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Abstract

In this paper, we tackle the problem of computing a map that locally interpolates or approximates the values of a
scalar function, which have been sampled on a surface or a volumetric domain. We propose a local approximation
with radial basis functions, which conjugates different features such as locality, independence of any tessellation of
the sample points, and approximation accuracy. The proposed approach handles maps defined on both 3D shapes
and volumetric data and has extrapolation capabilities higher than linear precision methods and moving least-squares
techniques with polynomial functions. It is also robust with respect to data discretization and computationally efficient
through the solution of a small and well-conditioned linear system. With respect to previous work, it allows an easy
control on the preservation of local details and smoothness through both interpolating and least-squares constraints.
The main application we consider, is the approximation of maps defined on grids, 3D shapes, and volumetric data.

1. Introduction

Scalar functions on 3D shapes are capable of captur-
ing properties relevant to the definition of shape descrip-
tors and approximation schemes have been recently
used to extend these functions from the input shape to
another surface in order to identify corresponding fea-
ture elements [1] or compute harmonic volumetric map-
pings [2, 3, 4, 5]. Addressing the computation of volu-
metric [6] or template-based [7] shape descriptors by
extending the surface-based Laplacian eigenvectors to
the surrounding volume [8] avoids the evaluation of vol-
umetric descriptors directly on a tessellation of the in-
put shape. In this way, the computational cost, which
is generally high in case of volumetric meshes, is effec-
tively reduced. Furthermore, descriptors primarily de-
fined on surfaces (e.g., GPS embedding [9], biharmonic
distances [10, 8], heat kernel signatures [11]) are ap-
proximated to code volumetric information.

Our work tackles the problem of computing the
map F : R3 → R underlying a discrete scalar function
f : P → R, defined on a set P := {xi}

n
i=1 of points in R3,

which have been sampled on a surface or a volumetric
domain. The map F is defined as a function that locally
interpolates or approximates the f -values.

The idea behind the proposed approach is to compute
F(x), x ∈ R3, by imposing the f -values at the points of
a neighbor Nx := {x js }

k
s=1 of x as interpolating or least-

squares (LS) constraints. This choice is motivated by
the observation that the behavior of any approximation
of f at x is mainly controlled by the f -values in Nx.
Since the value F(x) is computed through the solution
of a k × k linear system, where k is generally small (i.e.,
20 ≤ k ≤ 30) and much lower than n, the cost for its
evaluation varies from O(k3) to O(k), according to the
sparsity of the coefficient matrix and the use of direct or
iterative solvers [12]. Dealing with a small linear sys-
tem also guarantees a lower conditioning number, which
is proportional to the size of the coefficient matrix and a
lower computational cost for the use of preconditioners.

Global approximation schemes [13, 14, 15, 16, 17]
apply interpolating or LS constraints globally; then,
the resulting approximation is evaluated at any sample
point. Since a n × n linear system is solved once, the
computational cost of the approximation with globally-
and locally-supported RBFs is O(n3) and O(n log n), re-
spectively. In contrast, we solve a linear system once
for each sample point and the evaluation of the resulting
approximation at s points takes O(sk3) time. Indeed, its
computational cost is generally lower than the approx-
imation with globally- and locally-supported RBFs. It
also reduces the memory storage from O(n3) and O(kn)
to O(k3). Finally, our method has the same order of
complexity of local approximation schemes, such as the
moving least-squares (MLS) approximation [13, 14, 15]
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(a) e := 64 (b) enew := 256
L∞ = 2.3 × 10−7

Figure 1: (a) Different iso-surfaces of the discrete
map f : P → R, achieved by sampling the electro-
static charge of a molecule on a low resolution grid P
(e × e × e). (b) Iso-surfaces of the corresponding
local approximation F : R3 → R of { f (x)}x∈P on a
enew × enew × enew grid S.

and the multi-level Partition of the Unity (PU) [18].
Since MLS approximations [13, 14, 15] and the

multi-level PU [18] involve a polynomial basis, they
cannot interpolate the f -values in a simple way. In
fact, the degree of the fitting polynomial determines
the number of interpolating conditions and not vicev-
ersa. For instance, in 3D a polynomial of degree two
or three requires to impose ten or nineteen interpolating
constraints; however, we might have a different num-
ber of points in different neighbors. Furthermore, in
case of uneven sampling fixing the number of points
in each neighbor instead of its radius, or increasing
the polynomial degree, provides unstable results due to
the ill-conditioning of the corresponding Gram matri-
ces [12]. Using a set of radial instead of polynomial
basis functions allows us to combine interpolating con-
straints for feature preservation and LS conditions for
noise removal. In fact, the number of local interpolat-
ing constraints is equal to the number of RBFs and no
more related to the degree of the polynomial used for
the local approximation. In this way, we improve the
flexibility in the design of scalar functions with sparse
constraints [19], which uses the PU and reproduces only
linear maps.

While approximation schemes have been specialized
for scalar functions defined on surfaces [20, 6], or point
sets [21], or volumetric grids [22, 23, 24, 25, 26, 27], the
local approximation handles scalar functions defined on
grids, 3D shapes, and volumes. Furthermore, it is not
restricted to the preservation of the critical points of the
input map [28] and its approximation accuracy is higher
than linear precision methods [6] and MLS techniques

(a) (b) L∞ = 1.3 × 10−5

(c) (d)

(e) (f)

(g) (h)

Figure 2: (a) Input noisy map f : P → R that represents
the flow values on a voxel grid P and (b) correspond-
ing local LS approximation. Level-sets of (c,e,g) f and
(d,f,h) its approximation.

with polynomial functions. While previous work gen-
erally requires a parameterization domain [29, 4, 5, 30],
the proposed approximation uses only the function val-
ues and does not require an underlying tessellation ofP.

Our tests on surface reconstruction have shown that
the proposed approach is useful for approximating point
sets that are noisy or have been sampled at low resolu-
tion. In fact, the local LS approximation with RBFs re-
duces the number of local artifacts, which are typically
introduced where a coarse discretization of the normals
is used to recover the interior and exterior part of the re-
constructed surface. For densely sampled shapes, poly-
nomial MLS surfaces already provide satisfactory re-
sults in terms of feature preservation, accuracy, and
computational cost. Therefore, the local LS approxima-
tion with RBFs improves the approximation accuracy at
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Input slices: resolution 100 × 100

Local LS resampling: resolution 200 × 200

Volumetric approximation

(a) 64 × 64 × 64 (b) 256 × 256 × 256

Figure 3: (Second row) Local LS approximation of (first row) a low-resolution and noisy medical data set. Iso-surfaces
related to the (a) input and (b) resampled data set.

the price of a higher computational cost. Finally, tests
on image upsampling have shown that our method is
better suited to extrapolate local information. In fact,
the redundant information available in high-resolution
images is effectively removed with linear downsampling
methods, without applying accurate schemes such as the
local approximation with RBFs.

As an overview of our approach, the energy of the
electrostatic charge (Fig. 1) of a molecule and of a flow
field (Fig. 2) have been measured at the nodes of a
coarse grid in R3 and the corresponding local approx-
imations have been resampled on a finer grid. The nor-
malized L∞ approximation error ‖F − f ‖∞/‖ f ‖∞ con-
firms the accuracy of the proposed approach. In Fig. 3,
the local approximation with LS constraints of 2D im-
ages have been resampled at a higher resolution. Com-
plex features, which are located where different tissues
and bones touch each others, are accurately approxi-
mated.

The paper is organized as follows. We introduce the

local (Sect. 2) and spectral volumetric approximation
(Sect. 3); then, we outline future work (Sect. 4).

2. Local approximation with RBFs

Firstly, we define the function F : R3 → R underly-
ing the discrete map f : P → R through a local ap-
proximation scheme with interpolating and LS con-
straints (Sect. 2.1). Then, we discuss its main properties
(Sect. 2.2) and applications (Sect. 2.3).

2.1. Local approximation with interpolating and least-
squares constraints

First of all, each point x ∈ R3 is associated to
the neighbor Nx := {x js }

k
s=1 of x, which includes those

points of P that fall inside the sphere of center x
and radius σ(x); i.e., ‖x js − x‖2 ≤ σ(x), s = 1, . . . , k
(Fig. 4(a)). Here, the value σ(x) is chosen accord-
ing to the local sampling density of P [31]. For sim-
plicity, we omit the dependence of the number k of
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(a) (b)

Figure 4: (a,b) Neighbors Nx and Nx of x, Nx ⊆ Nx,
used for the computation of the value F(x).

points in Nx from x and σ(x). In Nx, we approximate
the input scalar function f : P → R with the implicit
map F : R3 → R, which is the linear combination of the
RBFs B := {φ js (x) := φ(‖x − x js‖2)}ks=1; i.e.,{

F(x) :=
∑k

s=1 βs(x)φ js (x) = βT (x)φ̃(x),
β(x) := (βs(x))k

s=1, φ̃(x) := (φ js (x))k
s=1.

(1)

Each function φ js is generated by a map φ : R+ → R
and centered at x js [13, 14]. We also assume that the
corresponding kernel K(x, y) := φ(‖x − y‖22), x, y ∈ R3,
is positive definite; i.e., the Gram matrix associated to
K(·, ·) is positive definite.

Local approximation with interpolating constraints.
For the computation of the value F(x), as interpolat-
ing conditions we select the f -values at those points
of P that belong to the neighbor Nx of the evaluation
point x instead of the whole set of function values. This
choice is motivated by the observation that the behavior
of any approximation of f at x is mainly controlled by
the f -values inNx. Indeed, inNx we compute the func-
tion F : R3 → R that interpolates the values of f at the
points of Nx; i.e., F(x js ) = f (x js ), s = 1, . . . , k.

Imposing these interpolating conditions, the coeffi-
cient vector β(x) in Eq. (1) solves the linear system

Φβ(x) = fk, Φ := (φrs)k
r,s=1,

where Φ is the k × k Gram matrix associated to the gen-
erating map φ with respect to the points of Nx, whose
entries are φrs := φ(‖x jr − x js‖2), and fk := ( f (x js ))

k
s=1 is

the k × 1 array of the corresponding function values.
The novelty of the proposed approach is to apply this

scheme locally; for the evaluation of F(x), we con-
sider as interpolating constraints only the f -values at
those points of P that belong to Nx. Indeed, the eval-
uation point x drives the selection of a set of interpo-
lating conditions and the construction of the local ap-
proximation F in Nx (Fig. 4(b)). On the contrary, pre-
vious work applies these constraints globally; i.e., the

Algorithm 1: Main steps of the evaluation of the local
approximation F(x) at a sample point x (Fig. 4(b)).

Require: A point set P := {xi}
n
i=1, a scalar function

f : P → R, and a set S of sample points.
Ensure: The value F(x), x ∈ S, where F : R3 → R is

the local approximation of f with LS constraints.
1: Compute the nearest neighbor graph of P [32].
2: for each evaluation point x ∈ S do
3: compute the neighbors Nx, Nx: Nx ⊆ Nx;
4: compute the Gram matrix Φ in Eq. (2);
5: compute the vector fh in Eq. (2);
6: compute β(x) through Eq. (2);
7: evaluate F(x) in Eq. (1).
8: end for

function F : R3 → R that satisfies all the interpolating
conditions F(xi) = f (xi), i = 1, . . . , n, is computed and
then F is evaluated at any point x.

Local approximation with least-squares constraints.
Interpolating the f -values allows us to precisely repro-
duce the local behavior of f but is error-prone in case
of noisy data. To overcome this drawback, we replace
interpolating with LS constraints. Recalling that in Nx
the function F : R3 → R underlying f : P → R is a sum
of RBFs centered at the points of Nx, the local LS ap-
proximation takes into account the f -values at the points
of a neighbor Nx larger than Nx. In our tests, Nx
is the neighbor of x whose radius is twice the radius
of Nx. Then, F is computed by minimizing the error∑h

s=1 |F(x js ) − f (x js )|
2 through the normal equation

(ΦT Φ)β(x) = ΦT fh, Φ := (φsr)r=1,...,k
s=1,...,h, (2)

where φsr := φ(‖x jr − x js‖2)2,Nx := {x js }
h
s=1, k ≤ h ≤ n,

and fh := ( f (x js ))
h
s=1 is the h × 1 right-hand side vec-

tor. Since Φ is a full-rank matrix, (ΦT Φ) is invertible
and Eq. (2) has a unique solution. If Nx = Nx, then
the local approximations with interpolating and LS con-
straints are the same. The main steps for the evaluation
of the local approximation at a sample point are sum-
marized in Algorithm 1.

Examples. In Fig. 5, three smooth signals f̃ : I → R
have been sampled on a set P of 100 points of the
interval I := [0, 4π], thus achieving the discrete sig-
nal f : P → R, P := {xi}

n
i=1, xi < xi+1. Using f as in-

put data, we have computed the local approximation
F : R→ R with RBFs, which is evaluated on P and a
set S of samples finer than P; i.e., P ⊆ S. Indicat-
ing with εQ,∞ := maxxi∈Q{|F(xi) − f (xi)|} the maximum
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(a) f̃ (t) := t sin t (b) (c) f̃ (t) := t4 exp(−t2)

(d) (e) f̃ (t) := sin(t3) (f)

Figure 5: The smooth signal f̃ : I → R has been sampled on a set P of 100 points of the interval I := [0, 4π], thus
achieving the discrete map f : P → R. The graphs in (a,c,e) show the extrapolation error εS,∞ (y-axis) between the
local approximation F : R→ R underlying f and the f̃ -values on a set S of points, which includes P and has an
increasing number (x-axis) of samples. The counterparts of these tests on noisy signals are shown in (b,d,f).

pointwise variation between f and F on a set Q, we
evaluate both the approximation and extrapolation er-
ror by selecting Q := P and Q := S, respectively.

Due to the redundancy of the sampled values,
the extrapolation error εS,∞ for the local approxima-
tion with interpolating constraints is lower than 10−7

(Fig. 5(a,c,e)). To appreciate the difference between
interpolating and LS constraints, we have perturbed
the input data (Fig. 5(a,c,e)) with a Gaussian noise
(Fig. 5(b,d,f)); then, we have applied the local LS ap-
proximation. In this case, the extrapolation error re-
mains lower than 10−2 and the local approximation with
LS constraints attenuates the noise component, without
deteriorating the approximation accuracy and the ex-
trapolation capability.

Analogously to signal approximation, for 2D im-
ages the values of f : P ⊆ R2 → R are the pixels’ in-
tensity, the set P is the pixel grid, and the new sampling
grid S is finer or coarser than P in case of up- or down-
sampling, respectively. Due to the regularity of the im-
age grid, Nx, Nx are the 4- and 8-connected neighbors
of x. To test the extrapolation capability, the local ap-
proximation underlying the input data in Fig. 6(a) is re-
sampled on a higher resolution grid with interpolating

(Fig. 6(b)) and LS (Fig. 6(c)) constraints. Increasing the
neighbor size we get a larger number of basis functions
in Eq. (1), which might introduce local and small per-
turbations to the evaluation of the F-values. As a result,
the approximation error slightly increases but remains
lower than 10−4 (Fig. 6(d)).

We now consider the values of a noisy map
f : P → R (Fig. 7(a)), which has been computed by
adding a Gaussian noise to the values of the volu-
metric map f̃ : R3 → R at the vertices P of a trian-
gle mesh M. The behavior of f and its underly-
ing approximation F with LS constraints is visual-
ized through the iso-contours { f −1(α)}α∈R and the iso-
surfaces {F−1(α)}α∈R, respectively. The smoothness of
the iso-surfaces (Fig. 7(b,c)) confirms the regularity
of F around P. Finally, the L∞ error (Fig. 7(c)) be-
tween f̃ and F on P is lower than 10−6. Changes of
the support size slightly affect the approximation accu-
racy of the local approximation. Increasing the neigh-
bor radius forces the LS approximation (Fig. 7(d)) to
use a larger number of constraints on the f -values, thus
providing smoother results and a larger approximation
error, which is lower than 10−3.
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(a) Input res.: 50 × 50 (b) Interp.: 100 × 100 (c) LS: 100 × 100 (d) Approx. err.

Figure 6: (a) Input f : P → R and local approximation F : R2 → R with RBFs and (b) interpolating or (c) LS con-
straints. (d) L∞ error (y-axis) at each pixel (x-axis) of (c) with respect to a different k-nearest neighbor.

(a) f : P → R (b) F : R3 → R (c) (d)

Figure 7: (a) Level-sets of a noisy map f : P → R, achieved by perturbing with a Gaussian noise the samples of a
smooth function f̃ : P → R on the set P of vertices of a triangulated surface. (b) Iso-surfaces of the corresponding
approximation. (c) Approximation error (y-axis) at each point (x-axis) of P. (d) L∞ error (y-axis) with respect to an
increasing (x-axis) k-nearest neighbor used by the local LS approximation.

Choice of the approximation scheme and parameters.
If the f -values are noise-free or have been smoothed,
then the local interpolation (Fig. 5(a,c,e)) has the high-
est approximation accuracy. Otherwise (Fig. 5(b,d,f)),
we compute the local approximation with LS con-
straints, which shows the best compromise between
accuracy and robustness to noise. Since the number
of points in each neighbor is generally small (e.g.,
20 ≤ k ≤ 30), we consider a generating map φ with a
global support. Common choices of φ are the Gaussian
φ(t) := exp(−t/σ) and the bi-harmonic φ(t) := |t3|/σ
kernel, where the support σ is computed according
to [33, 34] and adapted to the local sampling of P.

Fig. 8 shows the local approximation of the electro-
static charge of the molecule C6H6. In Fig. 9, the local
approximation with RBFs of medical data acquired on
two consecutive slices of a human head has been re-
sampled on an intermediate slice without performing
a new acquisition, which is generally time-consuming
and possibly intractable (e.g., nocivity, health problems,
etc.).

2.2. Properties of the local approximation

To discuss the main features of the proposed ap-
proach, let us define the discrete shape space

F (P) := { f : P → R, f scalar function on P}. (3)

In F (P), any scalar function f : P → R is uniquely de-
fined by the array f := ( f (xi))n

i=1 of its values at P and
F (P) is isomorphic to Rn. We also introduce the ap-
proximating operator

A : F (P)→ F (R3), f 7→ A(f),

which maps the input function to its approximation.

Linearity. First of all, we show that the operator A is
linear and we focus on the local approximation with
LS constraints, which generalizes the interpolating case
(i.e., Nx = Nx). To this end, we verify that F(x) can be
written in the dual form{

F(x) :=
∑h

s=1 f (x js )ρs(x) = ρT (x)fh,
ρ(x) := (ρs(x))h

s=1, fh := ( f (x js ))
h
s=1,

x ∈ R3,
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(a) e := 20 (b) enew := 40
L∞ = 2.1%

(c) enew := 100 (d) enew := 200
L∞ = 2.4% L∞ = 2.6%

Figure 8: (a) Iso-surfaces of the electrostatic charge
E : R3 → R of the molecule C6H6 and sampled on a low
resolution grid P (e × e × e). (b-d) Iso-surfaces of the
local LS approximation F : R3 → R of {E(x)}x∈P on a
enew × enew × enew grid P?. Here, L∞ is the approxima-
tion error between F and E on P?.

i.e., as a linear combination of the f -values and the dual
functions {ρs(x)}hs=1. From the identity

F(x) =

k∑
s=1

βs(x)φ js (x)

= βT (x)φ̃(x), β := (βs)k
s=1 φ̃(x) := (φ js (x))k

s=1,

=(2) fT
h Φ(ΦT Φ)−1φ̃(x),

we get the dual shape basis

ρ(x) = Φ(ΦT Φ)−1φ̃(x). (4)

Given the functions F(x) := ρT (x)fh, G(x) := ρT (x)gh

underlying f , g : P → R in Nx, the linearity of A fol-
lows from the relation

A(a f + bg)(x) = ρT (x)(afh + bgh)
= aF(x) + bG(x)
= aA( f )(x) + bA(g)(x) a, b ∈ R.

Our main aim is to provide an accurate approxima-
tion F : R3 → R of a discrete map f : P → R. Indeed,

Figure 9: The input images (first column) have been
approximated with the implicit LS approximation (sec-
ond column) at a double resolution. Then, the result-
ing approximation has been sampled on a new slice in-
between the input ones (right picture).

the output of the proposed approach is the discrete set
{F(x)}x∈S of F-values at a set S of samples. Additional
properties of the local approximation with RBFs, such
as the continuity, are discussed in [35].

Computational cost. The computation of the nearest
neighbor graph takes O(n log n) time [32]. Assuming
that the neighbor Nx contains k points, the evaluation
of F(x) requires to solve a k × k linear system, where k
is generally small (i.e., 20 ≤ k ≤ 30) and much lower
than n. Its solution takes O(k3) time with direct solvers
and varies from O(k) to O(k2) in case of sparse coeffi-
cient matrix and iterative solvers [12]. Then, the evalua-
tion of F at s sample points varies from O(sk3) to O(sk).
According to Table 1 and Fig. 10, the computational
cost of the proposed approach is generally lower than
the approximation with globally- and locally-supported
RBFs. It also reduces the memory storage from O(n3)
and O(kn) to O(k3). Finally, our method has the same or-
der of computational complexity of local approximation
schemes, such as the MLS approximation [13, 14, 15]
and the multi-level PU [18]. For the examples of the pa-
per, Table 2 reports the minimum and maximum num-
ber of points inNx, x ∈ P, which have been used for the
evaluation of F(x).

Stability and accuracy. To estimate the stability to
noise of the local approximation scheme, let us perturb
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Figure 10: Computational cost (y-axis, log-scale) of dif-
ferent approximation schemes (Table. 1) with respect to
the number n (x-axis) of input points.

the input f -values on P as { f (xi) + ei}
n
i=1 and consider

the corresponding approximations F, Fe : R3 → R.
The LS approximations F(x) = βT (x)φ̃(x) and
Fe(x) = βT

e (x)φ̃(x) satisfy the normal equations

(ΦT Φ)β(x) = ΦT fh, β(x) := (βi(x))h
i=1,

(ΦT Φ)βe(x) = ΦT (fh + eh), βe(x) := (β(i)
e (x))h

i=1,

with eh := (e js )
h
s=1 perturbation vector. From these re-

lations, the variation between F(x) and Fe(x) in Nx is
bounded as

|F(x) − Fe(x)| ≤(2) ‖β(x) − βe(x)‖2‖φ̃(x)‖2
= k1/2‖φ‖∞‖(ΦT Φ)−1ΦT eh‖2

≤ k1/2‖φ‖∞
‖ΦT ‖2

λ1(ΦT Φ)
‖e‖2.

(5)

Then, the stability to noise of the proposed approach
is mainly controlled by the inverse of the minimum
eigenvalue of the coefficient matrix ΦT Φ and the noise
magnitude ‖e‖2. The minimum eigenvalue is efficiently
computed using iterative methods for the evaluation of
the matrix spectrum [12]. The point-wise approxima-
tion error between the input function value f (xi) = eT

i f
and its approximation F(xi) is estimated as

|F(xi) − f (xi)| ≤ ‖ρ(xi) − ei‖2‖fh‖2

=(4) ‖Φ(ΦT Φ)−1φ̃(xi) − ei‖2‖fh‖2

≤

(
1 +

‖Φ‖2

λ1(ΦT Φ)

)
‖f‖2.

(6)

If ΦT Φ is ill-conditioned, then its preconditioning [12]
(Ch. 10) improves the approximation accuracy (5) and
computation stability (6).

2.3. Applications and discussion
We now compare the local approximation with RBFs

to previous work on image and surface approximation.

Table 1: Computational cost of different approximations
(Fig. 10): solution of the normal equation (LSys.); eval-
uation of F at x (Ev. x) and a set S of s samples (Ev. S).
The column (Con.) indicates the type of constraints;
i.e., interpolating (In.) and least-squares (LS.).

Approx. Scheme LSys. Ev. x Ev. S Con.
Our method O(k3) O(k) O(sk3) In./Ls.
MLS O(k3) O(k) O(sk3) Ls.
[13, 14, 15]
PU [18] O(k3) O(k) O(sk3) Ls.
LocS-RBF [36] O(n2) O(n) O(sk3) In./Ls.
GS-RBF [17] O(n3) O(n) O(sk3) In./Ls.

Table 2: Minimum and maximum number of points
in Nx, x ∈ P, used for the computation of F(x).

Test n := |P| Min Max
Fig. 1 262K 12 27
Fig. 7 8K 10 18
Fig. 8 64K 12 27
Fig. 16 8K 14 29
Fig. 17(a) 11K 10 25
Fig. 17(b) 6K 12 14

Image resampling. Computing different approxima-
tions (Fig. 11, Table 3) of the input data in Fig. 6(a)
and resampling them on a higher resolution grid, we
show the good extrapolation properties of the proposed
approach (Fig. 11(e,f)) with respect to (i) the approx-
imation with locally-supported RBFs and interpolating
(Fig. 11(a)) or LS (Fig. 11(b)) constraints; (ii) the poly-
nomial MLS (Fig. 11(c)); and (iii) the PU (Fig. 11(d)).
Furthermore, the local approximations with RBFs and
interpolating (Fig. 11(e)) or LS (Fig. 11(f)) constraints
show the preservation of local details and a reduction of
the blurring effects in Fig. 11(a-d).

According to Tables 3, 4, the extrapolation capability
of the approximation with RBFs is higher than polyno-
mial approximations. This property is due to the use of
RBFs, which are adapted to the local shape better than
polynomials, and the LS approach, which smoothes the
pixels by minimizing the LS error. Indeed, the proposed
approach is better suited to extrapolate local informa-
tion as it happens when upsampling low-resolution im-
ages. For instance, in Fig. 12 the blurred effects in the
approximations disappear when the input resolution is
300 × 300 or higher. The redundant information avail-
able in high-resolution images (Fig. 13) is effectively
removed with linear downsampling methods, without
applying accurate schemes such as the local approxi-
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(a) Interp. LocS-RBF. (b) LS LocS-RBFs (c) Bicubic pol. MLS

(d) PU (e) Local interp. with RBFs (f) Local LS with RBFs

Figure 11: 200 × 200 resamplings of the image in Fig. 6(a) with compactly-supported RBFs and (a) interpolating or
(b) LS constraints. (c) Polynomial MLS and (d) PU approximation. The local approximations with RBFs with (e)
interpolating and (f) LS constraints show the preservation of local details and a reduction of the blurring effects in
(a-d). Statistics are reported in Table 3.

mation with RBFs.

Implicit surface reconstruction. In R3, implicit model-
ing [37] and MLS techniques provide an easy way to
approximate a point set with an iso-surface. The qual-
ity of the input data P in terms of sampling and noise is
usually represented by a confidence map f : P → [0, 1],
which associates to each point xi of P its degree f (xi)
of reliability. This map is provided by the acquisition
process, as it happens for laser scanners, or computed
by analyzing the data variability through likelihood es-
timation [38]. A higher value of f corresponds to a
higher reliability. Assuming that the confidence map f
is known, we approximate the data set {(xi, f (xi))}ni=1
with the iso-surface Σ := {x ∈ R3 : F(x) = 1}, where
F : R3 → R is the function underlying the confidence
map f (Fig. 14). Furthermore, interpolating constraints
preserve the sharp features of the underlying shape and
LS constraints guarantee the stability of the local LS
approximation with respect to irregular sampling and
noise (Fig. 15). Note that both types of approximations
can be combined and used to achieve a different approx-
imation accuracy and smoothness.

Applying interpolating constraints at those points
of P whose confidence value is one guarantees that
these points will belong to the iso-surface Σ. Surface

Table 3: Timings (TT, s:ms), LS (LS ex. er.) and bicu-
bic MLS (MLS ex. er.) extrapolation error associated
to the image upsampling from a n × n to a 200 × 200
resolution (Fig. 11). The extrapolation error has been
computed as the L∞ error between each resampling and
the ground-truth 200 × 200 image. Tests performed on
a 2.7 GHz Intel Core i7, with 8GB memory.

n TT LS ex. er. TT MLS ex. er.
25 5.18 1.66 · 10−1 5.01 2.25 · 10−1

50 8.40 0.72 · 10−1 8.45 1.04 · 10−1

100 10.27 7.68 · 10−2 11.02 9.61 · 10−2

150 12.85 1.71 · 10−2 13.03 3.06 · 10−2

200 14.09 1.12 · 10−3 14.00 2.24 · 10−3

irregularities might appear in regions with a low sam-
pling density or when the evaluation point x is chosen
far fromP; in this case, it is enough to enlarge the neigh-
bor radius or use the k-nearest neighbor of x. The main
difference between the σ- or k-nearest neighbor graph is
the support of the resulting approximation F : R3 → R;
the former provides a globally-supported approxima-
tion. In the latter case, the approximation generally has
a local support, which is localized around P.

Fig. 16 shows the reconstruction obtained by the lo-
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Input 25 × 25 Resampl. 1024 × 1024 Input 50 × 50 Resampl. 1024 × 1024

Input 100 × 100 Resampl. 1024 × 124 Input 300 × 300 Resampl. 1024 × 1024

Figure 12: Images at different resolutions and 1024 × 1024 local LS resamplings. Statistics are reported in Table 4.

(a) Input 1024 × 1024 (b) 200 × 200 Local LS (c) 200 × 200 Bicubic MLS

Figure 13: (a) Input and downsampled image with the (b) local LS and (c) bicubic MLS approximation.

Table 4: L∞ extrapolation error related to the local LS
approximation with RBFs (LS ex. er.) and the MLS
approximation with bicubic polynomials (MLS ex. er.)
of an input n × n image (Fig. 12).

n LS ex. er. MLS ex. er.
25 1.26 · 10−1 2.10 · 10−1

50 1.35 · 10−2 8.52 · 10−2

100 3.94 · 10−2 5.90 · 10−2

300 1.66 · 10−2 2.69 · 10−2

500 1.27 · 10−2 1.61 · 10−2

700 6.43 · 10−3 9.85 · 10−3

cal LS approximation with RBFs; the algebraic point
set surface [39, 40], which is based on the local fit-
ting of algebraic surfaces; and the robust implicit MLS
method [41], which preserves sharp features using lin-

ear regression techniques. From this example, we get
that our method is useful for approximating point sets
that are noisy or have been sampled at low resolution.
In fact, the local LS approximation with RBFs reduces
the number of local artifacts, which are typically intro-
duced where a coarse discretization of the normals is
used to recover the interior and exterior part of the re-
constructed surface and to avoid the constant trivial so-
lution [36, 42, 17]. For densely sampled shapes, polyno-
mial MLS surfaces already provide satisfactory results
in terms of feature preservation, accuracy, and compu-
tational cost. Indeed, the local LS approximation with
RBFs improves the approximation accuracy at the price
of a higher computational cost.
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Level-sets of the approximation F : R2 → R
underlying the confidence map f : P → [0, 1] on P
(black dots), which is (a) regularly-, (b-d) irregularly-
sampled, (e,f) noisy.

3. Volumetric approximation through the Laplacian
spectrum

We now apply the local approximation with RBFs
to scalar functions defined on triangulated surfaces.
In [21], the approximation of Laplacian eigenvectors on
point sets, whose accuracy is limited to the close prox-
imity of the underlying surface, is computed through the
Nystrom method. For the spectral volumetric approxi-
mation, the coefficients’ vector β in Eq. (1) is indepen-
dent of the evaluation point x and is achieved by pro-
jecting the array f := ( f (xi))n

i=1 of the values of the in-
put discrete signal f : P → R along the eigenvectors of
the Laplacian matrix associated to the input data set P.
These basis functions, which are the Laplacian eigen-
vectors associated to the input shape, take into account
its local geometry. With respect to the local approxi-
mation with interpolating and LS constraints, the most
time-consuming part of the spectral volumetric approx-
imation is the computation of the Laplacian spectrum in
super-linear time [43].

If P is the set of vertices of a triangle meshM, then
the discrete shape space F (P) in Eq. (3), is endowed
with the scalar product 〈f, g〉B := fT Bg, f, g ∈ Rn, in-
duced by a n × n positive-definite matrix B. Exam-

(a) (b)

(c) (d)

Figure 15: Level-sets (black curves) and reconstruction
(bold curve) Σ := F−1(−1) of the local approximation F
of the input data (white dots) with (a-c) different den-
sities and (d) noise. Curve spikes are recovered with
interpolating constraints.

ples of B are the identity matrix, which induces the
Euclidean scalar product, and the mass matrix of the
linear FEM discretization [44] of the Laplace-Beltrami
operator. More precisely, the linear FEM discretiza-
tion [43, 44] is given by the weighted Laplacian ma-
trix L := B−1L̃. Here, the stiffness matrix L̃ is the
un-normalized Tutte-Laplacian matrix with cotangent
weights and the mass matrix B codes the geometry ofM
in terms of triangle areas. These matrices are defined as

Bi j :=


|tr |+|ts |

12 j ∈ N(i),∑
k∈N(i) |tk |

6 i = j,
0 else,

L̃i j :=


wi j := cotαi j+cot βi j

2 j ∈ N(i),
−

∑
k∈N(i) wik i = j,

0 else,

where N(i) is the 1-star of the vertex i; αi j, βi j are the
angles opposite to the edge (i, j); tr, ts are the triangles
that share the edge (i, j); and |t| is the area of the trian-
gle t. Then, the corresponding eigensystem {(λi, vi)}ni=1
satisfies the generalized eigenproblem

L̃vi = λiBvi, 〈vi, v j〉B = vT
i Bv j = δi j, i, j = 1, . . . , n.

In this case, the function F : R3 → R underlying
f : P → R is computed through the following steps:

• the array f of f -values is expressed as a lin-
ear combination of the Laplacian eigenvectors
V := {vi}

n
i=1; i.e., f =

∑n
i=1〈f, vi〉Bvi;
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(a) (b) Our method (c) APSS (d) RIMLS

Figure 16: Reconstruction of (a) a coarse point set with the (b) local approximation with RBFs, (c) algebraic point
set surface (APSS), and (d) robust implicit MLS (RIMLS). (c,d-bottom) Non-manifold areas appear on the mouth.

• using the local approximation described in Sec-
tion 2.1, each eigenvector vi ∈ F (P) is extended
to a volumetric map φi : R3 → R;

• the maps {φi}
n
i=1 and the coefficient vector

β(x) := fT BV , V = [v1, . . . , vn], are used to recover
the function

F(x) :=
n∑

i=1

〈f, vi〉Bφi(x) = fT BVφ̃(x), (7)

as a linear combination of the eigenfunctions
{φi}

n
i=1 associated to the Laplacian eigenvectors

{vi}
n
i=1, whose coefficients are those that express f

in terms of the Laplacian eigenvectors.

Then, the approximating functional is defined as
A( f )(x) =

∑n
i=1〈f, vi〉Bφi(x), x ∈ R3.

An example of volumetric approximation of a Lapla-
cian eigenfunction is shown in Fig. 17. Since we have
applied the local approximation with interpolating con-
straints, the iso-surface F−1(α) intersect the surfaceM
along the level-set f −1(α).

Proposition 3.1. The spectral volumetric approxima-
tion satisfies the following properties:

(A) it is linear with respect to the input f -values;

(B) the approximation error between F and f on P is
bounded as follows

‖(F(xs))n
s=1−f‖2 ≤ [λn(Φ) + λn(V)] λn(V)λn(B)‖f‖2;

(C) perturbing the input data f := ( f (xi))n
i=1 with a

noise vector e := (ei)n
i=1, the discrepancy between

the corresponding approximations is bounded as

‖A(f + e) −A(e)‖∞ ≤ ‖φ‖∞‖e‖B.

Proof. (A) The linearity of the approximation follows
from the identity

A(af + bg) =

n∑
i=1

〈af + bg, vi〉Bφi

= a
n∑

i=1

〈f, vi〉Bφi + b
n∑

i=1

〈g, vi〉Bφi

= aA(f) + bA(g), a, b ∈ R, f, g ∈ F (P).

(B) We derive the approximation error between f
and F on P. From Eq. (7), we get that

(F(xs))n
s=1 = (φ̃(xs))n

s=1a = Φa, Φ := (φi(x j))n
i, j=1,

where a := (〈f, vi〉B)n
i=1 ∈ R

n is the array of the com-
ponents of f along the Laplacian eigenfunctions (i.e.,
f := Va). Indeed, the approximation error between F
and f on P is bounded as follows

‖(F(xs))n
s=1 − f‖2 = ‖(Φ − V)a‖2

≤ [λn(Φ) + λn(V)] λn(B)‖V‖2‖f‖2.

(C) The discrepancy between A(f + e) and A(f) is
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(a)

(b)

Figure 17: (a,b) Level-sets of a Laplacian eigenfunction
f : P → R on a surface mesh and iso-surfaces of the
corresponding local approximations F : R3 → R with
interpolating constraints.

bounded as

‖A(f + e) −A(e)‖∞ = ‖〈e, vi〉Bφi‖∞

≤

n∑
i=1

|〈e, vi〉B|‖φi‖∞

≤ ‖φ‖∞‖e‖B.

4. Conclusions and future work

This paper has presented a meshless approximation
of discrete scalar functions defined on 3D shapes and
volumetric domains. The approximation scheme com-
bines interpolating and least-squares conditions; shows
a high approximation accuracy and extrapolation capa-
bilities; is computationally efficient through the solution
of a small and well-conditioned linear system.

Encoding the input discrete map into an implicit
representation also provides an efficient way to accu-
rately compute high-level representations such as the
Reeb graph [45] and the Morse complex [46]; apply
physically-based modeling [4, 47, 48]; and classify the
critical points of implicit maps defined as linear combi-
nations of RBFs [49, 50]. Finally, a volume-based ap-
proximation of a surface-based map gives an insight and

could be useful to make predictions about the underly-
ing phenomenon. For instance, the volumetric approxi-
mation of spatio-physico-chemical properties measured
or simulated on a molecule could be used to predict in-
teractions [51].
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[41] A. C. Öztireli, G. Guennebaud, M. H. Gross, Feature preserving
point set surfaces based on non-linear kernel regression, Com-
puter Graphics Forum 28 (2) (2009) 493–501.

[42] C. Shen, J. F. O’Brien, J. R. Shewchuk, Interpolating and ap-
proximating implicit surfaces from polygon soup, in: ACM Sig-
graph Courses, 2005, p. 204.

[43] B. Vallet, B. Levy, Manifold harmonics, Computer Graphics Fo-
rum 27(2).

[44] M. Reuter, F.-E. Wolter, N. Peinecke, Laplace-Beltrami spectra
as Shape-DNA of surfaces and solids, Computer-Aided Design
38 (4) (2006) 342–366.

[45] V. Pascucci, G. Scorzelli, P. Bremer, A. Mascarenhas, Robust
on-line computation of Reeb graphs: simplicity and speed,
ACM Transactions on Graphics 26 (3).

[46] A. Gyulassy, V. Natarajan, V. Pascucci, B. Hamann, Efficient
computation of Morse-Smale complexes for three-dimensional
scalar functions, IEEE Transactions on Visualization and Com-
puter Graphics 13 (6) (2007) 1440–1447.

[47] B. Adams, M. Wicke, Meshless approximation methods and ap-
plications in physics based modeling and animation, in: Euro-
graphics Tutorials, 2009, pp. 213–239.

[48] B. Adams, M. Wicke, M. Ovsjanikov, M. Wand, H.-P. Seidel,
L. Guibas, Meshless shape and motion design for multiple de-
formable objects, Computer Graphics Forum 29 (1) (2010) 43–
59.

[49] J. C. Hart, A. Durr, D. Harsh, Critical points of polynomial
metaballs, in: Proc. of Implicit Surfaces, 1998, pp. 69–76.

[50] S.-T. Wu, M. De Gomensoro, On improving the search for crit-
ical points of implicit functions, Proc. Implicit Surfaces (1999)
73–80.

[51] G. Cipriano, M. Gleicher, Molecular surface abstraction, IEEE
Transactions on Visualization and Computer Graphics 13 (6)
(2007) 1608–1615.

14


