solution of the non-linear system (14). (c,d)
Analogous case related to a spike point/f See also Fig. 11.

Choosing a coupléi, j) € £, we have thaty, intersects the in [0,1]. The valu€f is calculated by using the Gauss-Newton
edgepip;j atq; to calculateq, we can proceed in two different or Lemberg-Marquard iterative algorithm (24), whose start

ways. _ _ pointty ;= %% is the solution of the linear problem.
The simplest approach is to assume tfidinearly varies Once the ploinq has been computed with one of the afore-

along the edgeip;, (i, ) € &; then, under the hypothesis that 1 entioned approaches, the project®dn= pr(q) of g onyq is

f(pi) <a < f(pj), we have the solution of a system of two non-linear equations, whigh i

. _ volve the approximatiorr of f (i.e., F(q) —a =0, g€ Np)
) =tpi+(1-t)pj,t€[0.1], and the representation d¥1 (i.e., g(q) =0, q € M) in Np.
f(q(t)) :=tf(pi)+ (1-t)f(pj), Therefore, the poing € yy is computed by solving the non-
linear system

and thereforey = q(f) with T := % (Fig. 12). Chang-

ing i with j, an analogous discussion applies to the case F(r)—a=0,
f(pj) <a < f(pi); indeed, the linear interpolation separately revyo «— _ (14)
treats each edge together with the related intersectiont.dai g(r) =0, (ie.,r e M),

this case, we have th&:= {q(f), (i,]j) € £}. A more precise
approach uses the MLS techniques described in Section 3in this case, the starting point of the iterative schemetisgeal
and 3.2 to compute an approximationfobn the whole sef. o ro := g. Regardless the complexity of the functioR¢r)

For the implicit interpolation scheme, we build the func- andg(r), (14) is efficiently solved using the iterative algorithms
tion F : R® — R that interpolates thé-values at the vertices of previously mentioned; implementations of these methods ar
the edges irf. Indeed, the functiof satisfies the conditions available in several software packages (7). The gradiect ve

. tor (c.f., Equations (7), (12)) and Hessian matrix (c.f.ugqg

F(pi)=f(pi), F(pj)=*fpj), V(i) €E, tions (11), (13)) of botlF andg are analytically computed and
and it is computed by centering the basis functions in (8) atised in the iterative scheme, thus improving the convemgenc
each vertex of the edges & Otherwise F is computed ac- to the solution of (14). Our experiments have shown that from
cording to Equation (6). In both case&sjs the set of intersec- five to ten steps are usually enough to approxingaeth an
tion points between the iso-surfakg:= {p € R*: F(p) =a} error of order 107. Examples of iso-contour sampling and re-
related toa and each edgeipj, (i,j) € £. The intersection construction are given in Fig. 13 and Fig. 14. In the follogin
point onpip; is g =1tp; + (1 —t)p; and the parameteris  the term projection of] ontoyy will refer to the operator that
the solution of the non-linear equatiét{tp; + (1—t)pj) =a  mapsq to the solutiorq € yq of (14).
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(@) (b)

(c) (d)

Fig. 11. With reference to Fig. 10, the pictures (a,b) shoe gbarch of a poing such thatf(q) = 0o on a noisy point set. The functiors and f have begn
computed by using the moving least-squares technique idedcin Section 3.1. In (c,d), we consider the same exampla anisy point set; hereé; and f
have been computed using the implicit interpolation schelegeribed in Section 3.2.

Let us now suppose that we have chosen two close isdo compute a piecewise linear interpolation curvel ofThis
valuesa, a2 and that from two distinct edges, e, € 7 we  approach simply requires to solve & r sparse linear system
got the same poirg. This means that using the linear interpo- based on convex combinations. Once the piecewise lineag cur
lation of the f-values ore; ande, gives the same poimfsuch  that interpolates the points &f has been calculated, we can
that f(q) =ay, f(g) =az. If a1 # ay, then the valuef(q) use the parameterization values to compute a least-sqajres
is inconsistent; however, this inconsistency disappedrerw proximation ofl" (35) (Ch. 5). This step provides smooth iso-
we projectg onto yq, andyq, through (14). In fact, choos- contours and allows us to increase/decrease the samptiag ra
ing a1 (resp.,02) we projectq ontoyy, (resp.,ya,) and com-  of yq, independently of that oP andC (Fig. 15). If M has
pute the poing, € M (resp.,g, € M) such thatF(q;) = a1 holes, which usually are introduced by the scanning process
(resp.,F(Qy) = ap). If g:=10; =0y, then from (14) it fol- then the least-squares approximation is useful to recdeer t
lows thata, = F(T) = F(T,) = 02, Yo, = Ya,, and therefore shape of the iso-contours in those regions\dfwhere points
f(dl) = f(dz). This relation implies that we do not have an are missed. In fact, small connected components with réspec
inconsistent definition of atd. to & are joined in a unique contour (Fig. 13(a,b)). The analysis

of self-intersecting iso-contours is described in Seckon

4.2. Counting and approximating the connected components
of a sampled level-set 4.3. Evolution of the iso-contours and computational cost

To approximate each sampled iso-contour with a piecewise First of all, we assume that the function valydgp;)}{ ; are
linear curve, we identify the points Gfthat belong to the same sorted from the smallest to the largest valu®ifmlogn)-time
connected component. To this end, we select a gpin€ and  using a reordering technique. Choosimgso-values{a;}" ,
recursively define the connected comporiergissociated tp  o; < aj, i < j, we extract the set of the corresponding iso-
as the set of pointS such thatp € I' andq is added td” ifand ~ contours{yy, := f—l(ai) ™ ,. To traceyy;, we use the increas-
only if there existy € I and||g—r||2 < &. Here, the thresh- ing reordering of the function values to identify tiseedges
old o is proportional to the averaged sampling stegn P; in of 7 intersected by, and compute the coarse samplifig
our implementation, we have chos&r= 2¢ and this values be- of yy,. This step take®(slogn)-time. If f is linearly inter-
comes the size of the holes that we can recover (Fig. 14316(a)polated along the sef of the edges off intersected byyy,
For convertingC to a piecewise linear approximation g,  then the computation of the sét of intersection points be-
we use the method presented in (32). More precisely, the samweeny, and7 takesO(s)-time. Using the implicit approxi-
pled points{q;}{_; € C of a connected componefhitof y; are  mation of thef-values along the edges @f takesO(sklogk)
mapped into the parameterization valjgg) }{_; C R and the  to computeS. The projection ofS ontoC, the counting of its
permutationj gives an ordering of the points ththat is used connected components, and the piecewise linear approxima-
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(@) (b) (©) (d)

(e) (f) (9) (h)

(k) (i) 0)

Fig. 12. (a) Smooth point seP and setf of the edges of thé&-nearest neighborhood graph ®f intersected by the iso-contoys; f has been linearly
interpolated. Bold blue points are the vertices of the (bledges of thek-nearest neighborhood intersected Yoy (a-d) Point-wise approximatios of yqu
(red points);q € S if and only if f(q) =a andqg € e, ec £. (d) Closest view on (c). (e-h) These pictures show the saeyes sn (a-d) for a noisy point set.
(k-j) Contour reconstruction related to the example in Ye-h

tion takeO(s+ slogs)-time. Additional information such as the such that the iterative scheme, which solves (14) with &-star
number of connected components, the osculating paraholoithg point in S, is always convergent. To compuf we use
and the classification of the fuzzy critical and regular ®in the MLS formulation or the implicit approach only for tragin
(Section 5) can be stored. Boundary components of the surfathe level-sets at saddle points or in case of irregularly-sam
underlying” do not affect the steps of the contouring algo- pled point sets. If the input point set is noisy, then we apply
rithm; in fact, thek-nearest neighbor graph does not make disthe moving least-squares approach (6) to compute the scalar
tinctions between boundary and internal edges: 1fR3 — R function f underlying f. Otherwise, we apply the implicit in-
is an implicit field, then the proposed iso-contouring aitjon  terpolation scheme (9). In fact, a higher accuracy in the-com
can also be used to evaluate the intersection between tflaesur putation ofS is crucial to solve local ambiguities related to
underlying? and the iso-surfacgq := F ~%(a). Algorithm 1 both M and f. In our implementation, the functiogis built
and Table 2 summarize the main steps of the iso-contouringsing (1) (c.f., Equation (2)); this choice is motivated g t
method and the corresponding computational costs. global support ofy and the reliable approximation of the nor-
Our tests have shown that linearly interpolating fhealues  mals toM. Firstly, the global support aj avoids that the iter-
along the edges of provides an initial samplingS of vy ative method converges to a pomt# supgg) (i.e.,g(p) = 0)
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Fig. 13. Input point set containing holes and noise. In (&f® blue curves represent the sampled iso-contours airdpibeewise linear approximations are
given in (b,d). As shown in (a,b) and described in Section the piecewise linear approximation can be used to rechveshape of the iso-contour where

holes occur. See also Fig. 14 and Fig. 15.

such thatf(p) # a. However, this situation did not happen in

our tests, even considering holes and noise in the pointtset.

can be artificially generated by choosing a starting poirthef
iterative scheme that is far from the real solution, thus pam

mising its convergence. Secondly, as shown in (26) the ndetho

proposed in (1) provides a robust estimation of the surface n
mals, thus allowing us a reliable definition of the fuzzyicst
points.

5. Critical points of scalar functions defined on point sets

Given a C! function f: M — R defined on a smooth
2-manifold surfaceM, the critical points of f are defined as
those pointp € M such thatV f (p) = 0 and they correspond
to the maxima, minima, and saddles fofFor polyhedral sur-
faces, the method described in (11) classifies a vertex dicapr
to the values of on its neighborhood. IM is a triangle mesh,
then the vertexp is a maximumor minimumif its function

14

Table 2

Computational cost of the main steps of the iso-contourlggrahm; n is the
number of vertices of the input point set asds the number of intersected
edges betweefM and the level-seyq.

Task

Computational cosl‘

k-nearest neighbor graph O(nlogn)

o

Computation ofS S)

Computation ofC

Counting connected components |O(s)

(

(
O(slogs)

(

(

Piecewise linear approximation §|O(slogs)

value is higher or lower than those on itsthtr, respectively.
We briefly remind that the 1-star of a vertpxis defined as
the set of vertices incident to;; i.e., {p; : (pi,p;) edgg. If
two or more iso-curves related to the same iso-valughare
a vertexp, thenp is asaddle Those points that do not fall in
the previous classification are definedregular.



Fig. 14. Contour sampling and reconstruction achieved lojepting S on the surface underlyin@. Another example is shown in Fig. 15.

In an analogous way, given a point $&tand a scalar func- on M. Letr(u,v) := (x(u,v),y(u,Vv),z(u,v)) be a local param-
tion f defined onP we want to classify its points as regular eterization of M around the poinp =r(up,vo) € M, where
or critical; therefore, we know the coordinates of the candi (u,v) € Q C R?, Q is an open disc, anflip, o) belongs toQ.
date critical points. This choice resembles the case ofiscal Then, the values of on a neighborhood op are given by
functions defined on triangulated surfaces; here, thecatiti w(u,v) := F(r(u,v)) andp is a critical point of(M, f) if and
points are searched among the vertices of the input trianglenly if Vw(up,vo) = 0. Using the derivation formula of com-
mesh. A first attempt to extend this definition to a scalarposite functions, the following relations hold

function defined on a point set is to replace the 1-stap of
{ 0, (Uo,vo) = (VF (p). dur (o, Vo)) =0,

oy (U, Vo) = (VF(p),0yr (up, Vo)) = 0.

with its k-nearest neighborhood. Since the choicekadr ¢
is not fixeda-priori but deduced from the point distribution,
the resulting classification gb will be affected by a differ-
ent value ofk ando. For instance, choosingand indicating ~ Since the normal vector to the surfagd at p is given by
with V¥ the k-neighborhood ofp it might happen that a "(P) = 0uf (Uo,Vo) AOvr (Lo, Vo), we getthap is a critical point

. - . . N ) of f if and only if VF(p) is parallel ton(p). This relation
point p classified as maximum (i-ef(p) = f(pi), pi E,Np ) does not directly depend on the neighborhoodbadind ex-
becomes a regular point f(p) < f(q) at the new poing of presses the local dependence between the gradient\field

the (k+ 1)-neighborhood\i“"Y > N of p. Furthermore, related to the differential properties Bf and the normal field
those issues are crucial at saddle points, where the chafgesdefined by the geometry of1. Two main examples are the
the sign off give the multiplicity of the saddle. It follows that height function and the Euclidean distance from a point. For
we need a characterization of the critical points that takes  the height function, once the directid has been fixed we
account the behavior df in a neighborhood of any point with- have thatVF = N and p € M is a critical point off if and
out being affected by the discretization.&}. In Section 5.1, only if N is parallel to the normai(p) atp. A similar discus-
we derive a geometric characterization of the critical of  sjion applies whelf is the Euclidean distance from a point; in
a scalar function defined on a smooth surface. In Section 5.gjs case VF (p) = 2(p —b) andp € P is critical if and only
and 5.3, we discuss how this characterization can be appliglwe have thatp —b,n(p)) = 0. For a point seP, the normal
to functions defined on point sets. vector at each poirg € P is calculated using the eigensystem

of the covariance matrix of a local neighborhoodp{Sec-

tion 3.1). According to the discussion in Section 3, we coesi
5.1. Equivalent definitions of critical points asF the implicit function that interpolates the values fofn

a neighborhoodV,, of p or one of the moving least-squares

Let us consider a scalar functidh: R® — R, F € C1(R3), approximations. Then, we computeF(p) in linear time as

and its restrictionf := F| ¢ to @ smooth surfacé; in the  shown in Equation (7) and (11). The local definition of catic
following, we make explicit the notion of critical point df  points also guarantees that increasing or decre&simg will
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Fig. 15. Noisy point sef; the red points show the initial samplir®§ of the chosen level-sets and the blue curves are the reuootestriso-contours achieved
by projectingS on the surface underlying.

not affect the classification qf. sideringp as critical if wy is equal or close to zero works in
We are now ready to clarify the relation among the criticalfew situations and generally fails in those cases where \aé de

points and the evolution of the iso-contours. In Section 5.2with an irregularly sampled point set and a noisy scalar func

these properties will be used to classify the critical p®int tion. Therefore, we introduce the conceptfozzy criticaland

of scalar functions defined on point sets. Assuming thafuzzy regular poinbf a scalar function defined on a point set.

f(pi) < f(pj), i < j, the topology of the level-sets remains the Here, the term fuzzy means that we associateMb f) a prob-

same as long asbelongs to the open intervét (pi), f (pi+1))- ability measuret: M — [0,1] such that(p) is the probability

If pi, 1 is @ maximum or a minimum, then the level-get'(t),  thatp € M is a critical point off. We define this function as

te [f(pia) —& f(pi) (resp.te (f(pi). f(piv1) +€)), €0,

degenerates tp; or develops a set of homeomorphic contours. (p) := [(VF(p),n(p))| = [ cosuy|,

If pi;1 is a saddle point, then two or more contours cycles of

the level-sets ~1(t), t € (f(pi11) —¢&, f(pir1) +€), are joined ~Where we assume that both the gradient field and the normal

into a new cycle or an existing cycle is split into two or more Vector have unit length (Fig. 16(b)). Therefopes M is called

cycles. fuzzy critical pointf T(p) ~ 1 andregular otherwise; if fuzzy
critical points are close to each others, then we consider as
representative point the one with the highestalue.

5.2. Critical pOint ana|ySiS and related iso-contours Once the Va|ue$‘,‘[(p)}pep have been Computed, the thresh-
old g, which is used to verify if1—1i(p)) < ¢, is set by consid-

Indicating with Im(f) the minimal interval containing the ering the variation(p) — 1(q)|, g € Np, of the probability val-

image off, in most of the cases an arbitrary values Im(f) ues ap and at the points of its 1-neighborhood. Note that con-

will be regular, i.e.f‘l(a) does not contain a critical point sideringp € P as a critical point ifi(p) = 1 does not cover all

of f on M. In fact, under mild conditions on the regularity the possible cases; in fact, it might happen thatgaaxX(p)}

of f and M the set of critical points of is finite and there- is lower than one. Finally, we stress that also for a scalacfu

fore it has null measure (49). In the following, we introducetion f defined on triangulated surfaces the concept of critical

the concept of fuzzy critical point and discuss how we handlgoint is derived in an approximate way by using thealues

self-intersecting or degenerate iso-contours, which areg  along the mesh edges and without computing the gradient field

ated whern is close or equal to a critical iso-value. Once theof f. Sincef is smooth, we expect that two pointsq in A;

gradient field ofF and the normah(p) at each poinp € P  whose probability values are close to one will have clése

have been calculated, we consider the angletweerVF (p)  values. Therefore, a more precise characterizatioh iof Ay

andn(p). Theoretically,p is a critical point off if and only is achieved by comparing the related iso-contcﬁTé(f(p))

if VF(p) is parallel ton(p). Computing the angley, and con- and f—%(f(q)).
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Algorithm 1. The pseudocode summarizes the main steps of the ragtire
contouringP, f,.A) used to draw the iso-contours of an arbitrary scalar
function f, defined on a point seP, and related to the iso-values JA.

Require: A point setP, a scalar functiorf : P — R, and a set of iso-values
A= {ai}l. .

Ensure: The set of piecewise linear contou{ye; := f=Y(ai)}m, on M,
where f and M are the function and the surface underlyifgand P
respectively.

1: Compute thek-nearest neighbor graph of P. (a) (b)

2: Sort the function value$f(pi), pi € P}. . —
3: for ase€ A do Fig. 16. (a) Identification of the connected components ara@ed level-set.

4 C=0 (b) The angle betweeiWF(p) and n(p) is used to measure the probability
5: Fin-d ’ that the pointp is critical.

E={@,j)eT: (f(m) <as< f(pj)) || (F(pj) <as< f(pi))} Mr=r,ulr,ur* (Fig. 18(a)). For each compondrg, s=1,2,
we update the shape bfaroundp; by selecting the pointg;

S forci'r;p(l:ié) €& do andp; of ['s closest tqo;, such that|p; — p2||2 > &, and adding
to s a set of points sampled on the segmemss and p2ps.
q:=fpi+(1-Dpj, t:= “?%@; These new samples recover the geometry of the iso-contour
Flpi) = f(pi) around the saddle where we removedFig. 18(b)). Then, the
8: computeg as (2) andF as (6) inNg; updated componenitg andr, are converted to piecewise linear
9 compute the solutio & yas of curves as previously described (Fig. 18(c)). Another eXxamp
F(t)—as=0 is shown in Fig. 19. B
{ with initial point ro := g; Our tests have shown that the gt of the fuzzy critical
o(r) =0 points of f always contains the sek of the critical points
10: update the sampling of yu, asC := CuU{q}. of f computed using the triangle mesh connectivity, which is
11:  end for assumed to ba-priori known, and according to the method de-

12: Compute the subsefl’;}; of C that corresponds to a connected gcrihed in (11). Dealing with smooth surfaces and scalac-fun
o cgg:]szrrle;]; Confyato  piccenise linear curvel) tions generally reduces the number of fu_zzy critica] poartd
14: Draw/Store y(j‘) ' P s therefore the gap betweely andCs. A high sampling den-
15 end o {¥as }i- sity increases the reliability of the computation of themat

' n(p) and the gradierf?F (p) but generates clustered fuzzy crit-
ical points. In fact, a higher sampling density correspoteds
'a larger number of gradient vectov& (qg), whose directions
are closely aligned witWVF (q), g € Ny, in a neighborhoodV;,
of p. Therefore, we get closer valuesm(fq), q € NV,. A rele-
vant amount of clustered fuzzy critical points are removed b

To classify each fuzzy critical point as maximum, minimum
or saddle, we consider the values bfand the shape of the
corresponding iso-contoyy. More precisely, note that when
the iso-valuen is equal or close to a local maximum or mini-

mum valuef (pi), then the se€ of the edges ofintersected  ,5)y7ing the shape of the corresponding level-sets, apply
by Y« contains none or few intersected edges. Therefow,i¥ | stered techniques, or selecting among the criticaltpaf
empty or falls inside the sphe8pi, 0) of centerp; and radius  yhe same cluster the one with the highestalue. Finally, note
6:= 2¢, with € sampling density, thep; is classified as max- 4t in the case of bordered surfaces the classificationeof th
imum (resp., minimum) iff (pi) > f(q) (resp..f(pi) < (Q)),  fyzzy critical and regular points fails. In fact, it is notlatio
whereq € P, q # pi, is the closest point tp. Fig. 17 shows  ijeniify the points ofP that belong to the boundary compo-
an example of computation of critical points based on greundnents and to provide a good approximation of the gradiert fiel
truth. _ ] of f at those points. Furthermore, the evaluation of the normals
If o is close to the value of at a saddle poinpi € P, 4 the houndary points is not trivial and we face similar tani

with f(pi) = o, then the iso-contouy is self-intersecting at  ions for the definition of the critical points of scalar fuions
this point and the conversion 6fto a piecewise linear contour yafined on bordered triangle meshes.

fails. Therefore, we need to remove frafna neighborhood

of pj, where the self-intersection g§ occurs. In this case, we

considelC and select the sampled connected compofighat 9.3 Refined classification of the critical points

containg; by applying the procedure described in Section 4.2.

To approximatel” with a piecewise linear contour, we first ~ Degenerate situations are related to close critical pdiras
extract the two sub-loops which belong foand that share belong to the samk-nearest neighborhood and have the same
the pointp;. To this end, we center g a sphereS(p;,8) of f-values. The presence of noise thand f, as well as the
radiusd and remove the sé€t of points that fall inside&3(p;, ), different approximations of the underlying surface andaca
thus generating two connected componéntandl, such that  function, motivate our choice to replace the “exact” deiomit
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@g(xy) :=x+y* (b) g(xy) :=x* —y? () (d)

Fig. 17. (a) Level-sets of the implicit approximatidh associated to the sampling: 7 — R of the functiong(x,y) on the unit square centered at the origin
0:= (0,0), which is the unique critical point of. Level-sets of (b) a noisy functiofi and (c) its explicit MLS approximation. In (a,c,d), the dbt@sve been
randomly selected and used as starting guesses of thevitesgheme that computes the critical point (black dotfFefwith an error lower than 10°. (d)
Paths that join the initial guesses and the computed dritioant.

of critical points with the concept of fuzzy critical pointehe = Parameterized MLS formulation. We focus our atten-
probability measuret allows us to handle degenerate and non-tion on the neighborhoodV, of p and we assume that
degenerate cases in the same way. However, we can furth&f, := {p1,...,pj.}; then, we define the followinkyx 1 vectors
refine the previous classification of the critical pointsa®fivs. . Wk . Wk . K

Let us suppose that a poipte C has been classified as critical; F o (.F(pjs_))ﬁl’ Fei= (Fe(pJS))fFl’ = (es)%l'
we improve its position by solving the following system of  Indicating withr andre the polynomial that approximates the

non-linear equations real and perturbecﬂ-values inNp (Section 3.1), we have that
(VF(q),n(q)) =0 (i.e.,q critical point), (15) Ir(%,Y) —re(xy)| = | 21 Bi)bi(x,y)|
9(a)=0 (iLe.,q e M); <Clla—Bll

to this end, we use as starting point of the iterative scheme < CneWH(B@BT) el

q:=p. The solutionp of (15) is considered the “true” crit- Hellz v(xy)
ical point and this procedure is applied to each poinCof = 7" min—y e

Therefore, the classification of the critical points and efeg (16)
erate cases can be improved by comparing the related iso-
contoursf—1(f(p)) and f~1(f(q)) or computing the “true”

critical point through (15).

S Cnew

where Ai(X) is the i"-eigenvalue ofX. In particular, we
have that lime,—ollr(xy)—re(X,y)[2=0 and therefore

lim gy, 0 fe(pi) = f(pi), i=1,... k.

6. Discussion Explicit MLS formulation. Assuming thaF is computed as
in (6), we have that
The stability of the definition of the MLS surfaces (1), (2ylan ST (f(pi) +)8(]lp — pill2)
of the iterative solver of (10) have been discussed extelysiv Fe(p) = ST 6(lp—pil2)

in state-of-the-art works (4), (35) (Ch. 5). Therefore, e t - . .

following (Section 6.1) we focus our attention on the nurpari F'0M  the definition, it follows that if [€]oc — 0 then

stability and accuracy of the approximation schemes pteden _Fe(p) —F(p); in particular, lime).—o fe(pi) = f(pi),

in Section 3. Then (Section 6.2), we discuss the choice of the=1:--->n Furthermore,

main parameters used by the iso-contouring algorithm. Fo(p) = Yt (P8P —pill2) | Sitie6(lp—pill2)
YiL18(Ilp—pill2) Yit16(lp—pill2)

yit166(lp—pill2)

Yit18(lp—pill2)

Let us suppose that we perturb each function vai(a) F(p)+llefe, VP,
and considerf (pj) +&, 6 €R, i=1,...,n; then, we want to withe:= (&)[_,. Therefore|Fe(p) — F (p)| < ||€]|oc, ¥p. Using
analyze the discrepancy between the approximaﬁimnd F. the following matrix notation (see also Section 3.1 and 3.3)
related to the set§f (pi)}2, and {f(pi) +&}[_, respectively. ) o n
The functionss andFe, as well asf := Flam andfe = Fe| m, Fi= (F(p))Le, Fe:= (r!:e(p'))izl’
}[/iv(i)li] t;e computed according to the schemes described in Sec- D := diag6s,...,6n), 6 := Z 6(/lpi — pjl2),
. =1

6.1. Numerical stability and approximation accuracy =F(p)+
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(@) (b) (©)

Fig. 18. (a) Sampled points on the iso-contdurelated to a saddle poiqt and identification of the two loopE; and ', of I, (b) smoothing of the shape
of " aroundp, (c) iso-contour reconstruction.

we have that therefore, we estimate the global variation of this appr@tion
A:=(O(Ipi —pil)Y-1, F=DT'Af; Fe=D"'A(f+e. %
Then, we estimate the global variation of this approxintatie [Fe—Fll2= A" ell2 < [[A7*2llel 2 = A (A) €]l
|[Fe—Fll2 = [D~*Ae]2 and limye, o||F —Fell2= 0. Finally, note the analogy be-
< ||D_1H2||A||2He||2 tween (16) and (17); in both cases, the functipnnderlyingfe

A€l is built as a linear combination of a different set of basiscfu
< _I2l=l2 tions and each of them is associated to a different coefficien
mini—y,...n{6i} matrix of the corresponding linear system.

Approximation of scalar functionswith radial basisfunctions. 6.2. Choi fth i d imati h
Assuming that has been computed as in (9) and neglecting™ ™" oice ot the parameters and approximation schemes

the linear term, the following relations hold ) o )
‘ Under the assumption th&tis highly noisy, the least-squares

_ e N — f(n. - approach provides a function underlyirigthat is smoother
Fp) i;a.d).(p), Foi) =10, T=1..k than the one related to the implicit interpolation scheme- F
thermore, the MLS approach does not require to solve a linear
system. In those cases where we need a high accuracy in the
approximation of thef-values and the differential properties
) of f (e.g., gradient field, Hessian matrix), we prefer the implic

_ " NN o interpolating scheme (Section 3.2) to the MLS methods (Sec-
Fe(P) = i;B'q)' (P), Felpi) =f(pi)+&, T=1..k tion 3.1). Note that the interpolation scheme implicitlpames
that thef-values are not highly noisy. This is the case of scalar
functions that are the solution of differential equationstsas
the Laplace equation with Dirichlet boundary conditionsl an
the Laplace eigenproblem. As shown in Fig. 20, a higher sam-
pling density improves the smoothness of the level-seta:- ho
ever, a low density does not affect the iso-contour sampling

and the vectoo := (a;)K_; is the solution of the linear system
Aa =fin (10), withA ;= (¢i(pj))=fj:1. Analogously, the per-
turbed function values are associated to the implicit fiomct

and the vecto ;= ([30{;1 is the solution of the linear system
AB = f + e Therefore, using the property of bounded variation
of the basis functiongi(p)| <C, Vp,i=1,...,k,Ce R con-
stant, (e.g., for the Gaussian kerreék= 1) and the inequality
|lefl1 < VK||€]|2 we have that

K and reconstruction. This is mainly due to the definition aftea
IFe(p) —F(P)| = | Zl(o‘i —Bi)gi(p)] sample of a given iso-contour as the solution of a system of im
':k plicit equations, which smoothly approximate both the acef
<C leai —Bil and the function values in those regions where the infoonati
is is low or partially missed. Furthermore, the sampling dignsi

=Clla—B|1 < CHA_leHl (17)  can be changed by either up-sampling or re-sampling the poin
B set. Also, smoothing techniques can be used to create a new

<cvkael2 point set that is free of outliers and locally smooth (4; 3i)s
<cVkATY2lell2 improving the regularity off. Table 3 summarizes the main

Ilell2 properties and the computational cost of the MLS and imiplici
- C\/Rmini_l (A} scheme described Section 3.

In case of point sets with a low sampling density, implicit
modeling techniques for surface and function approxinmatio
are preferred to MLS techniques. In all the other cases, both
F=A"1, Fe=A"1(f+e); the implicit and MLS approaches provide satisfactory rssul

If ||le]l — O, thenFe(p) — F(p), Vp. Using the matrix formula-
tion used in Section 3.2, it follows that
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(@ (b) n= 10K

n= 20K
(© (d)

Fig. 19. (a) Distribution of the probabilityt on the input shape: the red
regions located on the body and bottom part include the pdivet have been
classified as fuzzy critical points. (b) Sampled iso-contbuat a saddlep
and osculating paraboloid (yellow surface). The spher¢eced atp is used

to subdividel into two sub-loopd™; and la. (c) Iso-contours of the scalar
function f underlying the input mapf; f has been sampled on a square
grid belonging to the least-squares plane that approxsrat€d) The two
sampled components &f are updated aroung and converted to piecewise
linear curves. The input point set has been sub-sampled tter besualize
the iso-contour shape.

furthermore, as shown in Section 3.3 in the limit of large sam
ples they provide the same results. The sampling densig;, of
which is computed according to the description in Section 2Fig. 20. Robustness of the iso-contouring algorithm witspeet to a different
is the main parameter of the proposed approach and it centro$urface sampling.Left) Level-set samples,nfiddig osculating paraboloid,
the computation of the surfacet underlyingP as well as the ~2nd €ight) piecewise linear reconstruction.

definition of the steps of the iso-contouring algorithm. 3te
steps are the level-set sampling, the counting of the number
connected components of each level-set, and the converkion
the iso-contours to piecewise linear curves. Indeed, itlman
easily estimated and improved by using re-sampling teclasq
until a satisfactory rate is reached.

n= 30K

on and around the surface underlyiRg Since the stability of

the critical point depends on the local noise that afféttsnd

the f-values, we have introduced the concept of fuzzy critical

points. In this context, the analysis of the shape of thelisets

is intended to increase the reliability of the critical poitas-

sification. It is worth mentioning that the extracted legets

can be used to visualize the behaviorfoAnd compute a tri-

angulated approximation ¢ by applying surface reconstruc-

tion techniques from contour slices (12; 13). As future work
This paper has studied the definition, analysis, and contouiye plan to generalize the proposed approximation schemes to

ing of scalar functions on point-sampled surfaces. Given amp scalar functions and use the iso-contouring algorithm fo

arbitrary mapf on a point setP, the definition of the func-  surface reconstruction and abstraction.

tion f underlyingf and the contouring algorithm of build

on the local connectivity structure of tHenearest neighbor

graph ofP. The analytical definition of allowed us to provide Acknowledgements. Special thanks are given to the anony-

an exact differential analysis of and visualize its behavior mous reviewers for their numerous comments and precise sug-

7. Conclusions and future work
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This table summarizes the main properties and the compnégtcost of the . . "

interpolation and approximation scheme fof A full circle e indicates that [12] G. Barequgt, D. Shaplro, and A. Tal. Multilevel Sen@t'

the corresponding property is satisfied; otherwise, an gmiptle o appears. recon_structlon of polyhedral surfaces from parallel slice
‘Property ‘fw.r.t. Hp‘MLS f (6)‘ f implicit (9) ‘ The Visual Computer16(2):116—13_3, ZOQO- _

—— [13] G. Barequet and A. Vaxman. Nonlinear interpolation be-
Linearity ° * . tween slices. IMACM Symposium on Solid and Physical
Least-squares definitior| e o o (interp) Modeling pages 97-107, 2007.

Contin. w.rt. surf. samgl. e N N [14] M. Bglkin _and P. Ni_yogi. Laplacian eigenma_lps for di-
her order derivati mensionality reduction and data representatidleural

Higher order derivativeq o * * Computation 15(6):1373-1396, 2003.

Stability w.r.t. noise o e |e/o (high noise| [15] M. Belkin and P. Niyogi. Towards a theoretical founda-

Computational cost o(k3) o(1) O(klogk) tion for laplacian based manifold methoddournal of

gestions, which helped us to improve the quality and comirib [16]

tion

Computer and System Scienckspress, 2007.
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold reguta

of this paper. The activities of Giuseppe Patané haea be ization: A geometric framework for learning from labeled

partially funded by the GNCS-INdAM “F. Severi”, “Young Re- and unlabeled exampleslournal of Machine Learning

sea
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Research7:2399-2434, 2006.
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