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Abstract

This paper addresses the definition, contouring, and visualization of scalar functions on unorganized point sets, which are sampled from a surface
in 3D space; the proposed framework builds on moving least-squares techniques and implicit modeling. Given a scalar function f : P → R,
defined on a point setP , the idea behind our approach is to exploit the local connectivity structure of thek-nearest neighbor graph ofP
and mimic the contouring of scalar functions defined on triangle meshes. Moving least-squares and implicit modeling techniques are used to
extend f from P to the surfaceM underlyingP . To this end, we compute an analytical approximationf̃ of f that allows us to provide an exact
differential analysis off̃ , draw its iso-contours, visualize its behavior on and around M, and approximate its critical points. We also compare
moving least-squares and implicit techniques for the definition of the scalar function underlyingf and discuss their numerical stability and
approximation accuracy. Finally, the proposed framework is a starting point to extend those processing techniques that build on the analysis
of scalar functions on 2-manifold surfaces to point sets.

Key words: Approximation of surfaces and contours, nearest neighbor graph, graph algorithms, point-sampled geometry, topological and shape modeling,
computational geometry and object modeling.

1. Introduction

Point-sampled surfaces, generated either by scanning real3D
objects with optical devices, or polygonizing implicit functions,
or sampling parametric surfaces, are discrete models with a
high number of points and the underlying surfaces can have
an arbitrary genus and curvature. Point sets become a surface
representation alternative to polygonal meshes, due to thesim-
plicity of dealing with complex 3D shapes as point sets and
using points as rendering primitives (40; 62; 66; 76). The lack
of connectivity and the atomic definition of point sets provide
a built-in multi-scale surface representation (61), thus avoiding
to process the connectivity of polygonal meshes. Point setsare
widely used for ray tracing (2), surface reconstruction (45; 73),
sampling (3), simplification (60), spectral analysis (59),seg-
mentation (10), progressive rendering and streaming (30).

Given a point setP sampled from a 2D manifold surface, this
paper addresses the definition, contouring, and visualization of
an arbitrary scalar functionf : P → R, defined onP , without
convertingP to a simplicial representation. This aim is achieved
by studying the level-sets and critical points off , according
to the case of scalar functions defined on 2-manifold surfaces.

The proposed framework builds on moving least-squares and
implicit modeling techniques.

On the one hand, in point-based graphics the aforemen-
tioned problems have not been investigated; furthermore, the
proposed solution provides a link between previous work on
surface-based scalar functions and the ongoing research on
point-sampled surfaces. On the other hand, the theoreticalin-
terest on those problems is accompanied by applications such
as surface reconstruction from slices (12; 13; 44) and the de-
sign of high-level structures ofP (69) (e.g., Reeb graphs,
Morse complexes), which are commonly used for shape com-
parison (18; 38; 19) and analysis (55; 56).

It is worth mentioning that scalar functions are extensively
used in mathematical modeling, engineering simulation, scien-
tific visualization, bio-medicine, and geographic information
systems. In each of these research fields, a variety of phenom-
ena is described by a large set of measurements: the result-
ing scientific data is usually given as a set of samples over a
domain of interest and the measurements are represented as a
scalar function. Finally, in shape modeling, computer graph-
ics, and engineering, a large number of functions are generated
also by restricting implicit maps fromR3 to 3D shapes, solving
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Fig. 1. Overview of the proposed approach. Given a scalar function f : P → R, defined on a point setP , the figure shows the main steps that compute
the level-setγα := {p ∈M : f̃ (p) = α}, whereM and f̃ are the surface and the scalar function underlyingP and f respectively. (a) Computation of a
point-wise approximationS (red points) ofγα by searching those pointsq such that f (q) = α on the edges of thek-nearest neighbor graphT of P ; to this
end, we linearly or implicitly interpolate thef -values along the edges ofT . (b) Then, each pointq ∈ S is “projected” onto a point q := pr(q) of γα and
the setC := {q := pr(q) : q ∈ S} (blue points) gives a discrete sampling ofγα. (c) Identification of the subsets ofC that correspond to a sampling of the
connected components ofγα. Each sampled connected component is converted to a piecewise linear contour (blue curves).

differential equations related to simulation problems (e.g., the
Laplace and heat equation (14; 52)) or decomposing the spec-
trum of data-dependent kernels (14).

Choosing a point setP , hereinafterM will generally be the
surface underlyingP , i.e. any surface the points ofP belong or
are close to. Our framework does not make assumptions on the
wayM is built fromP : both moving least-squares (1; 3; 5; 6;
43) and implicit (51; 68; 70) techniques can be adopted. Indeed,
we assume thatM is locally represented by the zero-set of an
implicit function g; that is, a pointx in a neighborhoodNp
of p∈P belongs toM if and only if g(x) = 0. Furthermore, we
admit boundary components, noise, outliers, and an irregular
sampling density ofP .

First of all, the scalar functionf :P →R is arbitrary and de-
fined by its values on the points ofP . Then, we define the scalar
function f̃ :M→ R, underlying f , as a map that locally in-
terpolates or approximates the values{ f (pi)}ni=1. This smooth
approximationf̃ of f allows us to provide an exact differen-
tial analysis off̃ and visualize its behavior on and aroundM.
To define such a function,f is locally approximated by an
implicit and smooth mapF : R

3→R such that f̃ := F|M is
the restriction ofF to M. Among the several maps defined
on P , specific attention is devoted to the analysis of smooth
functions, such as harmonic maps and Laplacian eigenfunc-
tions (14; 15; 16; 41). These functions have been used in sev-
eral applications that include shape comparison (64) and sur-
face quadrangulation (27; 28).

Once f̃ has been computed, we are ready to trace the level-
sets of f̃ onM. The idea behind the contouring algorithm is to
exploit the local connectivity structure of thek-nearest neigh-
bor graphT of P and mimic the contouring of functions on

triangle meshes. We consider(P ,T ) as a rough approximation
of the surfaceM underlyingP and we show that it is pre-
cise enough to compute a setS (Fig. 1(a)) of approximated
samples of the level-setγα := {p ∈M : f̃ (p) = α}. For each
point q ∈ S, the volume-based approximationF of f and the
implicit representation{x : g(x) = 0} ofM in a neighborhood
of q are used to “project” q (Fig. 1(b)) ontoq ∈ γα by solving
the following non-linear system

g(r) = 0 (i.e., r ∈M), F(r)−α = 0 (i.e., r ∈ γα).

As starting point of the iterative solver of the aforementioned
system, we chooser0 := q. Finally, C is converted to a family
of piecewise linear curves, one for each connected component
of γα (Fig. 1(c)).

Since the computation of the critical points of an arbitrary
scalar function on a point-sampled surface is sensible to the
local noise that affectsP and the function values, we introduce
the concept offuzzy critical points. More precisely, we associate
toM a probability measureπ :M→ [0,1] such thatπ(p) is the
probability thatp is a critical point of f̃ . Then, the analysis of
the level-sets of̃f improves the reliability of the classification
of the critical points.

The choice of using the neighbor graph ofP is motivated by
the analogy among its structure, the edge-based representation
of polygonal models, and the classification of the critical points
of scalar functions defined on triangulated surfaces (11). Fur-
thermore, the modularity ofT with respect tok andσ avoids the
need to recompute the neighbor graph when we decrease those
parameters for approximating the normals ofP and the gradient
field of f , or tracing the level-sets. The proposed approach also
represents a starting point to extend those methods that build
on the analysis of a scalar function on a 2-manifold surface to
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point sets. Among them, we mention the surface reconstruc-
tion from slices (12; 13; 44), quadrilateral remeshing (27;28),
parameterization (57; 75), and shape comparison (18; 38; 64).

The paper is organized as follows. In Section 2, we briefly in-
troduce the theoretical background and previous work on mov-
ing least-squares techniques, implicit modeling, and the defini-
tion of scalar functions on point sets. Section 3 discusses the
computation of the map̃f underlying an arbitrary scalar func-
tion f defined onP and the visualization of its behavior on and
around the surfaceM underlyingP . In Section 4, we introduce
a contouring algorithm of̃f , which traces the level-sets with-
out degenerate segments. In Section 5, we analyze the critical
points of f̃ and introduce the concept of fuzzy critical points
for functions defined on point-sampled surfaces. In Section6,
we address the numerical stability of the proposed framework,
its accuracy, and the choice of its main parameters. Finally,
Section 7 concludes the paper.

2. Theoretical background and related work

In this section, we briefly review the main results on mov-
ing least-squares techniques, surface approximation withradial
basis functions (Section 2.1), and the definition of scalar func-
tions on point sets (Section 2.2). For more details, we referthe
reader to the state-of-the-art reports (4; 37).

2.1. Approximation of point sets

Hereinafter, we focus our attention on the main methods used
to compute thek-nearest neighbor graph, moving least-squares
surfaces, and implicit approximations of point sets.

k-nearest neighbor graph. First of all, we introduce the
k-nearest neighbor graphT of a point setP := {pi , i = 1, . . . ,n}
of R

3. In T , each pointpi ∈ P is associated with the neigh-
borhoodNpi := {p js, s= 1, . . . ,k} that includes thek nearest
points to pi , or those that fall inside the sphere of cen-
ter pi and radiusσ. In both cases, the proximity relations
among the points ofP are computed with respect to the Eu-
clidean distance. If we choosek instead ofσ, then we set
σ := maxs=1,...,k{‖pi−p js‖2}. To simplify the notation, onceσ
has been fixed we implicitly assume thatNpi containsk := k(σ)
points and we omit the dependence ofk on σ. As described
in (26; 50), the choice ofσ can be adapted to the local sampling
densityε := k

πσ2 and the curvature of the surface underlyingP ,
thus improving the approximation of the normals toP . The
computation ofT requiresO(nlogn)-time (9; 17), wheren
is the number of input points, and the neighbor graph can be
adapted to the surface sampling through the parameterk or
the query radiusσ. If an a-priori information on the surface
is given, thenk and σ are selected by the user; otherwise,
they are deduced from the sampling density. Finally, we say
that (i, j) is an edge ofT if and only if pi ∈ Np j or p j ∈ Npi .

Moving least-squares surfaces. Given a point setP , themov-
ing least-squares(MLS, for short)surfaceM implied byP is

defined by a projection operatorψP : R
3→M, which maps

an arbitrary pointp ontoM (3; 5; 6; 43). In particular, each
point ofM is a stationary point ofψP ; i.e., p ∈M implies
ψP(p) = p. In this paper, we use the explicit definition (5; 6)
of the MLS surface in terms of the critical points of an energy
function along lines induced by a vector field. More precisely,
the energy functione : R

3×S
2 is defined as

e(x,a) :=
n

∑
i=1

|〈pi−x,a〉|2θ(‖x−pi‖2),

i.e., the sum of weighted squared distances of points inP
to the plane given byx and the normal vectora of the
unit sphereS

2. Here, θ is a decreasing weighting function,
e.g.θ(t) := exp(−t2/h2), whereh is a Gaussian scale parame-
ter that defines the width of the kernel. A possible choice ofh
is h := σ/

√
3, whereσ is the distance betweenpi and the points

of its k-nearest neighborhood; for more details on the choice
of h, we refer the reader to (26). Then, for each pointx the un-
oriented normal field is defined asn(x) := argmin‖a‖2=1e(x,a)
and it is the unit eigenvector related to the smallest eigenvalue
of the 3× 3 symmetric covariance matrixC := (Ci j )

3
i, j=1 of

the directions inx. The entriesCi j of C are defined as

Ci j :=
k

∑
l=1

(pi
l −xi)(p j

l −x j)θ(‖x−pl‖2), i, j = 1,2,3,

with pl := (p1
l , p2

l , p3
l ) and x := (x1,x2,x3). Successively, the

normal vectors are coherently oriented by imposing that the
angles between the normal atx and at the points that fall
in a neighborhoodNx of x are less thanπ/2. The plane
Hx : 〈p−x,n(x)〉= 0, p ∈ R

3, through x and orthogonal
to n(x) is calledreference planeand is used to compute a local
bivariate polynomial approximation of the surface. If the co-
variance matrix of the directions inx is not singular, then the
vector n(x) is uniquely defined. Under this assumption (74),
the pointx belongs toM and satisfies the implicit equation

g(x) :=
n

∑
i=1

[

1− |〈x−pi,n(x)〉|2
h2

]

〈x−pi,n(x)〉×

θ(‖x−pi‖2) = 0,

(1)

whereθ is the Gaussian kernel. This expression ofg has been
used to compute the curvature of point-sampled surfaces and
will be exploited to trace the level-sets of a scalar function
defined onP . Changing either the energy function or the vector
field provides variants of the MLS surface. For instance, the
RMLS variant (30) preserves sharp features ofM, which are
commonly removed by the Gaussian weighting.

Previous work on MLS surfaces indirectly assumes that the
normal of the approximating tangent frame is the surface nor-
mal. Since this assumption is generally not satisfied, (1) pro-
poses a different expression of the implicit functiong that al-
lows us to exactly compute the surface normals. More precisely,
the implicit functiong that defines the surfaceM as the zero-
set{x : g(x) = 0} is

g(x) := 〈x−b(x),n(x)〉, (2)
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where n(x) is the oriented normal atx, which is computed
as previously discussed, andb(x) is the weighted average of

points atx, i.e. b(x) := ∑n
i=1 θ(‖x−pi‖2)pi

∑n
i=1 θ(‖x−pi‖2)

.

Surface approximation with radial basis functions. Choos-
ing a point pi ∈ P , implicit modeling (20) provides an al-
ternative approximation ofM in Npi by defining an implicit
function g : R

3→ R such that inNpi the following relation
holds: x ∈ M if and only if g(x) = 0. In this context, im-
plicit approximation techniques (8; 29; 48; 58; 63) compute
g(x) := ∑k

i=1 αiϕi(x) as a linear combination of the basis ele-
mentsB := {ϕi(x) := ϕ(‖x−pi‖2)}ki=1, whereϕ is the kernel
function. Depending on the properties ofϕ and of the corre-
sponding approximation scheme, we distinguish globally (21;
70) and compactly (51; 54; 71) supported radial basis functions
(RBFs, for short), and the partition of unity (53; 72). There-
fore,ϕ is not necessarily the Gaussian kernel; for instance, we
can choose the bi-harmonic kernelϕ(t) :=| t/h |3.

Assuming thatNpi := {p js, s= 1, . . . ,k}, in the following
we computeg as done in (51; 68; 70). To avoid the trivial so-
lution g≡ 0, we add a positive- and negative-valued normal
constraint atp js, close to the boundary constraintg(p js) = 0,
and in the normal directionsn(p js) and−n(p js), s= 1, . . . ,k,
respectively. Then, the functiong is defined as a linear com-
bination of 3k radial basis functions, whose centers belong to
Npi ∪{p js± δn(p js)}ks=1, whereδ is an off-set value propor-
tional to the diagonal of the bounding box ofP . The coefficients
of the combination are computed by imposing the interpolat-
ing conditionsg(p js) = 0, g(p js± δn(p js)) =±1, s= 1, . . . ,k,
and solving a 3k× 3k linear system. For more details on the
construction ofg, we refer the reader to Section 3.2. Clearly,
positive- and negative-valued constraints can be chosen ina
subset of{p js±δn(p js)}ks=1, thus reducing the size of the corre-
sponding linear system. For instance, a variation of this scheme
is to center the basis elements only at the points{p js}ks=1 and
impose that the resulting functiong satisfies the aforemen-
tioned 3k conditions in a least-squares sense. In this case, we
solve ak×k linear system and the least-squares formulation is
preferable to the implicit interpolation in those cases whereP
is affected by noise.

2.2. Geodesics, harmonic functions, and Laplacian
eigenfunctions on point sets

Given a point setP := {pi , i = 1, . . . ,n}, there are roughly
two distinct categories of functions defined onP : volume-and
surface-based scalar functions. In the former case, the val-
ues of f on P are computed by sampling an implicit func-
tion W : V ⊇ P → R, defined on a regionV that containsP .
Main examples are the height function with respect to a given
directionN, i.e. W(p) := 〈p,N〉; the Euclidean distance from
a point b, i.e. W(p) := ‖p− b‖2; the distance from a refer-
ence plane, i.e.W(p) := |〈p−b,N〉|. Therefore, we have that
f := W|P . In the latter case,f is defined directly onP ; in the
following, we discuss the definition of the geodesic distance
from a set of source points ofP , the harmonic functions, and

the Laplacian eigenfunctions. A generally low number of crit-
ical points, the regular variation of the shape of the level-sets,
and a smooth transition among them (34; 49; 52) make those
functions a natural choice asf for several applications such as
quadrilateral remeshing (27) and shape matching (39).

Geodesic functions. Recent works (46; 65) on the computa-
tion of geodesics on a point setP have enriched the class of
scalar functions onP with geodesics-based maps, previously
defined on triangle meshes (38) and used for shape compari-
son (25; 47). For instance, in (65) piecewise linear approxima-
tions of geodesic paths on point-sampled surfaces are computed
by minimizing an energy function, which takes into account
both the geodesic path length and its closeness to the underly-
ing surface. An alternative is to trace the shortest path among
the nodes of an extended sphere-of-influence graph.

Harmonic functions and Laplacian eigenfunctions. To de-
fine harmonic scalar functions on a point setP , we remind the
relation between the Laplace Beltrami operator for differen-
tiable functions on the 2-manifold surfaceM and the heat flow
problem(∂t + ∆)u(p,t) = 0. Here,u(p,0) = f (p), p ∈M, is
the initial heat distribution. Then, on the point setP the Lapla-
cian matrixL := (Li j )

n
i, j=1 is defined as (14; 16)

Li j :=



















−1 i = j,

ai j /αi p j ∈ Npi ,

0 else,















ai j := exp

(

−‖pi−p j‖22
h2

)

,

αi := ∑
j∈Npi

ai j .

(3)
As shown in (16; 23), if the number of samplesn tends to in-
finity and the kernel widthh goes to zero then the eigenvectors
of the Laplacian matrix tend to those of the Schroedinger op-
erator∆+E, whereE is a scalar potential that depends on the
density ofP . We briefly remind that the vectorh, h 6= 0, is
an eigenvectorof L related to theeigenvalueλ if and only if
Lh = λh; in this case,h is also calledeigenmaponP . To re-
duce the dependency of the Laplacian eigenmaps representation
from the density of the data points, (41) suggested to normal-
ize the Gaussian weights with an estimate of the point density
and computed the Laplacian matrix with respect to these new
weights. Therefore, the new Laplacian matrix that replaces(3)
is built in two phases as follows

L̃i j :=











ai j

αiα j
p j ∈Npi ,

0 else,
Li j :=























−1 i = j,
L̃i j

∑k∈Npi
L̃ik

pi ∈ Npi ,

0 else.

In this case, in the limit of large sampled points and small scales
the eigenvectors of the new Laplacian matrix converge to those
of the Laplace-Beltrami operator onM. OnceL has been built,
the computation of the harmonic scalar function resembles the
case of triangle meshes (28; 33; 52). An alternative discretiza-
tion of the Laplacian matrix is described in (42). Choosing aset
of boundary conditionsB := { f (pi) = ai}i∈I , I ⊆ {1, . . . ,n},
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(a) (b) (c)k = 5

(d) k = 10 (e)k = 20 (f) k = 50

Fig. 2. Level-sets of harmonic scalar functions achieved byimposing the
same boundary constrains and using (a) Gaussian (14) and (b)diffusion (41)
weights. In both examples, we have chosen the size of thek-nearest neigh-
borhood of each point ask = 20. (c-f) Level-sets of harmonic scalar functions
with the same boundary constraints and a differentk-neighborhood. In this
example, the Laplacian matrix entries are the diffusion weights. We used
one maximum and minimum as boundary constraints; note that the number
of critical points, i.e. one maximum, one minimum, and two saddle points,
remains constant in each discretization.

we solve the linear systemL⋆f⋆ = b, wheref⋆ := ( f (pi))i∈IC

is the vector of unknowns,IC is the complementary set ofI, b
is a constant vector, andL⋆ is achieved by canceling theith-row
and ith-column ofL , i ∈ I (Fig. 2(a,b)).

Themaximum principleprovides the main motivation to de-
fine harmonic functions on point sets. In fact, once we have
fixed the Dirichlet boundary conditions this principle allows
us to build functions with a minimal (i.e., one maximum, one
minimum, and 2g saddles) or a pre-defined number of critical
points. We briefly remind that thecritical points of a smooth
functiong :M→R, defined on a surfaceM, are the solution
of the equation∇g(p) = 0, p ∈M, and correspond to themax-
ima, minima, andsaddlesof g. For more details, we refer the
reader to Section 5. In the case that all constrained minima are
assigned the same global minimum value and all constrained
maxima are assigned the same global maximum value, all the
constraints will be guaranteed to be extrema in the resulting
function. If there is not a predefined choice of the Dirichlet
boundary conditions, then the Laplacian eigenfunctions pro-

vide an alternative to harmonic functions. Laplacian eigenfunc-
tions still guarantee a low number of critical points, whichare
not clustered, and a smooth behavior of their level-sets onM.
In fact, the eigenvectors related to the smallest eigenvalues are
smooth and slowly varying functions, while the eigenmaps cor-
responding to the largest eigenvalues show rapid oscillations
and a higher number of critical points.

In Fig. 2, we have computed several harmonic functions by
fixing the same Dirichlet boundary conditions and using a dif-
ferent k-nearest neighbor graph for the discretization of the
Laplacian matrix. Tests in Fig. 2(a,b) show that the iso-contours
calculated with the diffusion weights (41) are regularly dis-
tributed on the input surface and smoother than those provided
by the Gaussian weights (14). As shown in Fig. 2(c-f), the level-
sets related to the diffusion weights become smoother while
increasing the parameterk.

3. Scalar functions on point-sampled surfaces

Given a scalar functionf , we define the map̃f :M→R,
underlying f : P → R, as the function that locally and
smoothly interpolates or approximates the sampled values
{ f (pi), pi ∈ P}. Note that if f is a volume-based scalar
function andW is known (Section 2.2), theñf := W|M is
already the function underlyingf . However, the family of
surface-based scalar functions includes important maps, such
as geodesic, harmonic, and Laplacian functions, which are not
associated with explicit underlying maps. For each of those
functions, we usẽf to trace its level-sets onM.

To build f̃ , we discuss three methods: the first two approaches
(Section 3.1) are based on the moving least-squares approach
and the third one (Section 3.2) builds on implicit approxima-
tion. In all the aforementioned cases, the differential properties
of f̃ are derived analytically, thus allowing us to provide an ex-
act differential analysis of̃f . Furthermore, the approximation
scheme is local, i.e. the definition off̃ (p), p∈M, is influenced
only by those points ofP that belong to a neighborhood ofp.
Finally, we analyze and compare the approximation errors of
the f -values induced by the moving least-squares approxima-
tion and the implicit interpolation (Section 3.3). For the discus-
sion of the numerical stability and approximation accuracyof
the aforementioned methods, we refer the reader to Section 6.

3.1. Approximating scalar functions via moving least-squares
modeling

Given f : P → R, in the following we describe two methods
for the computation of the scalar functioñf underlying f and
based on the moving least squares approach. Theparameterized
MLS approachdefines f̃ (p) through the approximation of the
f -values in a neighborhoodNp of p and with respect to a local
parameterization off on a reference domain. Theexplicit MLS
approachdirectly computes thẽf -values inNp.

Parameterized MLS approach. LetNp := {p js, s= 1, . . . ,k}
be thek-nearest neighborhood ofp. Then, we definef̃ (p) by
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Fig. 3. Computation of the scalar functioñf : M→ R underlying f : P → R

in a neighborhoodNp of a point p with respect to the reference planeHp

at p (c.f. Equation (4)). Here,M is the surface underlyingP .

using the local reference domainHp as follows. Indicating
with p js the orthogonal projection ofp js ∈ Np, s = 1, . . . ,k,
ontoHp, we compute a polynomial approximationr that min-
imizes the weighted least-squares error (Fig. 3)

E(α1, . . . ,αm) :=
k

∑
s=1
|r(xs,ys)− f (p js)|2θ(‖p−p js‖2), (4)

where(xs,ys) is the representation ofp js in a local coordinate
system inHp. Since the functional (4) is quadratic and its un-
knowns are them coefficients of the polynomialr, we get that
the minimum of (4) is achieved by solving am×m linear sys-
tem. More precisely, we write the polynomial function in (4)as

r(x,y) :=
m

∑
l=1

αl bl (x,y), α := (αl )
m
l=1,

where{bl(x,y)}ml=1 is a basis of the linear space of the poly-
nomials of degree at lastd in the variablesx and y; then,
m= (d+1)(d+2)

2 . The minimum of the function (4) is the solu-
tion of the linear system










∂α j E = 2
k

∑
s=1

(r(xs,ys)− f (p js))b j(x js,y js)θ(‖p−p js‖2) = 0,

j = 1, . . . ,m,

with respect to the unknownsαl , l = 1, . . . ,m. A direct compu-
tation shows that thej th equation can be written as

m

∑
l=1

(

k

∑
s=1

bl (xs,ys)b j(xs,ys)θs(p)

)

αl =
k

∑
s=1

f (p js)b j(xs,ys)θs(p),

with θs(p) := θ(‖p−p js‖2), s= 1, . . . ,k. This is equivalent to
solve them×m linear system

BΘBT α = BΘf, (5)

whereBT is the transpose ofB,


















B := (bi(xs,ys))
s=1,...,k
i=1,...,m∈ R

m×k,

Θ := diag(θ1(p), . . . ,θk(p)) ∈ R
k×k,

f := ( f (p js))
k
s=1 ∈ R

k×1,

and the coefficient matrix of (5) is symmetric and positive defi-
nite. As observed in (3), the choice of a low degree polynomial r

Fig. 4. Computation of the scalar functioñf : M→ R underlying f : P → R

in a neighborhoodNp of a point p with respect to the formulation (6).
Here,M is the surface underlyingP .

and its least-squares definition guarantee a fast approximation
of f in Np and a smooth behavior without oscillations. For in-
stance, ifr is a polynomial of degree 3 or 4, thenm= 10 or
m= 15 respectively. Iff (p js) := 〈p js−p,n(p)〉 is the signed
distance ofp js from Hp, s= 1, . . . ,k, then the functionr is the
local parameterization of the MLS surfaceM with respect to
the reference plane. However, in this paperf is arbitrary.

Once r has been computed, we define the values ofF at
q ∈ Np asF(q) := r(q), whereq is the orthogonal projection
of q on Hp. Then, inNp we set f̃ (q) := F(q), q ∈M. The
following properties ofF in (4) motivate our definition.
– Locality. The sum in (4) considers only those points ofP

that belong to thek-nearest neighborhood of each point and
that have been already computed to define the MLS surface
underlyingP .

– Least-squares property. The definition ofF guarantees the
robustness ofF to noisy f -values.

– Continuity of f with respect to the sampling density.Since
the coefficients ofr are the solutions of a linear system,
which continuously depend on the input data, we have that if
the kernel widthh tends to zero then limh→0 f̃ (pi) = f (pi),
i = 1, . . . ,n.

– Gradient field and higher order derivatives.Once the poly-
nomial functionr has been computed, we can analytically
evaluate its gradient vector and Hessian matrix by derivingr
with respect to the two variables(x,y) in the local frameF
associated toHp. Then, we apply to this vector and matrix the
rotation that mapsF to the canonical reference frame inR

3.

Explicit MLS approach. An alternative approach is to de-
fine f̃ directly, without using the reference plane (Fig. 4). More
precisely, we consider the implicit function

F(p) :=
∑n

i=1 f (pi)θ(‖p−pi‖2)
∑n

i=1 θ(‖p−pi‖2)
, p ∈ R

3, (6)

and f̃ is defined as̃f := F |M. Therefore,F(p) is the weighted
average of thef -values at a locationp and the influence of the
noise on the approximation off is smoothed by the Gaussian
kernel. Note the analogy between the definition (6) ofF and the
weighted averageb(x) of points atx in (2), where the pointspi
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(a) n = 50K (b) n = 116K (c) n = 145K (d) n = 994K

Fig. 5. (a-d) Given four noisy point setsPnoise with a different numbern of vertices and sampling densityε, we have evaluated thel∞-error between the
input function f on Pnoise and its approximationF |Pnoise. Here,F is given by (6) andσ is the kernel width. The noisy surface is defined asPnoise= P +G,
whereP is a set of points sampled on the torus surface andG is the noise displacement, which has a normal distribution with mean zero and standard
deviation one. The functionf has been achieved by evaluating the functionW(p) = log(‖p‖2 + 1)+ x2− y2, p := (x,y,z), at the points ofPnoise. Numerical
values are reported in Table 1; see also Fig. 6.

Table 1
The table reports the parameters of the example shown in Fig.5.

Test ♯Verticesn Kernel width σ Sampling densityε−1 l∞-error

Fig. 5(a)50K 2.52×10−3 7.93×10−5 7.36×10−2

- 90K 1.97×10−3 6.21×10−5 6.65×10−2

Fig. 5(b)116K 1.95×10−3 6.32×10−5 5.98×10−2

Fig. 5(c)145K 4.02×10−4 7.11×10−5 5.02×10−2

- 160K 4.52×10−4 6.15×10−5 2.54×10−2

Fig. 5(d)994K 1.265×10−3 3.97×10−5 2.69×10−2

in b(x) have been replaced by thef -values at these points. The
following properties ofF in (6) motivate our definition.
– Linearity. Let F (resp.,H) be the scalar function underlying

the map f (resp.,h) on the point setP and defined by (6);
then,αF +βH is the function underlyingα f + βh,∀α,β ∈ R.

– Locality. Since the weight functionθ is close to zero in a
certain distance fromp, the sum in (6) can be reduced to
the indices of the points ofP that belong to thek-nearest
neighborhood ofp.

– Point-wise variation.From the definition off̃ , it follows that
the maximum variation betweenf and f̃ on P is bounded
by the maximum of thef -value onP , i.e.

‖f− f̃‖∞ ≤ ‖f‖∞, f := ( f (pi))
n
i=1, f̃ := ( f̃ (pi))

n
i=1,

wheref (resp.,̃f) is the vector of thef -values (resp.,̃f -values).
Here, thel∞-norm is defined as‖f‖∞ := maxi=1,...,n{| f (pi)|}.
Furthermore, we have that‖f̃− f‖∞ is bounded by the
maximum variation of thef -values, i.e.

| f̃ (p j )− f (p j)| ≤ ∑n
i=1 | f (pi)− f (p j)|θ(‖pi−p j‖2)

∑n
i=1 θ(‖pi−p j‖2)

≤max
i 6= j
{| f (pi)− f (p j)|}.

– Bound on the global variation of F. The F-values are
bounded by thel1- and l∞-norm of f; in fact, we

have that θ(‖p−pi‖2)
∑n

j=1 θ(‖p−p j‖2)
≤ 1, i = 1, . . . ,n, and therefore

‖F‖∞ ≤ ‖f‖1, ‖F‖∞ ≤ ‖f‖∞. Here, thel1-norm is defined
as‖f‖1 := ∑n

i=1 | f (pi)|.
– Continuity of f̃ with respect to the sampling density.If the

sampling density, and therefore the kernel widthh, tends to
zero, then thef̃ -values atP converge to the corresponding
f -values, i.e. limh→0 f̃ (pi) = f (pi), i = 1, . . . ,n.

– Gradient field and higher order derivatives.Deriving (6), we
analytically compute the gradient field ofF , which will be
used in Section 5 to define the fuzzy critical points off̃ onM.
A direct computation shows that the following relation holds

∇F(p) =− 2

[h∑n
i=1 θ(‖p−pi‖2)]2

[(

n

∑
i=1

θ(‖p−pi‖2)
)

×
(

n

∑
i=1

f (pi)θ(‖p−pi‖2)(p−pi)

)

−
(

n

∑
i=1

f (pi)θ(‖p−pi‖2)
)

×
(

n

∑
i=1

θ(‖p−pi‖2)(p−pi)

)]

, p ∈ R
3.

(7)

The least-squares property guarantees thatF is robust to
noise; the local property improves the efficiency of the com-
putation ofF(p) by reducing the sum in (6) to the indices of
the points that belong to thek-nearest neighborhood ofp. The
continuity of f̃ with respect to the sampling density implies
that f̃ converges tof onP , h→ 0. Fig. 5, Fig. 6, and Table 1
confirm that the expression (6) is stable to noise; another ex-
ample is given in Fig. 7. Even though both approaches are de-
fined according to the projection procedure that is behind the
moving least-squares methods, they do not guarantee thatf̃ in-
terpolates the function values at the points ofP . Therefore, in
the following section we discuss a local interpolation scheme,
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Fig. 6. With reference to Fig. 5 and Table 1, the variation of the l∞-error
on the various point setsPnoise andP is shown by the black and red curves
respectively. The behavior of the two curves is similar and the error between
the input and the approximatedf -values remains low while increasing the
noise magnitude and the number of sampled points.

which is based on implicit modeling.

3.2. Approximating scalar functions with radial basis
functions

In the following, we describe howf is locally approximated
by an implicit smooth functionF : R

3 → R on a neighbor-
hoodNp := {p j1, . . . ,p jk} of p ∈ R

3, i.e.

F(p js) = f (p js), s= 1, . . . ,k. (8)

Choosing a kernel functionϕ : R
+→R (e.g., the Gaussian

ϕ(t) := exp(−t/h) or bi-harmonicϕ(t) := |t/h|3 kernel),F is
the implicit scalar function (63)

F(q) :=
k

∑
i=1

αiϕi(q)+ η(q), η(q) := β0 + β1x+ β2y+ β3z,

(9)
q := (x,y,z). Therefore,F is defined as a linear combination
of the radial basis functionsϕs(q) := ϕ(‖q−p js‖2), centered
at each pointp js, s= 1, . . . ,k, plus a first-degree polynomial
η(q). The linear functionη avoids that the first term in (9) tries
to fit f over regions ofP where f is linear or constant (e.g.,
at plateaux). Therefore, the coefficients in (9) that uniquely
satisfy (8) are the solution of the following(k+ 4)× (k+ 4)
square linear system


































a11 . . . a1k 1 px
j1 py

j1
pz

j1
...

. . .
...

...
...

...
...

ak1 . . . akk 1 px
jk

py
jk

pz
jk

1 . . . 1 0 0 0 0

px
j1 . . . px

jk 0 0 0 0

py
j1

. . . py
jk

0 0 0 0

pz
j1

. . . pz
jk

0 0 0 0





































































α1

...

αk

β0

β1

β2

β3



































=



































f (p j1)
...

f (p jk)

0

0

0

0



































, (10)

where p js := (px
js, py

js
, pz

js
), s= 1, . . . ,k, and the entries of

the non-singular matrixA := (ars)r,s=1,...,k are set equal to

Fig. 7. The picture shows the increasing reordering of thel∞-error on a
scanned point setP with several holes and noise; the number of points
is n = 870K. The corresponding color-map highlights that the approximation
error between the input scalar functionf and F|P is equally distributed
on P ; F has been computed as (6).

ars := ϕ(‖p jr −p js‖2), r,s= 1, . . . ,k. The last four rows of the
coefficient matrix in (10) correspond to thenatural additional
constraints

k

∑
s=1

αspx
js = 0,

k

∑
s=1

αspy
js

= 0,
k

∑
s=1

αspz
js = 0.

These relations guarantee that the coefficient matrix in (10)
is invertible; in fact, thek×k sub-matrixA is conditionally
positive-definite on the subspace of vectors that are orthogonal
to the last four rows of the full matrix. Then, inNp we have
that f̃ is computed as̃f (p) := F(p), p ∈M. We visualize the
behavior of(P , f ) aroundp by samplingF on a voxel grid
centered atp and extracting the iso-surface ofF related to the
iso-value f (p), i.e. Σ f (p) := {q ∈R

3 : F(q) = f (p)}. In anal-
ogy with the local approximation of smooth surfaces, we refer
to Σ f (p) asosculating paraboloidof f related tof (p) (Fig. 8(a-
c)). Indeed, the approximationF is useful to make predictions
about the phenomenon behavior measured byf onP . The com-
mon way of analyzing the properties off is to visualize the
evolution of its level-sets and can be enhanced by adding also
the visualization of the iso-surfaces ofF in a neighborhood
of p. Deriving (9), we have that

∇F(p) =
n

∑
i=1

αi
ϕ′(‖p−pi‖2)
‖p−pi‖2

(p−pi)+ (β1,β2,β3), p ∈ R
3,

where ϕ′(t) := − 1
h exp(− t

h) (resp.,ϕ′(t) := 3t2

h3 ) if ϕ is the
Gaussian (resp., bi-harmonic) kernel; therefore, we get

∇F(p) =















































1
h

n

∑
i=1

αi

exp
(

‖p−pi‖2
h

)

h‖p−pi‖2
(p−pi)+ (β1,β2,β3),

if ϕ is theGaussian kernel,
3
h3

n

∑
i=1

αi‖p−pi‖2(p−pi)+ (β1,β2,β3),

if ϕ is thebi-harmonic kernel.
(11)
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(a) (b) (c)

(d) (e) (f)

Fig. 8. (a-c) Point setsP representing three noisy torii; the noise decreases from left to right. Choosing a scalar functionf on P and an iso-valueα, we have
computed the implicit approximationF, the osculating paraboloidΣα := F−1(α) (yellow surface), and the setS of points that belong toΣα and to the edges of
the k-nearest neighbor graph ofP . (d-f) Level-sets of the restriction ofF to the least-squares planeµ that approximatesS. The black curves are the connected
components of the contourF|−1

µ (α) and provide an approximation of the corresponding iso-contour on the surface underlyingP . In each case, the implicit
approximation of f is smooth on and aroundP ; if the noise magnitude is low (b,c), thenF|−1

µ (α) is a smooth approximation of̃f−1(α). See also Fig. 9.

The entries of the Hessian matrix are computed in an anal-
ogous way; i.e.,

∂2
ej ej

F(p) =
n

∑
i=1

αi

‖pi−p j‖22

[

ϕ′(‖p−pi‖2)‖p−pi‖2+

(

eT
j (p−pi)

)2
(

ϕ′′(‖p−pi‖2)−
ϕ′(‖p−pi‖2)
‖p−pi‖2

)

]

,

(12)

∂2
ekej

F(p) =
n

∑
i=1

αi

‖pi−p j‖2
(

eT
k (p−pi)

)(

eT
j (p−pi)

)

×
[

ϕ′′(‖p−pi‖2)−ϕ′(‖p−pi‖2)
]

, k 6= j,

(13)

where∂ei F is the partial derivative ofF with respect to the
direction ei , (ei) j := δi j . Here, δi j = 0 if i 6= j and δii = 1,
i, j = 1, . . . ,3.

Before discussing the properties of the implicit interpola-
tion scheme, we remind that thesupportof g : R

3→ R is de-
fined as supp(g) := {p ∈ R3 : g(p) 6= 0}, i.e. the closure of the
set whereg is not null, and the functiong has global sup-
port if supp(g) = R

3. If ϕ has global support, then the cor-
responding coefficient matrix is full and the solution of the
linear system (10) is computed inO(k logk)-time using spe-
cialized techniques such as fast multipole methods (36) for
RBFs (21; 22). The choice of a locally-supported kernel re-

quires to solve a sparse linear system inO(k logk)-time (35)
(Ch. 4, 12). Fig. 8(d-f) and Fig. 9(a-c) show the level-sets of the
functionF restricted to the least-squares plane that contains the
level-sets in Fig. 8(a-c). For completeness, we recall thatcom-
mon sparse kernels areϕ(t) := (1− t)4

+(4t +1) (71) and the
functionϕ(t) := (1− t)4

+(4+16t +12t2+3t3) (51; 67), where

t := ‖p−pi‖2
h andh is the kernel support. In this case, each ker-

nel belongs toC2([0,1]) and the corresponding sparse matrix
is built using thek-nearest neighbor graph of the input point
set. If we select one of the aforementioned kernels, then we
update the relations (11), (12), and (13) with the derivatives
of the kernel function and the sum is related to the points that
belong to the kernel support. Finally, the interpolation scheme
with RBFs satisfies the properties listed in Section 3.1. Note
that the level-sets in Fig. 9(b) are not nearly as smooth as the
level-sets in Fig. 8(e). This is due to the fact that a local noise
and a rough sampling density ofP might reduce the accuracy
and smoothness of the MLS approximation of the scalar func-
tion underlying f with respect to the implicit scheme. We can
overcome this problem by enlarging the widthh of the kernel
function or increasing the sampling density ofP through re-
sampling techniques. In fact, a small value forh results in a
fast decay of the Gaussian kernel and the approximation (6) is
more local. Large values ofh attenuate local oscillation of the
f -values, guarantee thatF in (6) is a global approximation of
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(a) (b) (c) (d)

Fig. 9. (a-c) Level-sets of the moving least-squares approximation (6) of f related to the example shown in Fig. 8. Comparing Fig. 8(d-f)with (a-c), we see
that the moving least-squares approximationF of f is also smooth. If we decrease the noise magnitude, then the iso-contours related toα have a similar
shape. Since the MLS function underlyingf does not interpolate the function values, the black curves in (a) are smoother than the corresponding contours in
Fig. 8(d). (d) Comparing the left and right side of the image,we see that duplicating the width of the kernel in (b) we get smoother level-sets.

the f -values, and smooth sharp features of the corresponding
level-sets. For instance, duplicating the width of the kernel in
Fig. 9(b) we get smoother level-sets, which are shown on the
right side of Fig. 9(d).

3.3. Moving least-squares versus implicit approximation of
scalar functions

In this section, we derive two characterizations of the error
between the moving least-squares approximation and the im-
plicit interpolation. For the discussion on the main differences
between the MLS and implicit approximation of scalar func-
tions and the choice of the main parameters used by the pro-
posed approaches, we refer the reader to Section 6.2.

Choosingpi ∈P , let us suppose thatF has been computed by
using the implicit approach, where as kernelϕ we have chosen
the decreasing weighting functionθ of the moving least-squares
scheme (i.e., the Gaussian kernel). Without loss of generality
and for simplicity, we omit the linear termη in Equation (9).
In this case, we have that thek×1 vector of theF-values at the
points ofNpi is given by(F(p js))

k
s=1 = ( f (p js))

k
s=1 = b = Aα,

where α := (αi)
k
i=1 is the solution of Equation (10). Let us

now computeF by using the moving least-squares formulation
in (6); here, we neglect the points that do not belong toNpi . In
this case, we have thatbMLS := (F(p js))

k
s=1 = D−1Ab, where

D := diag(θ1, . . . ,θk) is thek× k diagonal matrix whose non-
null entries areθi := ∑k

s=1 θ(‖pi−p js‖2), i = 1, . . . ,k, A is
thek×k coefficient matrix in (10), andb := ( f (p js))

k
s=1 is the

set of f -values on the points ofNpi . From the identity

e := bMLS−b = D−1Ab−b = D−1(A−D)b,

we have thate = 0 if and only if (A−D)b = 0, i.e. b be-
longs to the null-space of the matrix(A−D). Indeed, without
additional overhead we can compute the approximation error
aseMLS := ‖e‖2 = ‖(I −D−1A)b‖2 at each point ofP . In this
case, we run the implicit scheme only in the neighborhood of
those points ofP whereeMLS is greater than a given threshold.

4. Level-sets of scalar functions defined on point sets

From a general point of view, a contouring algorithm of a
scalar function defined on a triangle mesh traces the level-setγα,
related to the iso-valueα, starting from a seed pointp ∈ γα,
evaluating the intersection points betweenγα and the edges
of M, and iterating the intersection search through the trian-
gles adjacent to the intersected edges. Given an arbitrary scalar
function f : P → R on a point set, we mimic this approach to
trace the level-setγα := {p ∈M : f̃ (p) = α}, which belongs
toM. The algorithm is summarized by the following steps:

(i) computation of a point-wise approximationS of γα by
searching those pointsq such thatf (q) = α on the edges
of T . To this end, we interpolate thef -values along the
edges ofT with linear or radial basis functions. Roughly
speaking, we say thatγα intersects the edges ofT . Then,
each pointq ∈ S is “projected” onto a pointq := pr(q)
of γα and the setC := {q := pr(q) : q ∈ S} gives a dis-
crete sampling ofγα (Section 4.1). This generalized pro-
jection is defined by a non-linear system whose equa-
tions represent the surfaceM and the scalar functioñf
underlyingP and f respectively (c.f., Equation (14));

(ii) identification of the subsets ofC that correspond to a
sampling of the connected components ofγα. Then, each
sampled connected component is converted to a piece-
wise linear contour (Section 4.2);

(iii) coding of the evolution of the family{γαi := f̃−1(αi)}i
of level-sets of(M, f̃ ) (Section 4.3). Fig. 10 and Fig. 11
give an overview of the method on a 2D test.

4.1. Sampling level-sets

As first step of the contouring algorithm, we evaluate the
setS of the intersection points betweenγα and the edges ofT .
To computeS, we consider the setE of the edges ofT along
which the scalar functionf assumes values of opposite signs,
i.e.

E := {(i, j) ∈ T : ( f (pi)≤ α≤ f (p j )) ||( f (p j )≤ α≤ f (pi))}.
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(a) (b)

(c) (d)

Fig. 10. This example shows the idea behind the iso-contouring technique. (a) Given the point setP , we consider an input scalar functionf : P → R whose
iso-contours are represented by black lines. (b) Choosing an iso-valueα, we compute a pointq that belongs to an edge of thek-nearest neighbor graphT
of P and such thatf (q) = α; here, f has been linearly interpolated along the edges ofT . In a neighborhoodNq of q, we approximate the input curve as the
zero-set of the implicit functiong; the corresponding contourg−1(0) is shown in yellow. In a similar way, the red curve shows the level-set f̃−1(α), where f̃
is the scalar function underlyingf in Nq computed using the MLS approach described in Section 4.1. Therefore, the pointq ∈ M such that f̃ (q) = α is
the intersection point between the red and yellow curve. Thepoint q is the starting point used to computeq as solution of the non-linear system (14). (c,d)
Analogous case related to a spike point ofP . See also Fig. 11.

Choosing a couple(i, j) ∈ E , we have thatγα intersects the
edgepip j at q; to calculateq, we can proceed in two different
ways.

The simplest approach is to assume thatf linearly varies
along the edgepip j , (i, j) ∈ E ; then, under the hypothesis that
f (pi)≤ α≤ f (p j ), we have







q(t) := tpi +(1− t)p j, t ∈ [0,1],

f (q(t)) := t f (pi)+ (1− t) f (p j),

and thereforeq = q(t) with t := α− f (pi)
f (p j )− f (pi)

(Fig. 12). Chang-

ing i with j, an analogous discussion applies to the case
f (p j )≤ α≤ f (pi); indeed, the linear interpolation separately
treats each edge together with the related intersection point. In
this case, we have thatS := {q(t), (i, j) ∈ E}. A more precise
approach uses the MLS techniques described in Section 3.1
and 3.2 to compute an approximation off on the whole setE .

For the implicit interpolation scheme, we build the func-
tion F : R

3→R that interpolates thef -values at the vertices of
the edges inE . Indeed, the functionF satisfies the conditions

F(pi) = f (pi), F(p j ) = f (p j ), ∀(i, j) ∈ E ,
and it is computed by centering the basis functions in (8) at
each vertex of the edges inE . Otherwise,F is computed ac-
cording to Equation (6). In both cases,S is the set of intersec-
tion points between the iso-surfaceΣα := {p ∈ R

3 : F(p) = α}
related toα and each edgepip j , (i, j) ∈ E . The intersection
point on pip j is q = tpi + (1− t)p j and the parametert is
the solution of the non-linear equationF(tpi +(1− t)p j) = α

in [0,1]. The valuet is calculated by using the Gauss-Newton
or Lemberg-Marquard iterative algorithm (24), whose starting
point t0 := α− f (pi)

f (p j )− f (pi)
is the solution of the linear problem.

Once the pointq has been computed with one of the afore-
mentioned approaches, the projectionq := pr(q) of q on γα is
the solution of a system of two non-linear equations, which in-
volve the approximationF of f (i.e., F(q)−α = 0, q ∈ Np)
and the representation ofM (i.e., g(q) = 0, q ∈M) in Np.
Therefore, the pointq ∈ γα is computed by solving the non-
linear system

r ∈ γα←→







F(r)−α = 0,

g(r) = 0, (i.e., r ∈M);
(14)

in this case, the starting point of the iterative scheme is set equal
to r0 := q. Regardless the complexity of the functionsF(r)
andg(r), (14) is efficiently solved using the iterative algorithms
previously mentioned; implementations of these methods are
available in several software packages (7). The gradient vec-
tor (c.f., Equations (7), (12)) and Hessian matrix (c.f., Equa-
tions (11), (13)) of bothF andg are analytically computed and
used in the iterative scheme, thus improving the convergence
to the solution of (14). Our experiments have shown that from
five to ten steps are usually enough to approximateq with an
error of order 10−7. Examples of iso-contour sampling and re-
construction are given in Fig. 13 and Fig. 14. In the following,
the term projection ofq onto γα will refer to the operator that
mapsq to the solutionq ∈ γα of (14).
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(a) (b)

(c) (d)

Fig. 11. With reference to Fig. 10, the pictures (a,b) show the search of a pointq such that f̃ (q) = α on a noisy point set. The functionsF and f̃ have been
computed by using the moving least-squares technique described in Section 3.1. In (c,d), we consider the same example ona noisy point set; here,F and f̃
have been computed using the implicit interpolation schemedescribed in Section 3.2.

Let us now suppose that we have chosen two close iso-
valuesα1, α2 and that from two distinct edgese1, e2 ∈ T we
got the same pointq. This means that using the linear interpo-
lation of the f -values one1 ande2 gives the same pointq such
that f (q) = α1, f (q) = α2. If α1 6= α2, then the valuef (q)
is inconsistent; however, this inconsistency disappears when
we projectq onto γα1 and γα2 through (14). In fact, choos-
ing α1 (resp.,α2) we projectq onto γα1 (resp.,γα2) and com-
pute the pointq1 ∈M (resp.,q2 ∈M) such thatF(q1) = α1

(resp.,F(q2) = α2). If q := q1 = q2, then from (14) it fol-
lows thatα1 = F(q1) = F(q2) = α2, γα1 = γα2, and therefore
f̃ (q1) = f̃ (q2). This relation implies that we do not have an
inconsistent definition of̃f at q.

4.2. Counting and approximating the connected components
of a sampled level-set

To approximate each sampled iso-contour with a piecewise
linear curve, we identify the points ofC that belong to the same
connected component. To this end, we select a pointp ∈ C and
recursively define the connected componentΓ associated top
as the set of pointsΓ such that:p ∈ Γ andq is added toΓ if and
only if there existsr ∈ Γ and‖q− r‖2 ≤ δ. Here, the thresh-
old δ is proportional to the averaged sampling stepε onP ; in
our implementation, we have chosenδ := 2ε and this values be-
comes the size of the holes that we can recover (Fig. 14-16(a)).
For convertingC to a piecewise linear approximation ofγα,
we use the method presented in (32). More precisely, the sam-
pled points{qi}ri=1⊆ C of a connected componentΓ of γα are
mapped into the parameterization values{t j(i)}ri=1⊆ R and the
permutationj gives an ordering of the points inC that is used

to compute a piecewise linear interpolation curve ofΓ. This
approach simply requires to solve ar× r sparse linear system
based on convex combinations. Once the piecewise linear curve
that interpolates the points ofΓ has been calculated, we can
use the parameterization values to compute a least-squaresap-
proximation ofΓ (35) (Ch. 5). This step provides smooth iso-
contours and allows us to increase/decrease the sampling rate
of γα, independently of that ofP andC (Fig. 15). IfM has
holes, which usually are introduced by the scanning process,
then the least-squares approximation is useful to recover the
shape of the iso-contours in those regions ofM where points
are missed. In fact, small connected components with respect
to δ are joined in a unique contour (Fig. 13(a,b)). The analysis
of self-intersecting iso-contours is described in Section5.

4.3. Evolution of the iso-contours and computational cost

First of all, we assume that the function values{ f (pi)}ni=1 are
sorted from the smallest to the largest value inO(nlogn)-time
using a reordering technique. Choosingm iso-values{αi}mi=1,
αi < α j , i < j, we extract the set of the corresponding iso-
contours{γαi := f̃−1(αi)}mi=1. To traceγαi , we use the increas-
ing reordering of the function values to identify thes edges
of T intersected byγαi , and compute the coarse samplingS
of γαi . This step takesO(slogn)-time. If f is linearly inter-
polated along the setE of the edges ofT intersected byγα,
then the computation of the setS of intersection points be-
tweenγα andT takesO(s)-time. Using the implicit approxi-
mation of thef -values along the edges ofT takesO(sklogk)
to computeS. The projection ofS ontoC, the counting of its
connected components, and the piecewise linear approxima-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(k) (i) (j)

Fig. 12. (a) Smooth point setP and setE of the edges of thek-nearest neighborhood graph ofP intersected by the iso-contourγα; f has been linearly
interpolated. Bold blue points are the vertices of the (blue) edges of thek-nearest neighborhood intersected byγα. (a-d) Point-wise approximationS of γα
(red points);q ∈ S if and only if f (q) = α and q ∈ e, e∈ E . (d) Closest view on (c). (e-h) These pictures show the same steps in (a-d) for a noisy point set.
(k-j) Contour reconstruction related to the example in (e-h).

tion takeO(s+slogs)-time. Additional information such as the
number of connected components, the osculating paraboloid,
and the classification of the fuzzy critical and regular points
(Section 5) can be stored. Boundary components of the surface
underlyingP do not affect the steps of the contouring algo-
rithm; in fact, thek-nearest neighbor graph does not make dis-
tinctions between boundary and internal edges. IfF : R

3→R

is an implicit field, then the proposed iso-contouring algorithm
can also be used to evaluate the intersection between the surface
underlyingP and the iso-surfaceΣα := F−1(α). Algorithm 1
and Table 2 summarize the main steps of the iso-contouring
method and the corresponding computational costs.

Our tests have shown that linearly interpolating thef -values
along the edges ofT provides an initial samplingS of γα

such that the iterative scheme, which solves (14) with a start-
ing point in S, is always convergent. To computeS, we use
the MLS formulation or the implicit approach only for tracing
the level-sets at saddle points or in case of irregularly sam-
pled point sets. If the input point set is noisy, then we apply
the moving least-squares approach (6) to compute the scalar
function f̃ underlying f . Otherwise, we apply the implicit in-
terpolation scheme (9). In fact, a higher accuracy in the com-
putation ofS is crucial to solve local ambiguities related to
bothM and f̃ . In our implementation, the functiong is built
using (1) (c.f., Equation (2)); this choice is motivated by the
global support ofg and the reliable approximation of the nor-
mals toM. Firstly, the global support ofg avoids that the iter-
ative method converges to a pointp /∈ supp(g) (i.e., g(p) = 0)
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(a)

(b)

(c)

(d)

Fig. 13. Input point set containing holes and noise. In (a,c), the blue curves represent the sampled iso-contours and their piecewise linear approximations are
given in (b,d). As shown in (a,b) and described in Section 4.2, the piecewise linear approximation can be used to recover the shape of the iso-contour where
holes occur. See also Fig. 14 and Fig. 15.

such thatf̃ (p) 6= α. However, this situation did not happen in
our tests, even considering holes and noise in the point set.It
can be artificially generated by choosing a starting point ofthe
iterative scheme that is far from the real solution, thus compro-
mising its convergence. Secondly, as shown in (26) the method
proposed in (1) provides a robust estimation of the surface nor-
mals, thus allowing us a reliable definition of the fuzzy critical
points.

5. Critical points of scalar functions defined on point sets

Given a C1 function f :M→R defined on a smooth
2-manifold surfaceM, the critical points of f are defined as
those pointsp ∈M such that∇ f (p) = 0 and they correspond
to the maxima, minima, and saddles off . For polyhedral sur-
faces, the method described in (11) classifies a vertex according
to the values off on its neighborhood. IfM is a triangle mesh,
then the vertexp is a maximumor minimum if its function

Table 2
Computational cost of the main steps of the iso-contouring algorithm; n is the
number of vertices of the input point set ands is the number of intersected
edges betweenT and the level-setγα.

Task Computational cost

k-nearest neighbor graph O(nlogn)

Computation ofS O(s)

Computation ofC O(slogs)

Counting connected components O(s)

Piecewise linear approximation ofγα O(slogs)

value is higher or lower than those on its 1-star, respectively.
We briefly remind that the 1-star of a vertexpi is defined as
the set of vertices incident topi ; i.e., {p j : (pi ,p j) edge}. If
two or more iso-curves related to the same iso-valueα share
a vertexp, thenp is a saddle. Those points that do not fall in
the previous classification are defined asregular.
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Fig. 14. Contour sampling and reconstruction achieved by projecting S on the surface underlyingP . Another example is shown in Fig. 15.

In an analogous way, given a point setP and a scalar func-
tion f defined onP we want to classify its points as regular
or critical; therefore, we know the coordinates of the candi-
date critical points. This choice resembles the case of scalar
functions defined on triangulated surfaces; here, the critical
points are searched among the vertices of the input triangle
mesh. A first attempt to extend this definition to a scalar
function defined on a point set is to replace the 1-star ofp
with its k-nearest neighborhood. Since the choice ofk or σ
is not fixeda-priori but deduced from the point distribution,
the resulting classification ofp will be affected by a differ-
ent value ofk andσ. For instance, choosingk and indicating

with N (k)
p the k-neighborhood ofp it might happen that a

point p classified as maximum (i.e.,f (p)≥ f (pi), pi ∈ N (k)
p )

becomes a regular point iff (p) < f (q) at the new pointq of

the (k+1)-neighborhoodN (k+1)
p ⊇ N (k)

p of p. Furthermore,
those issues are crucial at saddle points, where the changesof
the sign off give the multiplicity of the saddle. It follows that
we need a characterization of the critical points that takesinto
account the behavior off in a neighborhood of any point with-
out being affected by the discretization ofNp. In Section 5.1,
we derive a geometric characterization of the critical points of
a scalar function defined on a smooth surface. In Section 5.2
and 5.3, we discuss how this characterization can be applied
to functions defined on point sets.

5.1. Equivalent definitions of critical points

Let us consider a scalar functionF : R
3→R, F ∈C1(R3),

and its restrictionf := F |M to a smooth surfaceM; in the
following, we make explicit the notion of critical point off

onM. Let r(u,v) := (x(u,v),y(u,v),z(u,v)) be a local param-
eterization ofM around the pointp = r(u0,v0) ∈M, where
(u,v) ∈Ω⊆ R

2, Ω is an open disc, and(u0,v0) belongs toΩ.
Then, the values off on a neighborhood ofp are given by
w(u,v) := F(r(u,v)) andp is a critical point of(M, f ) if and
only if ∇w(u0,v0) = 0. Using the derivation formula of com-
posite functions, the following relations hold







∂uw(u0,v0) = 〈∇F(p),∂ur(u0,v0)〉= 0,

∂vw(u0,v0) = 〈∇F(p),∂vr(u0,v0)〉= 0.

Since the normal vector to the surfaceM at p is given by
n(p) = ∂ur(u0,v0)∧∂vr(u0,v0), we get thatp is a critical point
of f if and only if ∇F(p) is parallel ton(p). This relation
does not directly depend on the neighborhood ofp and ex-
presses the local dependence between the gradient field∇F ,
related to the differential properties ofF , and the normal field
defined by the geometry ofM. Two main examples are the
height function and the Euclidean distance from a point. For
the height function, once the directionN has been fixed we
have that∇F ≡ N and p ∈M is a critical point of f̃ if and
only if N is parallel to the normaln(p) at p. A similar discus-
sion applies whenF is the Euclidean distance from a point; in
this case,∇F(p) = 2(p−b) andp ∈ P is critical if and only
if we have that〈p−b,n(p)〉= 0. For a point setP , the normal
vector at each pointp ∈ P is calculated using the eigensystem
of the covariance matrix of a local neighborhood ofp (Sec-
tion 3.1). According to the discussion in Section 3, we consider
asF the implicit function that interpolates the values off in
a neighborhoodNp of p or one of the moving least-squares
approximations. Then, we compute∇F(p) in linear time as
shown in Equation (7) and (11). The local definition of critical
points also guarantees that increasing or decreasingk or σ will
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Fig. 15. Noisy point setP ; the red points show the initial samplingS of the chosen level-sets and the blue curves are the reconstructed iso-contours achieved
by projectingS on the surface underlyingP .

not affect the classification ofp.
We are now ready to clarify the relation among the critical

points and the evolution of the iso-contours. In Section 5.2,
these properties will be used to classify the critical points
of scalar functions defined on point sets. Assuming that
f (pi) < f (p j ), i < j, the topology of the level-sets remains the
same as long ast belongs to the open interval( f (pi), f (pi+1)).
If pi+1 is a maximum or a minimum, then the level-setf−1(t),
t ∈ [ f (pi+1)− ε, f (pi)) (resp.,t ∈ ( f (pi), f (pi+1)+ ε]), ε > 0,
degenerates topi or develops a set of homeomorphic contours.
If pi+1 is a saddle point, then two or more contours cycles of
the level-setsf−1(t), t ∈ ( f (pi+1)− ε, f (pi+1)+ ε), are joined
into a new cycle or an existing cycle is split into two or more
cycles.

5.2. Critical point analysis and related iso-contours

Indicating with Im( f ) the minimal interval containing the
image of f , in most of the cases an arbitrary valueα ∈ Im( f )
will be regular, i.e. f̃−1(α) does not contain a critical point
of f̃ onM. In fact, under mild conditions on the regularity
of f̃ andM the set of critical points of̃f is finite and there-
fore it has null measure (49). In the following, we introduce
the concept of fuzzy critical point and discuss how we handle
self-intersecting or degenerate iso-contours, which are gener-
ated whenα is close or equal to a critical iso-value. Once the
gradient field ofF and the normaln(p) at each pointp ∈ P
have been calculated, we consider the angleωp between∇F(p)
andn(p). Theoretically,p is a critical point of f̃ if and only
if ∇F(p) is parallel ton(p). Computing the angleωp and con-

sideringp as critical if ωp is equal or close to zero works in
few situations and generally fails in those cases where we deal
with an irregularly sampled point set and a noisy scalar func-
tion. Therefore, we introduce the concept offuzzy criticaland
fuzzy regular pointof a scalar function defined on a point set.
Here, the term fuzzy means that we associate to(M, f̃ ) a prob-
ability measureπ :M→ [0,1] such thatπ(p) is the probability
thatp ∈M is a critical point of f̃ . We define this function as

π(p) := |〈∇F(p),n(p)〉| = |cosωp|,

where we assume that both the gradient field and the normal
vector have unit length (Fig. 16(b)). Therefore,p∈M is called
fuzzy critical pointif π(p)≈ 1 andregular otherwise; if fuzzy
critical points are close to each others, then we consider as
representative point the one with the highestπ-value.

Once the values{π(p)}p∈P have been computed, the thresh-
old ε, which is used to verify if(1−π(p))≤ ε, is set by consid-
ering the variation|π(p)−π(q)|, q∈Np, of the probability val-
ues atp and at the points of its 1-neighborhood. Note that con-
sideringp ∈ P as a critical point ifπ(p)≡ 1 does not cover all
the possible cases; in fact, it might happen that maxp∈P{π(p)}
is lower than one. Finally, we stress that also for a scalar func-
tion f defined on triangulated surfaces the concept of critical
point is derived in an approximate way by using thef -values
along the mesh edges and without computing the gradient field
of f . Since f̃ is smooth, we expect that two pointsp, q in Nr
whose probability values are close to one will have closef̃ -
values. Therefore, a more precise characterization off̃ in Nr
is achieved by comparing the related iso-contoursf̃−1( f̃ (p))
and f̃−1( f̃ (q)).
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Algorithm 1. The pseudocode summarizes the main steps of the routineiso−
contouring(P , f ,A) used to draw the iso-contours of an arbitrary scalar
function f , defined on a point setP , and related to the iso-values inA.

Require: A point setP , a scalar functionf : P → R, and a set of iso-values
A := {αi}m

i=1.
Ensure: The set of piecewise linear contours{γαi := f̃−1(αi)}m

i=1 on M,
where f̃ and M are the function and the surface underlyingf and P
respectively.

1: Compute thek-nearest neighbor graphT of P .
2: Sort the function values{ f (pi), pi ∈ P}.
3: for αs ∈ A do
4: C := ∅.
5: Find

E := {(i, j) ∈ T : ( f (pi) ≤ αs ≤ f (p j )) || ( f (p j ) ≤ αs ≤ f (pi))}

6: for e := (i, j) ∈ E do
7: compute

q := tpi +(1− t)p j , t :=
αs− f (pi)

f (p j )− f (pi)
;

8: computeg as (2) andF as (6) inNq;
9: compute the solutionq ∈ γαs of







F(r)−αs = 0,

g(r) = 0,
with initial point r0 := q;

10: update the samplingC of γαs asC := C ∪{q}.
11: end for
12: Compute the subset{Γ j} j of C that corresponds to a connected

component ofγαs.

13: Convert eachΓ j to a piecewise linear curveγ( j)
αs .

14: Draw/Store{γ( j)
αs } j .

15: end for

To classify each fuzzy critical point as maximum, minimum,
or saddle, we consider the values off̃ and the shape of the
corresponding iso-contourγα. More precisely, note that when
the iso-valueα is equal or close to a local maximum or mini-
mum valuef (pi), then the setE of the edges ofT intersected
by γα contains none or few intersected edges. Therefore, ifγα is
empty or falls inside the sphereS(pi ,δ) of centerpi and radius
δ := 2ε, with ε sampling density, thenpi is classified as max-
imum (resp., minimum) iff̃ (pi) > f̃ (q) (resp., f̃ (pi) < f̃ (q)),
whereq ∈ P, q 6= pi , is the closest point top. Fig. 17 shows
an example of computation of critical points based on ground-
truth.

If α is close to the value off at a saddle pointpi ∈ P ,
with f (pi) = α, then the iso-contourγα is self-intersecting at
this point and the conversion ofC to a piecewise linear contour
fails. Therefore, we need to remove fromC a neighborhood
of pi , where the self-intersection ofγα occurs. In this case, we
considerC and select the sampled connected componentΓ that
containspi by applying the procedure described in Section 4.2.
To approximateΓ with a piecewise linear contour, we first
extract the two sub-loops which belong toΓ and that share
the pointpi . To this end, we center atpi a sphereS(pi ,δ) of
radiusδ and remove the setΓ⋆ of points that fall insideS(pi ,δ),
thus generating two connected componentsΓ1 andΓ2 such that

(a) (b)

Fig. 16. (a) Identification of the connected components of a sampled level-set.
(b) The angle between∇F(p) and n(p) is used to measure the probability
that the pointp is critical.

Γ = Γ1∪Γ2∪Γ⋆ (Fig. 18(a)). For each componentΓs, s= 1,2,
we update the shape ofΓ aroundpi by selecting the pointsp1

andp2 of Γs closest topi , such that‖p1−p2‖2 > δ, and adding
to Γs a set of points sampled on the segmentsp1ps andp2ps.
These new samples recover the geometry of the iso-contour
around the saddle where we removedΓ⋆ (Fig. 18(b)). Then, the
updated componentsΓ1 andΓ2 are converted to piecewise linear
curves as previously described (Fig. 18(c)). Another example
is shown in Fig. 19.

Our tests have shown that the setC f̃ of the fuzzy critical

points of f̃ always contains the setC f of the critical points
of f computed using the triangle mesh connectivity, which is
assumed to bea-priori known, and according to the method de-
scribed in (11). Dealing with smooth surfaces and scalar func-
tions generally reduces the number of fuzzy critical pointsand
therefore the gap betweenC f̃ and C f . A high sampling den-
sity increases the reliability of the computation of the normal
n(p) and the gradient∇F(p) but generates clustered fuzzy crit-
ical points. In fact, a higher sampling density correspondsto
a larger number of gradient vectors∇F(q), whose directions
are closely aligned with∇F(q), q ∈ Nq, in a neighborhoodNp
of p. Therefore, we get closer values ofπ(q), q ∈ Np. A rele-
vant amount of clustered fuzzy critical points are removed by
analyzing the shape of the corresponding level-sets, applying
clustered techniques, or selecting among the critical points of
the same cluster the one with the highestπ-value. Finally, note
that in the case of bordered surfaces the classification of the
fuzzy critical and regular points fails. In fact, it is not able to
identify the points ofP that belong to the boundary compo-
nents and to provide a good approximation of the gradient field
of f at those points. Furthermore, the evaluation of the normals
on the boundary points is not trivial and we face similar limita-
tions for the definition of the critical points of scalar functions
defined on bordered triangle meshes.

5.3. Refined classification of the critical points

Degenerate situations are related to close critical pointsthat
belong to the samek-nearest neighborhood and have the same
f -values. The presence of noise inP and f , as well as the
different approximations of the underlying surface and scalar
function, motivate our choice to replace the “exact” definition
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(a) g(x,y) := x2 +y2 (b) g(x,y) := x2−y2 (c) (d)

Fig. 17. (a) Level-sets of the implicit approximationF associated to the samplingf : P → R of the functiong(x,y) on the unit square centered at the origin
0 := (0,0), which is the unique critical point ofg. Level-sets of (b) a noisy functionf and (c) its explicit MLS approximation. In (a,c,d), the dotshave been
randomly selected and used as starting guesses of the iterative scheme that computes the critical point (black dot) ofF, with an error lower than 10−5. (d)
Paths that join the initial guesses and the computed critical point.

of critical points with the concept of fuzzy critical points. The
probability measureπ allows us to handle degenerate and non-
degenerate cases in the same way. However, we can further
refine the previous classification of the critical points as follows.
Let us suppose that a pointp ∈ C has been classified as critical;
we improve its position by solving the following system of
non-linear equations







〈∇F(q),n(q)〉 = 0 (i.e., q critical point),

g(q) = 0 (i.e., q ∈M);
(15)

to this end, we use as starting point of the iterative scheme
q := p. The solutionp of (15) is considered the “true” crit-
ical point and this procedure is applied to each point ofC.
Therefore, the classification of the critical points and degen-
erate cases can be improved by comparing the related iso-
contours f̃−1( f̃ (p)) and f̃−1( f̃ (q)) or computing the “true”
critical point through (15).

6. Discussion

The stability of the definition of the MLS surfaces (1), (2) and
of the iterative solver of (10) have been discussed extensively
in state-of-the-art works (4), (35) (Ch. 5). Therefore, in the
following (Section 6.1) we focus our attention on the numerical
stability and accuracy of the approximation schemes presented
in Section 3. Then (Section 6.2), we discuss the choice of the
main parameters used by the iso-contouring algorithm.

6.1. Numerical stability and approximation accuracy

Let us suppose that we perturb each function valuef (pi)
and considerf (pi)+ei, ei ∈ R, i = 1, . . . ,n; then, we want to
analyze the discrepancy between the approximationF andFe
related to the sets{ f (pi)}n=1 and{ f (pi)+ εi}ni=1 respectively.
The functionsF andFe, as well asf̃ := F |M and f̃e := Fe|M,
will be computed according to the schemes described in Sec-
tion 3.

Parameterized MLS formulation. We focus our atten-
tion on the neighborhoodNp of p and we assume that
Np := {p1, . . . ,p jk}; then, we define the followingk×1 vectors

F := (F(p js))
k
s=1, Fe := (Fe(p js))

k
s=1, e := (es)

k
s=1.

Indicating withr andre the polynomial that approximates the
real and perturbedf -values inNp (Section 3.1), we have that

|r(x,y)− re(x,y)|= |
m

∑
i=1

(αi−βi)bi(x,y)|

≤C‖α−β‖1
≤Cnew‖(BΘBT)−1e‖2
≤Cnew

‖e‖2
mini=1,...,m{λi(BΘBT)} , ∀(x,y),

(16)

where λi(X) is the ith-eigenvalue ofX. In particular, we
have that lim‖e‖2→0‖r(x,y)− re(x,y)‖2 = 0 and therefore
lim‖e‖2→0 f̃e(pi) = f (pi), i = 1, . . . ,k.

Explicit MLS formulation. Assuming thatF is computed as
in (6), we have that

Fe(p) =
∑n

i=1( f (pi)+ei)θ(‖p−pi‖2)
∑n

i=1 θ(‖p−pi‖2)
.

From the definition, it follows that if ‖e‖∞→ 0 then
Fe(p)→ F(p); in particular, lim‖e‖∞→0 f̃e(pi) = f (pi),
i = 1, . . . ,n. Furthermore,

Fe(p) =
∑n

i=1 f (pi)θ(‖p−pi‖2)
∑n

i=1 θ(‖p−pi‖2)
+

∑n
i=1eiθ(‖p−pi‖2)

∑n
i=1 θ(‖p−pi‖2)

= F(p)+
∑n

i=1eiθ(‖p−pi‖2)
∑n

i=1 θ(‖p−pi‖2)
≤ F(p)+‖e‖∞, ∀p,

with e := (ei)
n
i=1. Therefore,|Fe(p)−F(p)| ≤ ‖e‖∞, ∀p. Using

the following matrix notation (see also Section 3.1 and 3.3)

F := (F(pi))
n
i=1, Fe := (Fe(pi))

n
i=1,

D := diag(θ1, . . . ,θn), θi :=
n

∑
j=1

θ(‖pi−p j‖2),
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(a) (b) (c)

Fig. 18. (a) Sampled points on the iso-contourΓ related to a saddle pointp and identification of the two loopsΓ1 and Γ2 of Γ, (b) smoothing of the shape
of Γ aroundp, (c) iso-contour reconstruction.

we have that

A := (θ(‖pi−p j‖))n
i, j=1, F = D−1Af ; Fe = D−1A(f +e).

Then, we estimate the global variation of this approximation as

‖Fe−F‖2 = ‖D−1Ae‖2
≤ ‖D−1‖2‖A‖2‖e‖2
≤ ‖A‖2‖e‖2

mini=1,...,n{θi}
.

Approximation of scalar functions with radial basis functions.
Assuming thatF has been computed as in (9) and neglecting
the linear term, the following relations hold

F(p) =
k

∑
i=1

αiϕi(p), F(pi) = f (pi), i = 1, . . . ,k,

and the vectorα := (αi)
k
i=1 is the solution of the linear system

Aα = f in (10), with A := (ϕi(p j))
k
i, j=1. Analogously, the per-

turbed function values are associated to the implicit function

Fe(p) =
k

∑
i=1

βiϕi(p), Fe(pi) = f (pi)+ei, i = 1, . . . ,k,

and the vectorβ := (βi)
k
i=1 is the solution of the linear system

Aβ = f +e. Therefore, using the property of bounded variation
of the basis functions|ϕi(p)| ≤C, ∀p, i = 1, . . . ,k, C∈ R con-
stant, (e.g., for the Gaussian kernel,C = 1) and the inequality
‖e‖1≤

√
k‖e‖2 we have that

|Fe(p)−F(p)|= |
k

∑
i=1

(αi−βi)ϕi(p)|

≤C
k

∑
i=1
|αi−βi|

= C‖α−β‖1≤C‖A−1e‖1
≤C
√

k‖A−1e‖2
≤C
√

k‖A−1‖2‖e‖2
= C
√

k
‖e‖2

mini=1,...,k{λi(A)} .

(17)

If ‖e‖→ 0, thenFe(p)→ F(p), ∀p. Using the matrix formula-
tion used in Section 3.2, it follows that

F = A−1f, Fe = A−1(f +e);

therefore, we estimate the global variation of this approximation
as

‖Fe−F‖2 = ‖A−1e‖2≤ ‖A−1‖2‖e‖2 = λ−1
min(A)‖e‖2;

and lim‖e‖2→0‖F−Fe‖2 = 0. Finally, note the analogy be-
tween (16) and (17); in both cases, the functionf̃e underlyingfe
is built as a linear combination of a different set of basis func-
tions and each of them is associated to a different coefficient
matrix of the corresponding linear system.

6.2. Choice of the parameters and approximation schemes

Under the assumption thatP is highly noisy, the least-squares
approach provides a function underlyingf that is smoother
than the one related to the implicit interpolation scheme. Fur-
thermore, the MLS approach does not require to solve a linear
system. In those cases where we need a high accuracy in the
approximation of thef -values and the differential properties
of f (e.g., gradient field, Hessian matrix), we prefer the implicit
interpolating scheme (Section 3.2) to the MLS methods (Sec-
tion 3.1). Note that the interpolation scheme implicitly assumes
that thef -values are not highly noisy. This is the case of scalar
functions that are the solution of differential equations such as
the Laplace equation with Dirichlet boundary conditions and
the Laplace eigenproblem. As shown in Fig. 20, a higher sam-
pling density improves the smoothness of the level-sets; how-
ever, a low density does not affect the iso-contour sampling
and reconstruction. This is mainly due to the definition of each
sample of a given iso-contour as the solution of a system of im-
plicit equations, which smoothly approximate both the surface
and the function values in those regions where the information
is low or partially missed. Furthermore, the sampling density
can be changed by either up-sampling or re-sampling the point
set. Also, smoothing techniques can be used to create a new
point set that is free of outliers and locally smooth (4; 31),thus
improving the regularity off̃ . Table 3 summarizes the main
properties and the computational cost of the MLS and implicit
scheme described Section 3.

In case of point sets with a low sampling density, implicit
modeling techniques for surface and function approximation
are preferred to MLS techniques. In all the other cases, both
the implicit and MLS approaches provide satisfactory results;

19



(a) (b)

(c) (d)

Fig. 19. (a) Distribution of the probabilityπ on the input shape: the red
regions located on the body and bottom part include the points that have been
classified as fuzzy critical points. (b) Sampled iso-contour Γ at a saddlep
and osculating paraboloid (yellow surface). The sphere centered atp is used
to subdivideΓ into two sub-loopsΓ1 and Γ2. (c) Iso-contours of the scalar
function f̃ underlying the input mapf ; f̃ has been sampled on a square
grid belonging to the least-squares plane that approximates Γ. (d) The two
sampled components ofΓ are updated aroundp and converted to piecewise
linear curves. The input point set has been sub-sampled to better visualize
the iso-contour shape.

furthermore, as shown in Section 3.3 in the limit of large sam-
ples they provide the same results. The sampling density ofP ,
which is computed according to the description in Section 2,
is the main parameter of the proposed approach and it controls
the computation of the surfaceM underlyingP as well as the
definition of the steps of the iso-contouring algorithm. These
steps are the level-set sampling, the counting of the numberof
connected components of each level-set, and the conversionof
the iso-contours to piecewise linear curves. Indeed, it canbe
easily estimated and improved by using re-sampling techniques
until a satisfactory rate is reached.

7. Conclusions and future work

This paper has studied the definition, analysis, and contour-
ing of scalar functions on point-sampled surfaces. Given an
arbitrary mapf on a point setP , the definition of the func-
tion f̃ underlying f and the contouring algorithm of̃f build
on the local connectivity structure of thek-nearest neighbor
graph ofP . The analytical definition of̃f allowed us to provide
an exact differential analysis of̃f and visualize its behavior

n = 10K

n = 20K

n = 30K

Fig. 20. Robustness of the iso-contouring algorithm with respect to a different
surface sampling. (Left) Level-set samples, (middle) osculating paraboloid,
and (right) piecewise linear reconstruction.

on and around the surface underlyingP . Since the stability of
the critical point depends on the local noise that affectsP and
the f -values, we have introduced the concept of fuzzy critical
points. In this context, the analysis of the shape of the level-sets
is intended to increase the reliability of the critical point clas-
sification. It is worth mentioning that the extracted level-sets
can be used to visualize the behavior off and compute a tri-
angulated approximation ofP by applying surface reconstruc-
tion techniques from contour slices (12; 13). As future work,
we plan to generalize the proposed approximation schemes to
3D scalar functions and use the iso-contouring algorithm for
surface reconstruction and abstraction.
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Table 3
This table summarizes the main properties and the computational cost of the
interpolation and approximation scheme off . A full circle • indicates that
the corresponding property is satisfied; otherwise, an empty circle ◦ appears.

Property f̃ w.r.t. Hp MLS f̃ (6) f̃ implicit (9)

Linearity ◦ • •

Least-squares definition • • • (interp)

Contin. w.r.t. surf. sampl. • • •

Higher order derivatives • • •

Stability w.r.t. noise • • •/◦ (high noise)

Computational cost O(k3) O(1) O(k logk)
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