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Abstract

Recent results in geometry processing have shown that shape segmentation, comparison, and analysis can be successfully addressed
through the spectral properties of the Laplace-Beltrami operator, which is involved in the harmonic equation, the Laplacian eigen-
problem, the heat di↵usion equation, and the definition of spectral distances, such as the bi-harmonic, commute time, and di↵usion
distances. In this paper, we study the discretization and the main properties of the solutions to these equations on 3D surfaces
and their applications to shape analysis. Among the main factors that influence their computation, as well as the corresponding
distances, we focus our attention on the choice of di↵erent Laplacian matrices, initial boundary conditions, and input shapes. These
degrees of freedom motivate our choice to address this study through the executable paper, which allows the user to perform a large
set of experiments and select his/her own parameters. Finally, we represent these distances in a unified way and provide a simple
procedure to generate new distances on 3D shapes.

Keywords: Spectral methods, harmonic and bi-harmonic functions, heat di↵usion equation, bi-harmonic and di↵usion distances.

1. Introduction

Three main classes of functions are associated to the Laplace-
Beltrami operator� : C2(N)! C0(N), whereCk(N) is the class
of maps defined on the manifold N and with order k of di↵er-
entiability: the harmonic maps, the Laplacian eigenfunctions,
and the solutions to the heat di↵usion equation [57]. The spec-
tral properties of this operator have also several applications
in geometry processing and shape analysis, such as parame-
terization, remeshing, segmentation, and comparison. In this
context, our work addresses the main discretizations and prop-
erties of the harmonic functions and the solutions to the heat
di↵usion equation. We also take into account the correspond-
ing distances and provide a unified characterization based on
the filtered spectral distances, thus providing a simple way to
generate new distances on 3D shapes.

For the discretization of the heat di↵usion kernel [51], in
the space F (M) of piecewise linear scalar maps defined on
a triangle mesh M we consider the weighted scalar product
hf, giB := fT Bg, f, g 2 F (M), where f := ( f (pi))n

i=1 is the ar-
ray of the f -values at the mesh vertices {pi}

n
i=1. This prod-

uct is induced by the symmetric and positive-definite matrix B
associated to the linear FEM discretization L̃ := B�1L of the
Laplace-Beltrami operator [55, 74]. Here, the sti↵ness matrix L
is the Laplacian matrix with cotangent weights and the mass
matrix B, or its lumped version, encodes the areas of the trian-
gles, or of the Voronoi regions, ofM. The product h·, ·iB gener-
alizes the Euclidean product (i.e., B := I); is intrinsic to the sur-
face on which the scalar maps are defined; and is adapted to the

local sampling ofM through the variation of the triangle areas.
Under this formulation, the generalized eigenproblem for (L, B)
is LX = BX� [25], where X := [x1, . . . , xn], � := diag(�i)n

i=1 are
the eigenvalues’ and eigenvectors’ matrices.

In F (M), we derive the wFEM heat kernel Kt := XDtXT B
and an intrinsic, multi-scale scalar product h·, ·it, which makes Kt
self-adjoint and induces the corresponding wFEM di↵usion dis-
tances. If the mass matrix B is lumped to the positive diago-
nal matrix D, then the wFEM heat kernel Kt := XDtXT B be-
comes equal to the discretization K?

t := XDtXT D, which holds
for Laplacians of type L := D�1W [9, 49, 60, 71, 75]. Here, W
has the mask of the mesh adjacency matrix and the diagonal
entries of D are the areas of the Voronoi regions associated to
the vertices ofM. If B is equal to the identity matrix, then Kt
reduces to the spectral representation of the heat di↵usion ker-
nel K̃t := XDtXT with cotangent weights [10, 14, 23, 76]. Us-
ing the mass matrix B instead of its lumped version D, or the
identity matrix, allows us to accurately encode the geometry of
the input surface through the area of its triangles instead of its
Voronoi regions. In this way, the wFEM heat kernel and the cor-
responding FEM di↵usion distances have a higher robustness
against topological and scale changes, irregular sampling, and
noise. Finally, this choice guarantees that the induced wFEM
heat kernel is intrinsically scale-covariant and scale-invariant
through a normalization of the Laplacian eigenvalues.

The Laplacian spectrum is also fundamental to define the
di↵usion [5, 13, 37], commute time, and biharmonic [61] dis-
tances. For shape analysis, these distances must be a metric
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(a) '(t) = exp(�t) (b) '(t) = t2 (c) '(t) = t (d) '(t) = exp(�t) (e) '(t) = t2

Figure 1: Level sets and surface decomposition into 0-genus patches induced by (a) the heat and (b) biharmonic shape signatures. (c-e) Shape embeddings with
respect to di↵erent filter maps. In all these examples, we used the Laplacian eigenvectors related to the first k = 500 eigenvalues of smaller magnitude.

(i.e., nullity, symmetry, triangular inequality hold) and satisfy
additional properties, such as local and global shape-awareness,
isometry invariance, robustness to surface sampling, topologi-
cal and geometric noise. Noting that these distances are related
to each others by applying a di↵erent weighting to the Lapla-
cian eigenvalues, they are represented in a unified way through
the filtered spectral distance

d(pi,p j) :=
2
666664

nX

k=1

|xk(pi) � xk(p j)|2

'(�k)

3
777775

1/2

, pi,p j 2M.

Here, xk(pi) is the ith component of the vector xk and ' : R! R
is a strictly positive map, which is applied to the Laplacian
eigenvalues. Specific filters provide well-known or new spec-
tral distances onM; for instance, the linear '(s) := s, quadratic
'(s) := s2, or exponential 't(s) := exp(st) maps induce the com-
mute time [53], bi-harmonic [61], or di↵usion distances [9],
respectively. In [6], the filter map '(s) := exp(�is), s 2 [0, 2⇡],
defines the wave kernel signature S(pi) :=

Pn
j=1 '(� j)x2

j (pi) and
the filter values {'(�i)}ni=1 are the frequency responses induced
by the Schroedinger equation. In this case, the corresponding
solution F(·, t) :=

Pn
j=1 '(� jt)h f , x ji2x j is associated to a com-

plex filter, whose values belong to the interval [�1, 1]. In our
discussion, we focus on the spectral distances, together with
its relation with the generalized Green kernel, instead of kernel
signatures; consider only positive maps that converge to zero, as
s! +1; and derive the discretization induced by a scalar prod-
uct intrinsic to the input shape instead of the Euclidean product.

Starting from these filters, we can design new distances; the
only constraint is that ' is a strictly positive map. The capa-
bility of locally or globally characterizing the input shape de-
pends on the convergence of the filtered eigenvalues ('(�i))n

i=1
to zero. Furthermore, the condition lims!+1 '(s) = 0 guaran-
tees a smooth spectral distance and a good approximation ac-
curacy through the truncated approximation (c.f., Eq. (13)).
Increasing the filter decay to zero, the e↵ects of the eigenvalues
of largest magnitude and of the corresponding eigenvectors on
the filtered spectral distance are negligible with respect to the
contribution of the lower eigenvalues. The resulting distance
characterizes the global properties of the input shape, while

poorly identifying its local properties. Reducing the filter de-
cay to zero, local shape features are better characterized. A
trade-o↵ between the measure of both local and global prop-
erties can be achieved by selecting as ' a convex combination
between the filters associated to the di↵usion and bi-harmonic
distances, respectively.

As main applications of the filtered spectral distances, we
focus on shape segmentation into 0-genus patches with respect
to generalized auto di↵usion functions and shape embeddings.
For instance, selecting the filter ' we compute a family of seg-
mentations into 0-genus patches (Fig. 1 (a,b)) and embed 3D
shapes in abstract representations (Fig. 1 (c-d)). For a more de-
tailed description of the main applications of the filtered spec-
tral distances and related shape descriptors, we refer the reader
to Sect. 2.

Through the executable paper, the reader will be able to
compute the harmonic functions and the solutions to the heat
di↵usion equation, by selecting (i) a specific set of weights
for the Laplacian matrix (e.g., cot, Voronoi-cot, linear FEM
weights); (ii) the input shapes, which are represented as trian-
gle meshes; and (iii) the initial boundary conditions. Among the
main properties, we discuss their robustness to shape discretiza-
tion and noise, smoothness, scale-invariance, dependence on
the discretization of the Laplace-Beltrami operator, and com-
putational stability. The resulting scalar functions and distances
are visualized using a color coding of the function values, the
evolution of the corresponding level sets and critical points. Fi-
nally, the filtered spectral distances are computed through the
selection of the spectrum of di↵erent Laplacian matrices, filter
maps, and source points. For our tests, we have selected 3D
shapes that are (i) characterized by a di↵erent sampling density
and geometric/topological complexity; (ii) modified through iso-
metric and non-rigid almost inelastic deformations, global and
local scaling; and (iii) a↵ected by noise of di↵erent magnitude.

The paper is organized as follows. After a brief overview
on previous work (Sect. 2), we introduce the discretization and
properties of the harmonic map, the Laplacian eigenfunctions
(Sect. 3), and the solutions to the heat di↵usion equation (Sect. 4).
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Then (Sect. 5), we discuss the FEM heat di↵usion distances
and propose a unified view on the definition of distances on 3D
shapes induced by the Laplacian spectrum.

2. Previous work

We briefly review previous work on the harmonic maps, the
Laplacian eigenfunctions, the heat di↵usion kernel, and the cor-
responding distances.

Harmonic maps and Laplacian eigenfunctions. Mesh Lapla-
cian operators were initially developed for shape filtering [73];
spectral partitioning [33] and analysis [81]. Successively, Lapla-
cian operators have been associated to a set of di↵erential co-
ordinates for surface deformation [66, 69] and quadrangulation
with harmonic maps and Laplacian eigenfunctions [4, 19, 18,
38, 46]. The eigenvector corresponding to the smallest non-
zero eigenvalue of the Laplacian graph (i.e., the Fielder vector)
has been applied to graph partitioning [1, 21, 43]; to sparse ma-
trices for reducing their bandwidth [3]; to clustering [62] (§ 14)
and dimensionality reduction [4]; to graph/mesh layout [17, 36]
and image segmentation [63].

In digital geometry processing, low-pass filters [72] have
been designed using the spectral properties of the uniform dis-
crete Laplacian and encoding the local geometry of the input
surface [15, 34, 52]. Further applications include implicit mesh
fairing [15, 34, 79], mesh watermarking [48, 47], and geome-
try compression [33, 68]. Moreover, the spectral properties of
the Laplacian matrix are at the basis of the definition of fairing
functionals [35, 40], which optimize the triangles’ shape and/or
the surface smoothnesss [44].

The Laplacian eigenvectors were also used for embedding
a surface of arbitrary genus into the plane [82, 84] and map-
ping a closed 0-genus surface into a spherical domain [26]. In
the frequency space, shape segmentation [39, 80], correspon-
dence [30, 31], and comparison [30, 55] have been success-
fully addressed. Recent applications of the Laplacian spec-
trum include shape segmentation and analysis through nodal
domains [54] and constrained smoothing of scalar functions [50].
Finally, theoretical results on the sensitivity of the Laplacian
spectrum against geometry changes, irregular sampling density,
and connectivity variations were discussed in [20, 32, 78].

Heat di↵usion maps and di↵usion distances. In geometry pro-
cessing and shape analysis, several problems have been ad-
dressed through the properties of the heat di↵usion kernel on
a 3D shape. The discrete heat di↵usion kernel has been ap-
plied to shape segmentation [14] and comparison [9, 10, 16,
23, 49] through heat kernel shape descriptors and auto-di↵usion
maps [23]; dimensionality reduction [4, 77] with spectral em-
beddings; the computation of the gradient of discrete maps [76]
and the multi-scale approximation of functions [51]. In [75],
prolongation operators extend the values of the heat di↵usion
kernel computed on a low resolution representation of the input
shape to higher resolutions, through the hierarchy associated to
multiresolutive simplification algorithms.

Recently, the heat equation and the associated di↵usion met-
ric have been used to define multi-scale shape signatures [71],
compare 3D shapes [41], and approximate the gradients of scalar
functions defined on triangulated surfaces and point sets [76].
The heat di↵usion kernel on manifolds also plays a central role
in Machine Learning [13, 24, 27, 28, 37, 62, 64]; dimension-
ality reduction with spectral embeddings [4, 77]; data visual-
ization [4, 28, 58], representation [11, 65, 83], and classifica-
tion [45, 63, 70].

3. Laplacian matrix and harmonic maps

We briefly recall the discretization of the Laplace-Beltrami
operator, the classification of the critical points for piecewise
scalar functions defined on triangulated surfaces, and the main
properties of the harmonic functions.

Laplacian matrix. Let us consider a triangle meshM := (P,T ),
which discretizes a manifold N , where P := {pi}

n
i=1 is the set

of n vertices and T is the connectivity graph. The piecewise
linear scalar function f :M! R is defined by linearly inter-
polating the values f := ( f (pi))n

i=1 of f at the vertices using
barycentric coordinates. Then, the Laplacian matrix is defined
as L̃ := B�1L, where

L(i, j) :=

8>>>><
>>>>:

w(i, j) := cot↵i j+cot �i j

2 j 2 N(i),
�

P
k2N(i) w(i, k) i = j,

0 else.

is the Laplacian matrix with cotangent weights; here, N(i) is the
set of the indices of the vertices incident to pi and ↵i j, �i j are the
angles that are opposite to the edge (i, j). The weight matrix B
is the diagonal matrix whose entries are the areas of the Voronoi
regions of the mesh vertices (Voronoi-cot weights) [15]

B := diag(a(i))n
i=1, a(i) :=

1
3

X

t2N(i)

area(t).

Alternatively, B is the FEM mass matrix [56, 74] (linear FEM
weights), which codes the variation of the triangle areas

B(i, j) :=

8>>>><
>>>>:

|ta |+|tb |
12 j 2 N(i),P
k2T (i) |tk |

6 i = j,
0 else,

where area(t) is the area of the triangle t, T (i) is the set of trian-
gles that have {i} among their vertices, and ta, tb are the triangles
that share the edge (i, j). If the FEM mass matrix is lumped to
the diagonal matrix, then the FEM Laplacian matrix becomes
equal to the Voronoi-cot Laplacian matrix. If B := I, then we
get the Laplacian matrix with cot weights [52].

If the input surface is bordered (e.g., Fig. 13), then we sym-
metrize L̃ as (L̃ + L̃T )/2; since our approach works mainly on
matrices, this symmetrization is enough to guarantee that the
computation of the filtered spectral distances is not a↵ected by
surface holes and local shape artifacts.
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(a) (1, 1, 4) (b) (2, 2, 6) (c) (3, 3, 8)

Figure 2: Level sets and critical points (m,M, s) of harmonic maps with (a)
two, (b) four, and (c) six Dirichlet boundary conditions, which are shown in blue
and red. Blue, red, and green points indicate the m minima, M maxima, and s
saddles of each map, respectively. The insertion of new boundary constraints
locally a↵ects the resulting harmonic map. See also Fig. 3.

Critical points. In the discrete case, the behavior of a piecewise
linear scalar function f :M! R is conveyed by the corre-
sponding level sets f �1(↵) and the critical points of f , at which
the number of connected components of the level sets changes.
Let us assume that f :M! R is general; i.e., f (pi) , f (p j),
for each edge (i, j). Then, the critical points of f :M! R are
computed by analyzing the distribution of the f -values on the
neighborhood of each vertex [2]. Under the assumption that f
is a regular map, the Euler formula

�(M) = m � s + M, g =
1
2

(2 � �(M)), (1)

gives the link between the critical points of (M, f ), the Eu-
ler characteristic �(M) of M [2, 42], and the genus g of M.
Here, m and M are the number of minima and maxima, respec-
tively; the s :=

P
pi saddle mi saddle points of f are counted with

their multiplicity mi.

Harmonic maps. The harmonic function h : N ! R is the so-
lution of the Laplace equation �h = 0 with Dirichlet boundary
conditions h|

S

= h0, S ⇢ N , where h0 is the initial condition.
The locality property guarantees that if p and q are two dis-
tinct points, then �h(p) is not a↵ected by the value of h at q.
According to the maximum principle [57], a harmonic map has
no local extrema other than at constrained vertices. In the case
that all constrained minima are assigned the same global min-
imum value and all constrained maxima are assigned the same
global maximum value, all the constraints will be extrema in
the resulting field.

The harmonic equation is approximated at the vertices ofM
as the homogeneous linear system Lf = 0, with Dirichlet bound-
ary conditions B := { f (pi) = ai}i2I, I ✓ {1, . . . , n}. According
to the Euler formula (1), the number of critical points of a har-
monic map depends on the number of Dirichlet boundary con-
ditions, which determine the maxima and minima of the result-
ing harmonic map. In particular, a harmonic function with one

(a) (b)

Figure 3: With reference to Fig. 2(a,b), level sets and critical points of harmonic
maps with (a) two (b) four Dirichlet boundary conditions on a high-resolution
(26K vertices) representation of the input model (5K vertices) in Fig. 2.

maximum and one minimum has a minimal number of 2g sad-
dle points, which are located on the topological handles ofM.

Fig. 2 shows a family of harmonic functions achieved by
increasing the number of Dirichlet boundary conditions. In (a),
we have selected two boundary conditions, which identify the
maximum and minimum of f ; in (b), we have added two new
boundary conditions, while maintaining the previous ones. Ac-
cording to the locality property, the resulting harmonic function
and its level sets remain unchanged in a neighborhood of the
Dirichlet points related to the previous step. An analogous re-
mark applies to (b,c), where in (c) we added two constraints to
the set of Dirichlet conditions used in (b). While the position
of the extrema is determined a-priori by the Dirichlet boundary
conditions, only the number of saddles and not their locations
on the input surface are determined through the Euler formula.
Fig. 3 shows an analogous example on a high resolution model.

Executable paper.1 For the experiments presented in the
paper, the user can select the input surface among 30 triangle
meshes, which have been stored in o↵ format as shape-i.o↵,
i = 1, . . . , 30. For the tests in Figs. 2, 3, the reader can run
the experiment Harmonic function.exp.xml, which asks to se-
lect the o↵ file of the input shape. The default file is 3torus.o↵ ;
the acquarius models at low (Fig. 2) and high resolution (Fig. 3)
are stored in acquarius-5Kv.o↵ and acquarius-26Kv.o↵, respec-
tively. The routine computes three harmonic functions with
two, four, and six Dirichlet boundary conditions and displays
the corresponding M maxima, m minima, and s saddles. The
first two initial conditions are placed at the vertices with mini-
mum and maximum x-coordinates; the corresponding f -values
are 0 and 1. For four and six initial conditions, we also consider
the vertices of minimum and maximum y- and z-coordinates.
The input shape, the colormap, and the level sets of each har-
monic function are stored in harmonic-map-i.wrl and displayed

1
https://collage.elsevier.com/collage/template?doi=10.

0000/1352475983201
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(a) Vor.-cot (b) FEM (c) FEM
k = 100 k = 100 k = 500

Figure 4: Level sets of the basis function Ktei centered at the yellow point; here,
we have selected the (a) Voronoi-cot and (b,c) the FEM weights, with the same
time parameter t and number k of Laplacian eigenpairs.

in harmonic-map-i.png, i = 1, 2, 3. The colormap varies the hue
component of the hue-saturation-value color model; the colors
begin with red, pass through yellow, green, cyan, blue, ma-
genta, and return to red. Finally, the array of the values of each
harmonic map at the mesh vertices is stored in harmonic-field-
i.txt, i = 1, 2, 3. For the visualization of the wrl file, the user can
use View3DScene2 or analogous visualization tools.

4. wFEM Heat kernel

We briefly address the discretization of the heat di↵usion
kernel with respect to linear finite elements [51] (Sect. 4.1), its
properties (Sect. 4.2), and its computation (Sect. 4.3). Then
(Sect. 4.4), we discuss the main features of this discretization
with respect to previous work. Among them, we focus on the
multi-scale property; the stability under shape perturbations (e.g.,
sampling, connectivity, topological noise); and the invariance to
isometries and inelastic deformations.

4.1. Linear FEM discretization
The scale-based representation H : N ⇥ R+ ! R of the map

h : N ! R is the solution to the heat di↵usion equation

@tH(p, t) = ��H(p, t), H(p, 0) = h(p), (2)

(p, t) 2 N ⇥ R+ and it can be written through the convolution
operator ? as H(p, t) := kt(p, ·) ? h =

R
N

kt(p,q)h(q)dq, where
kt(p,q) :=

P+1
i=1 exp(��it)'i(p)'i(q) is the heat di↵usion kernel.

To derive the discretization to Eq. (2), we replace the space
L2(N) of square integrable functions defined on N with the
finite dimensional subspace

F (M) := { f :M! R, f PL , f := ( f (pi))n
i=1 2 Rn

},

of piecewise linear (PL, for short) scalar functions defined on
the triangle mesh M. In F (M), the piecewise linear scalar
function F(·, t) :M! R is uniquely identified by the F-values
F(t) := (F(pi, t))n

i=1 at the vertices of the input triangle mesh. In

2
http://castle-engine.sourceforge.net/view3dscene.php

F (M), let  i be the map that takes value 1 at pi and 0 at the
other vertices. To re-write the solution F(t) =

Pn
i=1 F(pi, t) i to

the heat di↵usion equation in terms of the basis of F (M), let us
multiply both sides of the equation @tF(·, t) + �F(·, t) = 0 with
the test functions in F (M); integrating this equation over M,
we get that

0 = h@tF(·, t) + �F(·, t), ji2

=

kX

i=1

@tF(pi, t)h i, ji2 +

kX

i=1

F(pi, t)h� i, ji2

=

kX

i=1

@tF(pi, t)B(i, j) +
kX

i=1

F(pi, t)L(i, j).

(3)

for j = 1, . . . , n. In matrix form, Eq. (3) is rewritten as

B@F(t) + LF(t) = 0, F(0) = f.

Let us now consider the generalized eigensystem

{(�i, xi)}ni=1, Lxi = �iBxi, xT
i Bx j = �i j,

of the couple (L, B), which defines the linear FEM discretiza-
tion L̃ := B�1L of the Laplace-Beltrami operator (Sect. 3), or in
matrix form

LX = BX�, � := diag(�i)n
i=1, XT BX = I, (4)

where � is the diagonal matrix of the Laplacian eigenvalues and
X := [x1, . . . , xn] is the matrix of the eigenvectors. Since the
unknown function F :M ⇥ R! R is a n ⇥ 1 vector for each
value of the parameter t, the solution F(t) :=

Pn
i=1 ↵i(t)xi to the

discrete heat di↵usion equation is expressed as a linear com-
bination of the eigensystem of (L, B), where ↵(t) := (↵i(t))n

i=1
is the unknown vector. Since B is positive-definite, the space
F (M) is endowed with the weighted inner product

hf, giB = fT Bg, f := ( f (pi))n
i=1, g := (g(pi))n

i=1, (5)

which is intrinsic to the geometry underlying M and adapted
to its discretization. Using the invertibility of the matrix B, the
linear independence of the Laplacian eigenfunctions, and the
identity f =

Pn
i=1hf, xiiBxi, each component ↵i(t) satisfies the

di↵erential equation

↵0i(t) + �i↵i(t) = 0, ↵i(0) = hf, xiiB, i = 1, . . . , n.

Indeed, the scale-based representation of f :M! R is

F(·, t) =
nX

i=1

exp(��it)hf, xiiBxi, t 2 R, (6)

which is re-written in matrix form as F(·, t) = Ktf, where

Kt := XDtXT B, Dt := diag
�
exp(��it)

�n
i=1 , (7)

is the weighted linear FEM (wFEM) heat kernel matrix.

5
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Table 1: Definition and properties of di↵erent discretizations of the heat kernel:
sparsity, positive definiteness, and symmetry. The full • and empty � circle
means that the corresponding property is or is not satisfied, respectively.

Method Matrix Kt Sp. Pos. Def. Sym.
Std. HK XDtXT

� • •

Vor.-cot HK XDtXT D � • �

wFEM HK XDtXT B � • �

4.2. Properties of the wFEM heat kernel and comparison with
previous work

Lumping the mass matrix B, we get the diagonal matrix
D := diag(d(i))n

i=1, whose entries d(i) := 1/3
P

t2N(i) |t| are the
areas of the Voronoi regions ofM and |t| is the area of the tri-
angle t. Then, Kt in Eq. (7) becomes equal to the Voronoi-cot
(or lumped FEM) heat kernel [9, 49, 60, 71, 75]

K?
t := XDtXT D, LX = DX�,

Choosing B := I in Eq. (7), we get the linear FEM heat kernel
matrix K̃t := XDtXT . Using the mass matrix B instead of its
lumped version D allows us to accurately encode the geometry
of the input surface through the area of its triangles instead of
its Voronoi regions.

Comparing the kernels K̃t and Kt, we notice that Kt = K̃tB
and that the wFEM discretization explicitly involves the mass
matrix B. In this case, K̃t is scale-dependent; i.e., rescalingM
to ↵M, ↵ > 0, the corresponding kernels satisfy the relation
K̃t(↵M) = ↵�2K̃↵�2t(M). It follows that the geometric and tem-
poral components of K̃t(↵M) are a↵ected by the surface rescal-
ing and the corresponding heat kernel shape descriptors cannot
be directly used for matching. On the contrary, Kt and K?

t are
intrinsically scale-covariant (i.e., without shape or kernel nor-
malization) and scale-invariant through a normalization of the
Laplacian eigenvalues. In [7, 8], these properties and the ro-
bustness of the wFEM heat kernel against shape transformation,
sampling, and noise have been verified by testing the match-
ing performances of the wFEM heat kernel descriptors on the
SHREC’10 data set. Finally, Table 1 summarizes the properties
of di↵erent discretizations of the heat kernel.

4.3. Computation of the wFEM heat kernel
Once the Laplacian eigensystem has been computed in super-

linear time [74], F(·, t) is evaluated in O(n)-time. However, us-
ing the whole spectrum is computationally unfeasible in terms
of computational cost and storage of full n ⇥ n matrices. Since
the exponential decay of the filter factor �i := exp(��it) in-
creases with �i, we consider only a part of the Laplacian spec-
trum. To this end, the sum in (6) is truncated by considering
only the contribution related to the first k eigenpairs; i.e.,

Fk(·, t) =
kX

i=1

exp(��it)hf, xiiBxi = XkD(k)
t XT

k Bf, t 2 R, (8)

where Xk := [x1, . . . , xk] is the n ⇥ k matrix of Laplacian eigen-
functions and D(k)

t := diag
�
exp(��it)

�k
i=1 is the diagonal matrix

with the filter factors. If t := 0, then Fk(·, 0) =
Pk

i=1hf, xiiBxi is

Input surfaces

(a) (b)
Voronoi-cot di↵usion kernel

t := 0.01 t := 0.001

(c) k = 200 (d) k = 500 (e) k = 200 (f) k = 500
Weighted di↵usion kernel

t := 0.01 t := 0.001

(g) k = 200 (h) k = 500 (i) k = 200 (j) k = 500

Figure 5: Approximation Fk(·, t) (c.f., Eq. (8)) of the basis function Ktei gen-
erated using k Laplacian eigenfunction, the (c-f) Voronoi-cot and (g-j) FEM
weights on a 3D shape with a (a) coarse and (b) fine sampling.

the least-squares approximation of f in the linear space gener-
ated by the first k eigenfunctions and with respect to k · kB.

We notice that both the parameters k and t define the hierar-
chy of approximations. In fact, reducing the number of Lapla-
cian eigenfunctions results in a smoothing of the input map and
a further simplification of its critical points, with more emphasis
on those with a low persistence value. Furthermore, the eigen-
pairs related to the low frequencies code the global structure of
the input shape [54, 55]; on the contrary, the highest frequencies
code noise and local details. Finally, the choice of the number k
of Laplacian eigenpairs is up-to the user and its e↵ects on the
final approximation accuracy cannot be a priori estimated.

4.4. Examples and discussions
Exploiting the isomorphism between F (M) and Rn, we in-

terpret the canonical basis E := {ei}
n
i=1 of Rn as the set of trivial

maps that take value one at a given vertex ofM and zero other-
wise. Then,B := {Ktei}

n
i=1 is a counterpart of E inF (M), where

each piecewise linear map Ktei is achieved by applying the dif-
fusion process to the function that takes value one at the an-
chor pi and zero otherwise. For shape analysis and comparison,
as anchors of a 3D shape we can select the maxima and minima
of the Laplacian eigenfunctions related to the smallest eigen-
values [59] or of the auto-di↵usion maps [23], without/with
simplification based on persistence homology [85]. The map
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Almost isometric deformation

Local re-scaling

Sampling density

Noise

Figure 6: Robustness of the computation of the basis function induced by the
wFEM heat kernel and centered at the spike of the tail. The transformation
strength increases from left to right.

Ktei summarizes the shape distribution in a neighbor of pi, in
a way similar to the local point signatures [12] and geodesic-
based descriptors [22, 29]. This basis is a multi-scale version
of the geometry-aware functions [67]; however, the definition
and properties of B are driven by the geometry of M and not
uniquely by its connectivity. It is also intrinsic to the input
shape, multi-scale, and localized, according to the values of the
time parameter.

Increasing t, the map Ktei changes from the Dirichlet func-
tion (t := 0) to a constant map. In fact, recalling that the first
eigenpair is (0, 1) and using the relation

Ktei = h1, eiiB1 +
nX

i=2

exp(��it)hei, xiiBxi !t!+1 (eT
i B1)1,

we get that, as t ! +1, Ktei converges to the constant function
K+1ei =

Pn
j=1 B(i, j). To better characterize these asymptotic

properties and analyze di↵erent discretizations of the heat dif-
fusion kernel, we compare the basis function

KD
t ei := XDtXT Dei, Ktei := XDtXT Bei,

which are induced by the Voronoi-cot and wFEM heat kernel,
respectively.

The linear FEM Laplacian eigensystem (Fig. 4(b,c)), to-
gether with the induced B-scalar product (c.f., Eq. (5)) inF (M),
provides smooth level sets that are well-distributed around the
anchor point pi. On the contrary (Fig. 4(a)), irregularly-sampled
data badly a↵ect the smoothness of the standard discretization
of the di↵usion kernel, thus showing the higher robustness and
stability of the proposed discretization with respect to the data
sampling.

Figure 7: Filter functions that induce the di↵usion, commute time, and bi-
harmonic distances; on the y-axis, we have reported the log-scale.

The behavior of the level sets (Fig. 5(g-j)) and their uniform
distribution around the anchor point confirm that the wFEM
heat kernel is not a↵ected by a di↵erent sampling, or noise,
of the input surface. As a matter of the uneven sampling ofM
and the wide variation of the areas of its triangles, the quality
of the approximation provided by the Voronoi-cot weights is
lower (Fig. 5(c-f)). Irregularly-sampled patches on M gener-
ally a↵ect the smoothness of KD

t ei at smaller scales; increas-
ing t improves the distribution and smoothness of the level sets.
We also notice that the smoothness of the weighted di↵usion
kernel is preserved among all the scales. Decreasing the time
parameter t reduces the support size of Fk(·, t) (c.f., Eq. (8)).
A higher resolution ofM improves the quality of the level sets
of the solution, which are uniformly distributed around the an-
chor point p. On the contrary, the smoothness of the solution
computed with respect to the weighted scalar product is guar-
anteed through all the scales in spite of the discretization ofM.
Finally, Fig. 6 shows the behavior of the basis function Ktei on
almost isometric shapes.

Executable paper.3 For the tests in Figs. 4, 5, 6, the reader
can run the experiment Di↵usion basis.exp.xml, which com-
putes the approximation Fk(·, t) in Eq. (8) associated to a pre-
defined anchor point pi. As input, the user must select the o↵
file of the input shape; a discretization of the Laplace-Beltrami
operator among three possible choices (i.e., cotangent, Voronoi-
cot, FEM weights); the value t of the time parameter; and the k
number of Laplacian eigenfunctions. The default experiment
computes the basis function on the 3-torus with 100 linear FEM
Laplacian eigenpairs and t = 0.5. The level sets and colormap
of the basis function are displayed in di↵usion-basis.png and
stored in di↵usion-basis.wrl. Finally, the di↵usion basis func-
tion is stored in di↵usion-basis.txt.

3
https://collage.elsevier.com/collage/template?doi=10.

0000/1352476045780
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High resolution data set: wFEM di↵usion distances

k = 10 k = 100 k = 500
Low resolution data set: wFEM di↵usion distances

k = 10 k = 100 k = 500

Figure 8: Level sets of the wFEM heat di↵usion distances on the same shape
with a high/low (first/second row) resolution and a di↵erent number k of Lapla-
cian eigenpairs. For all the examples, t = 0.5 and the anchor point pi (yellow
dot) is placed on the left arm.

5. Filtered spectral distances

Analyzing the spectral representation of the commute time,
bi-harmonic, and heat di↵usion distances, we show that they
can be represented in a unified way through the definition of the
filtered spectral distance (Sect. 5.1). Then, we focus our discus-
sion on the linear FEM heat di↵usion distances (Sect. 5.2).

5.1. Filtered spectral distances
Using the generalized eigensystem {(�i, xi)}ni=1 of the couple

(L, B) and a positive filter map ' : R! R, we introduce the
matrix operator

L' : Rn
�! Rn

f 7! L'f :=
Pn

i=1 '(�i)hf, xiiBxi.
(9)

For any f 2 Rn, L'f is a filtered version of the input map f ,
where the filter coe�cients ('(�i))n

i=1 in Eq. (9) are the values
of the filter map at the Laplacian eigenvalues. Since {xi}

n
i=1 is

an orthonormal basis with respect to the scalar product induced
by the mass matrix B, any function f is uniquely represented
as f =

Pn
i=1hf, xiiBxi and Lf =

Pn
i=1 �ihf, xiiBxi is the spectral

representation of Lf. According to these relations, choosing
'(t) := 1 or '(t) := t the (discrete) operator L' is equal to the
identity operator or to the Laplacian matrix. Indeed, the filter
map acts on the Laplacian eigenvalues in such a way that spe-
cific aspects of f are enhanced, smoothed, or removed.

Given the operator L' in Eq. (9) and the input function
f :M! R, let us introduce the generalized inhomogeneous

Low-resolution shape: bi-harmonic distances
FEM Voronoi-cot

k = 10 k = 500 k = 10 k = 500
High-resolution shape: bi-harmonic distances

FEM Voronoi-cot

k = 10 k = 500 k = 10 k = 500

Figure 9: Variation of the bi-harmonic distance on a surface at di↵erent resolu-
tion, with respect to di↵erent Laplacian matrices and number of eigenpairs.

problem L'u = f. This equation reduces to the harmonic equa-
tion by selecting '(t) := t, f := 0, and L' allows us to introduce
the generalized Green kernel, together with the corresponding
distances onM. Using the relations

u :=
nX

i=1

↵ixi, f =
nX

i=1

hf, xiiBxi,

the generalized inhomogeneous problem is rewritten as

nX

i=1

↵i'(�i)xi =

nX

i=1

hf, xiiBxi.

Computing the B-scalar product of both sides of this equation
with the Laplacian eigenvectors, we get that each coe�cient is
↵i =

hf,xiiB
'(�i)

, i = 1, . . . , n. Then, the spectral representation of the
solution to the generalized inhomogeneous problem is

u =
nX

k=1

hf, xkiB

'(�k)
xk = GBf,

where the generalized Green kernel matrix is defined as

G := X�†XT , �† := diag('�1(�i))n
i=1. (10)

Assuming that ' : R! R is a strictly positive function, let us
now introduce the filtered spectral distance

d(pi,p j) :=
2
666664

nX

k=1

|xk(pi) � xk(p j)|2

'(�k)

3
777775

1/2

, pi,p j 2M, (11)

where xk :M! R is the piecewise linear map associated to the
Laplacian eigenvector xk := (x(i)

k )n
i=1; i.e., xk(pi) = x(i)

k .
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High resolution data set: commute time distances
Voronoi-cot FEM

k = 500 k = 100 k = 10 k = 500 k = 100 k = 10
Low resolution data set: commute time distances

Voronoi-cot FEM

k = 500 k = 100 k = 10 k = 500 k = 100 k = 10

Figure 10: Level sets of the commute time distance on the same shape with a high/low (first/second row) resolution and a di↵erent number k of Laplacian eigenpairs.

According to the representation (11), di↵usion, commute
time, and bi-harmonic distances are achieved by selecting the
following filters (Fig. 7)

'(s) :=

8>>><
>>>:

exp(�st) di↵usion distance,
s commute time distance,
s2 bi-harmonic distance.

(12)

Our interest on this formulation is motivated by its generaliza-
tion of spectral distances and the possibility of adapting the fil-
ter function ' to the distribution of the Laplacian eigenvalues.
Through specific choices of ', local and global details ofM at
di↵erent scales are identified in a way similar to the selection
of the exponential and bi-harmonic weights.

Firstly, we show that d(·, ·) is a metric onM. The positivity
and symmetry of this distance are a direct consequence of the
definition. For the nullity property, we notice that

d(pi,p j) = 0 () xk(pi) = xk(p j), 8k,
(ei � e j)T xk = 0,8k, () i = j.

The triangular inequality is verified as follows

d2(pi,p j) =
nX

k=1

|xk(pi) � xk(p j)|2

'(�k)



nX

k=1

h
|xk(pi) � xk(r)|2 + |xk(r) � xk(p j)|2

i

'(�k)

= d2(pi, r) + d2(r,p j), pi,p j, r 2 N .

Rewriting the generalized Green kernel matrix as

G(pi,p j) :=
nX

k=1

xk(pi)xk(p j)
'(�k)

, i, j = 1, . . . , n

The distance (11) is expressed in terms of G as

d2(pi,p j) :=
nX

k=1

|xk(pi) � xk(p j)|2

'(�k)

=

nX

k=1

|xk(pi)|2

'(�n)
� 2

nX

k=1

xk(pi)xk(p j)
'(�k)

+

nX

k=1

|xk(p j)|2

'(�k)

=(10) G(pi,pi) � 2G(pi,p j) +G(p j,p j).

Considering the embedding

E : R3
�! Rn, pi 7!

nX

k=1

xk(pi)
'1/2(�k)

xk,

of the vertices of M to Rn, the filtered spectral distance be-
tween pi and p j is equal to the B-norm of the embedded points
E(pi), E(p j); i.e., d(pi,p j) = kE(pi) � E(p j)kB. Finally, the gen-
eralized spectral function is defined as pi 2M 7! G(pi,pi); if '
is the exponential map, then we get the auto di↵usion functions
introduced in [23] for shape analysis.

Computation of the filtered spectral distance. To make the com-
putation of the generalized filtered distance feasible and tractable

9



(a) t = 0.001 (b) t = 0.01 (c) t = 0.1

Figure 12: L1 error (y-axis) between the exact and approximated representation (9) of the function L'ei, computed using a di↵erent number k (x-axis) of eigenfunc-
tions and (a-c) values of the time parameter t.

(a) k = 250

(b) k = 250

Figure 11: Level sets of Fk(·, t) on a (a, left) smooth and (b, left) noisy surface.
(a-b, right) Behavior of the corresponding heat di↵usion distances.

in real applications, the sum (11) is truncated by considering
only the contribution related to the first k eigenpairs; i.e.,

d(pi,p j) :=

2
6666664

kX

l=1

|xl(pi) � xl(p j)|2

'(�l)

3
7777775

1/2

, pi,p j 2M. (13)

Indeed, the discretization of the Laplace-Beltrami operator, the
filter ', the number k of the eigenpairs, and the points pi, p j
will a↵ect the value d(pi,p j).

Selection of the filter map. Comparing the results on the smooth
and irregularly sampled data highlights that the di↵usion (Fig. 8),
bi-harmonic (Fig. 9), and commute time (Fig. 10) distances
have an analogous behavior, in terms of the shape and distri-
bution of the corresponding level sets and colormaps. A similar
discussion applies to the stability of the di↵usion function and
distance with respect to a change in the number of the eigen-
functions used in Eq. (13), noisy and irregularly-sampled data
(Fig. 11). All these results confirm that the generalized eigen-
system provides good results in terms of smoothness and distri-
bution of the level sets with respect to uneven sampling densi-
ties, which are not a↵ected by di↵erent resolutions of local ar-
eas of the input shape. Furthermore, increasing the number of
generalized eienvectors improves the quality of the approxima-
tion; on the contrary, a larger number of standard eigenvectors

results in a noisy map without improvements on the approxima-
tion accuracy and smoothness. In Fig. 12, we compare the L

1

error ✏
1

(y-axis) between the analytical heat di↵usion kernel on
the torus with di↵erent discretizations of the Laplace-Beltrami
operator and number k (x-axis) of eigenpairs. For small values
of t, increasing k reduces the approximation error ✏

1

until it be-
comes almost constant and close to zero. In fact, in this case
the behavior of the kernel is mainly influenced by the Lapla-
cian eigenvectors related to smaller eigenvalues. Fig. 13 shows
the robustness of the biharmonic distance from a source (black)
point, which has been computed using the linear FEM mass ma-
trix as weight, with respect to tiny and locally missing triangles,
noise, holes.

Starting from the filter functions in Eq. (12), we can design
new distances; the main constraint is that ' is strictly positive.
The condition lims!+1 '(s) = 0 guarantees the smoothness of
the resulting distance and a good approximation accuracy with
the truncated approximation (13). On the one hand, the e↵ects
of the Laplacian eigenvalues of larger magnitude are enhanced
by selecting as ' an increasing function such as a polynomial
map '(s) := sk, k � 1. On the other hand, '(s) :=

⇥Q
i2I(s � �i)

⇤
�1

suppresses the contribution of the eigenvectors related to a spe-
cific set {�k}k2I, I ✓ {1, . . . , n}, of eigenvalues. The filter map
' : R! R must be chosen in such a way that the e↵ects of the
Laplacian eigenvalues and eigenfunctions are balanced in order
to measure both local and global properties of the input shape.
A simple way to generate new filters is to compute a convex
combination of the maps in Eq. (12). For instance (Fig. 14),
't(s) := (1 � �) exp(�st) + �s2, 0  �  1, is associated to a set
of spectral distances that are closer to the di↵usion or the bi-
harmonic distance as much as � is closer to 0 or 1, respectively.

Executable paper.4 For the tests in Figs. 8, 9, 10, the reader
can run the experiment Spectral distances.exp.xml, which com-
putes the approximation d(pi,p j), j = 1, . . . , n, in Eq. (13) be-
tween a pre-defined anchor point pi and all the points of the in-
put triangle mesh. The user must select the o↵ file of the input
shape; one spectral distance among three possible choices (i.e.,
di↵usion, bi-harmonic, commute time distances); the value t of

4
https://collage.elsevier.com/collage/template?doi=10.

0000/1352476136186
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(a) (b) (c) (d)

Figure 13: Robustness of the biharmonic distance from a source (black) point, which has been computed using the linear FEM mass matrix as weight, with respect
to (b) tiny and missing triangles, (c) noise, (d) holes of an irregularly sampled surface (a) with local shape artifacts.

the time parameter for the di↵usion distance; and the k num-
ber of Laplacian eigenpairs. The default experiment computes
the bi-harmonic distance on the 3-torus with 100 linear FEM
Laplacian eigenpairs. Then, the colormap and level sets of the
computed distance are stored in filtered-spectral-distance.wrl
and displayed in filtered-spectral-distance.png. The array of
the values of the spectral distance is stored in filtered-spectral-
distance.txt.

5.2. wFEM Heat di↵usion distances
For the wFEM heat kernel, the di↵usion distances cannot

be defined by decomposing Kt as YT Y or YT BY; in fact, Kt
is no longer symmetric. However, the self-adjointness of Kt
with respect to the scalar product h·, ·iB allows us to introduce
a time-depending scalar product h·, ·it, which is induced by a
symmetric, positive definite matrix S t. To this end, the entries
of the matrix S t are rewritten as S t(i, j) := hht

i,h
t
jiB.

In F (M), we introduce the time-depending scalar product

hf, git := hKtf, giB = hf,KtgiB = fT BXDtXT Bg, (14)

f, g 2 F (M). Firstly, we show that Kt := XDtXT B is self-adjoint
with respect to h·, ·iB (i.e., hKtf, giB = hf,KtgiB, f, g 2 Rn). In
fact, for any f, g 2 Rn

hf, git = hKtf, giB = fT BXDtXT Bg = fT BKtg = hf,KtgiB.

To verify that the scalar product in (14) is well-posed, we show
that the matrix S t := BXDtXT B is symmetric and positive def-
inite. From the identity S t =(4) X�T DtX�1, we get that S t is
symmetric with strictly positive eigenvalues (exp(��it))n

i=1; in-
deed, S t is also positive definite.

The self-adjointness of Kt with respect to the mass matrix B
allows us to rewrite the entries of the matrix S t in terms of the
scalar product h·, ·iB as S t(i, j) = hht

i,h
t
jiB, ht

i = Kt/2ei, where
the wFEM di↵usion maps ht

i :M! R is induced by the wFEM

heat kernel Kt (c.f., Sect. 4.2). In fact,

S t = BXDt/2Dt/2XT B

=(4) BXDt/2(XT BX)Dt/2XT B

= YT BY, Y := XDt/2XT B = Kt/2,

and therefore

S t(i, j) = eT
i S te j = hht

i,h
t
jiB, ht

i := Kt/2ei.

Indeed, the wFEM di↵usion distances

kht
i � ht

jk
2
B = Kt/2(i, i) � 2Kt/2(i, j) + Kt/2( j, j) (15)

are uniquely defined by the entries of the matrix Kt. Finally, we
show that the wFEM di↵usion distance of the Laplacian eigen-
functions {xi}

n
i=1 is kxi � x jk

2
t = exp(��it) + exp(�� jt), i , j. To

this end, we notice that

hxi, x jit = hKtxi, x jiB = hexp(��it)xi, x jiB = exp(��it)�i j.

It follows that the entry S t(i, j) can be interpreted as the
scalar product between the (discrete) embedding ht

i, ht
j of pi, p j

in F (M) induced by the wFEM heat di↵usion matrix. Further-
more, the distance (15) is uniquely determined by the entries of
the kernel matrix. The aforementioned properties apply to the
wFEM heat kernel and are analogous to those that hold in the
continuous case. This analogy confirms that the proposed dis-
cretization and the choice of the intrinsic scalar product h·, ·iB
in F (M) maintain the main features of the heat di↵usion ker-
nel, together with a higher robustness to data discretization with
respect to previous work.

6. Conclusions and future work

Through the executable paper, we have provided a set of
experiments on the discretization and main properties of the
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� = 0 � = 0.2 � = 0.5 � = 0.8 � = 1

Figure 14: Level sets of the filtered spectral distance achieved as a convex combination of the filter maps associated to the di↵usion (� = 0, t = 0.5) and bi-harmonic
(� = 1) distances.

harmonic and bi-harmonic functions, the Laplacian eigenfunc-
tions, and the solution to the heat di↵usion equation, together
with the corresponding bi-harmonic, commute time, and dif-
fusion distances. This analysis has been based on the selec-
tion of di↵erent Laplacian weights, input shapes, transforma-
tions, initial boundary conditions, and source points. Analyz-
ing the spectral representation of the aforementioned distances,
we have shown that they can be represented in a unified way
through a filtering of the Laplacian eigenpairs. Finally, adapt-
ing this filtering to the distribution of the Laplacian eigenvalues
allow us to identify local and global details the input shape.
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