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Abstract

Digital environmental data are becoming commonplace and the amount of informa-
tion they provide is complex to process, due to the size, variety, and dynamic nature
of the data captured by sensing devices. The paper discusses an evaluation frame-
work for comparing methods to approximate observed rain data, in real conditions
of sparsity of the observations. The novelty brought by this experimental study
stands in the geographical area and heterogeneity of the data used for evaluation,
aspects which challenge all approximation methods. The Liguria region, located in
the north-west of Italy, is a complex area for the orography and the closeness to the
sea, which cause complex hydro-meteorological events. The observed rain data are
highly heterogeneous: two data sets come from measured rain gathered from two
different rain gauge networks, with different characteristics and spatial distributions
over the Liguria region; the third data set come from weather radar, with a more
regular coverage of the same region but a different veracity. Finally, another novelty
of the paper is brought by the proposal of an application-oriented perspective on
the comparison. The approximation models the rain field, whose maxima and their
evolution is essential for an effective monitoring of meteorological events. Therefore,
we adapt a storm tracking technique to the analysis of the displacement of max-
ima computed by the different methods, used as a dissimilarity measure among the
approximation methods analyzed.

1. Introduction

The large amount of digital data provides an extremely rich, yet difficult to pro-
cess, amount of information about our environment, geographic and meteorological
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phenomena. The geographical area selected for presenting our results, the Liguria
region in Italy, is an exemplary case study: the articulated orography is character-
ized by many small catchment basins that are highly influenced by local maxima of
precipitation. Moreover, the proximity to the sea causes additional problems during
storms, concurring to the creation of secondary low pressure areas, also known as
the Genova Low, which increases the amount of precipitation and the risk of critical
flash floods. The continuous observation of rain data during critical events, as well as
the analysis of historical time series of precipitation, are definitely crucial to support
a better understanding and monitoring of hydro-geological risks, such as floods and
landslides (Keefer et al., 1987; Hong et al., 2007; Wake, 2013; Hou et al., 2014). A
robust approximation method, resilient to errors, is therefore highly desirable.

In this context, the paper presents the results of the evaluation of six approxima-
tion techniques, which give insights into their suitability to capture the behavior of
precipitation events: the nearest neighbor method, the piecewise linear approxima-
tion with barycentric coordinates, the inverse distance weighting, kriging, the Locally
Refinable (LR) B-Splines, and the Radial Basis Functions (RBFs). The comparison
of methods for rainfall approximation has been addressed in the literature both at
the theoretical level (Scheuerer et al., 2013) and for domain-specific analysis (Skok
and Vrhovec, 2006). Our study contributes to this topic extending the analysis to
more approximation techniques, such as the LR B-Splines, and using a new setting
for the comparison, inspired by the theory of topological persistence (Edelsbrunner
et al., 2002). The basic idea is that, in order to characterize precipitation events, it is
important to focus on the main features of the rainfall fields and their configuration.
With this motivation in mind, the prominence of precipitation maxima is measured
through the notion of persistence, which allows for hierarchically organize maxima
by importance, and possibly filter out irrelevant ones. Based on this, we developed
an approach to compare different approximation methods based on the analysis of
the number and location of the most prominent maxima they produce.

Our focus is on the evaluation of approximation performance in real conditions
of sparsity: the number of the measuring gauges is quite low with respect to the
area covered and their distribution is quite uneven. The evaluation results give also
insights on the influence of integrating radar data in the approximation: rain data
extracted from radar measures provide a complementary information with respect to
rain gauges, less accurate but with a wider and more stable coverage. The integra-
tion of measured rain and radar data gives insights on the reliance on radar-driven
approximations in case of failures of some rainfall stations during heavy storms.

For this study, we considered some of the best known methods in this field (near-
est neighbor, piecewise linear, inverse distance weighting, kriging) and some other
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methods that have been applied mostly in the field of computer graphics, but have
interesting properties for this application (LR B-Splines and RBFs).

The nearest neighbor method provides a rough approximation by defining the
rainfall approximation at a point as equal to the rainfall value measured by its
closest rainfall station. Barycentric coordinates are typically applied to compute
piecewise linear approximations on triangle, or more generally, polygonal meshes,
and they can be computed very efficiently, but generally provide a lower accuracy
when we consider sparse data. LR B-Splines are particularly useful as a compact
representation of functions over large domains: they use a (locally) regular domain
parameterization and can be locally refined according to the required approximation
error. The inverse distance weighting and ordinary kriging are very well-known
approximation methods in this field. Ordinary kriging uses a variogram to capture
the spatial distribution of the input data; similarly, RBFs use a kernel, which can
be also adapted to the spatial distribution of the data, through the selection of the
kernel width. Among other techniques, we mention Poisson based methods. The
solution to the Poisson equation, which has been applied to surface reconstruction
from point sets (Kazhdan et al., 2006), can be written in terms of the harmonic
kernel. Therefore, Poisson methods provide results analogous to the approximation
with RBFs induced by the harmonic kernel. Since the harmonic kernel tends to
over-smooth the solution, in our experiments we will focus on the approximation
with RBFs induced by the Gaussian kernel.

The aforementioned approximation methods define different functions, whose be-
havior is studied both at the numerical level (accuracy, sensitivity to sparseness,
computational issues) and at a qualitative level by measuring the differences among
the configuration of precipitation maxima induced by the six techniques. The com-
parative study was conducted selecting Liguria as area of interest, and two precip-
itation events recorded on September 29, 2013 and January 17, 2014, characterized
by different meteorological situation and events. For the latter event, we also used
rain data extracted from weather radar acquisition.

To contextualize better the comparison, we start with a short overview of re-
lated work on rain observation methods, approximation and comparison techniques
(Sect. 2). We present the setting adopted for the evaluation with details on the rain
event and metrics used for the comparison (Sect. 3). We give the formal definition
of the six approximation methods discussed (Sect. 4) and discuss their performances
with respect to accuracy, behavior with respect to sparsity, and computational as-
pects (Sect. 5). Then, the approximation schemes are compared by analyzing the
difference in the configuration and prominence of the detected maxima (Sect. 6).
Finally (Sect. 7), we summarize our study.
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2. Related work

We briefly review previous work on measuring, approximating, and analyzing
rainfall data and precipitation fields.

Measuring rainfall data. Rainfall intensities are traditionally derived by measuring
the rain rate through rain gauges, weather radar, or by measuring the variations in
soil moisture with micro-wave satellite sensors (Brocca et al., 2014). Even though
satellite precipitation analysis allows the estimation of rainfall data at a global scale
and in areas where ground measures are sparse, the evaluation of light rainfalls is gen-
erally difficult, thus generating an underestimation of the cumulated rainfalls (Kucera
et al., 2013). To bypass this issue, in (Brocca et al., 2014) the soil water balance
equation is applied to extrapolate the daily rainfall from soil moisture data. The
integration of rainfall data at regional and local levels is also intended to provide a
more precise approximation of the underlying phenomenon on urban areas, which
are sensitive to spatial variations in rainfalls (Segond, 2007). The combined use of
rain height measured at rain gauges and radar-derived ones provides locally accu-
rate but spatially anisotropic measures (around gauges) with globally distributed
detailed data. Furthermore, we mention that the spatial and temporal variations
(e.g., speed, direction) of rainfalls are important to characterize their variability and
peaks, together with their effects on catchments.

Approximating rainfall data. Different approaches have been used for the approxi-
mation of rainfall data. In (Thiessen, 1911), rainfalls recorded in the closest gauge
are associated with un-sampled locations, by identifying a Voronoi diagram around
each weather station and assigning the measured rainfall to the respective Voronoi
cell. Back to the 1972, the U.S. National Weather Service proposed to estimate the
unknown rainfall values as a weighted average of the neighboring values; the weights
are the inverse of the squares of the distances between the un-sampled locations and
each rainfall sample. The underlying assumption is that the samples are autocorre-
lated and their estimates depend on the neighboring values. This method has been
extended in (Teegavarapu and Chandramouli, 2005) through the modified inverse
distance and the correlation weighting method, the inverse exponential and nearest
neighbor distance weighting method, and the artificial neural network estimation.
In (McRobie et al., 2013), storms are modeled as clusters of Gaussian rainfall cells,
where each cell is represented as an ellipse whose axis is in the direction of the
movement and the rainfall intensity is a Gaussian function along each axis (Willems,
2001).

McCuen (McCuen, 1989) proposed the isoyetal method that allows the hydrolo-
gists to take into account the effects of different factors (e.g., elevation) on the rainfall
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field by drawing lines of equal rainfall depths among the rain-gauges and taking into
account the main factors that influence the distribution of the rain field. Then, the
rainfalls at new locations are approximated by interpolation starting from the iso-
hyets. Geo-statistical approaches allow us to take into account the spatial correlation
between neighboring samples and to predict the values at new locations (Journel and
Huijbregts, 1978; Goovaerts, 1997, 2000). Furthermore, the geo-statistic estimator
includes additional information, such as weather-radar data (Creutin et al., 1988;
Azimi-Zonooz et al., 1989) or elevation from a digital model (Goovaerts, 2000; Di Pi-
azza et al., 2011).

Comparing rainfall data approximations. For the comparison of the precipitation
fields originated from different approximation schemes, we have adopted a number
of standard metrics to assess their differences. Moreover, we have extended the
evaluation approach by comparing the differences in the configurations of meaningful
features of the precipitation fields, namely prominent maxima. The motivation for
this evaluation is that precipitation maxima convey important information for storm
tracking, a crucial analysis of dynamic measures of rain data, where meaningful
features associated with distinct time frames, are matched to track their evolution
along time.

There is a rich literature on storm tracking, mostly using a region-based approach,
where regions in radar images are characterized by high reflectivity and sufficiently
large area. Various characteristics of these regions, such as centroids, area, ma-
jor/minor radii, and orientation, are computed, see for instance (Lakshmanan and
Smith, 2009; Dixon and Wiener, 1993; Han et al., 2009). However, we underline
that the focus of the paper is not storm tracking. Indeed, we use the storm tracking
measure recently proposed in Biasotti et al. (2015) for the comparison of the different
fields. The approach is based on a topological analysis of rainfall data, which focuses
on the most prominent precipitation maxima instead of regions. Indeed, the gran-
ularity of the analysis is more appropriate for the characteristics of the geographic
area selected; at the same time, the introduction of an ad-hoc distance, combining
geographical distance and the measured rainfall difference, allows for matching and
tracking prominent maxima along time. The same strategy for matching maxima
is used to evaluate the displacement of the maxima of the different approximated
fields, treating them as if they were snapshots at different times.

3. Case studies and evaluation metrics

The area selected for the evaluation is the Liguria region, in the north-west of
Italy. Liguria can be described as a long and narrow strip of land, located between
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the sea, the Alps and the Apennines mountains, with the watershed line running at
an average altitude of about 1000 m. The orography and the closeness to the sea
make this area particularly interesting for hydro-meteorological events (Sect. 3.1),
frequently characterized by heavy rain due to Atlantic low pressure area, augmented
by a secondary low pressure area created by the Ligurian sea (Genova Low). More-
over, the several and small catchments typically cause fast flooding events, and even
small rivers exhibit high hydraulic energy due to the quick variation of altitude.
This is the main motivation behind our analysis (Sect. 3.2), which targets the un-
derstanding of the best approximation method to capture important and potentially
dangerous precipitation events.

3.1. Rainfall stations and radar data

In Liguria, observed rainfall data are captured by two different rain gauges net-
works. The first rain gauge network is owned by the ARPAL team of Regione Liguria,
and consists of 143 professional measure stations distributed over the whole region;
the measures are acquired every 5-20 minutes, and the stations are connected by
GPRS and radio link connection, producing about 2 MB data per day. The reso-
lution of the rain gauges is 0, 2mm while their accuracy is in the range of 2% error
threshold. The second rain gauge network is owned by the Genova municipality and
consists of 25 semi-professional measuring stations spread within the city boundary;
the acquisitions are done every 3 minutes, and the stations are linked by GPRS or
LAN connections, with an average production of 1Mb data per day. The configura-
tion of the rain gauge networks is shown in Fig. 1.

The two rain gauge networks act as sampling devices of the true precipitation
field, working at two different scales, that is, at two different spatial and temporal
distributions. Since the temporal interval is different for each network, we have cu-
mulated the station rainfalls to a step of 30 minutes. This selection is also motivated
by the desire to produce a fine-grained evaluation of the approximation methods in
the perspective of a real-time precipitation monitoring. Note that the cumulated
interval is a much smaller than the one used in (Skok and Vrhovec, 2006), where
an interval of 24 hours was used. Concerning the precipitation events, we selected
two different rainy days, September 29, 2013 and January 17, 2014. The first event
was characterized by light rain over the whole Liguria and 2 different rainstorms
that caused local flooding and landslides, without damages. The second event was
characterized by the transit of different fronts with well distributed rain, and was
part of a rainy period that caused several deaths and a train derail. The maximum
rain-rate over all time step is 60 mm/30′ and the average rain-rate is 1.12mm/30′.
For the second event, we also used the rainfall measured every 10 minutes provided
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by the polarimetric weather radar of Liguria, deployed by ARPAL. The radar scans
cover an area of about 134 Km, and the rainfall measures extracted from the scan
are sampled on a grid with 1 Km of resolution. The calibration of the model used to
extract rain data from the weather radar has been done using the same rain gauges
network.

In addition to real data, we adopt also a synthetic rain field as an additional
ground-truth defined using a module of the GRASS-GIS software, which produces a
fractal field based on spectral synthesis methods (Saupe, 1988) (Fig. 2). Generated
values have been scaled to be in the range of the rainfall values. To simulate a set of
rain gauges, we sample the synthetic rainfall field with 200 points, randomly placed
in a grid that contains Liguria. The goal here is to evaluate how the fields obtained
with the six methods are far from the synthetic one in the whole grid.

3.2. Evaluation settings

To establish a formal evaluation setting, let us formulate the problem of rainfall
approximation as follows. Given a set of points P := {pi}ni=1, let us call f : P → R
the precipitation field, known only at the n sample points in P , which represent
the positions of the measurement instruments and/or the nodes of the regular grid
associated with the radar image. An approximation of f is defined as F : R2 → R
such that d(F (p) − f(p)) ≤ ε for some required distance d(·, ·) and threshold ε.
When d(F (p) − f(p)) = 0 the approximation is an interpolation of f . The map F
can be used to evaluate the value of the precipitation at any point other than those
in P , with results differing according to the approach used to define F . In our case,
we will consider six different F approximation functions.

To compare the approximations, we adopt a cross-validation strategy, exploiting
the sets of data we have at regional and municipality level. Every rainfall station
at pi is iteratively turned off, that is, it is not used in the computation of F ; the
resulting approximation function F is sampled at that position pi and compared
with the rain value measured at pi, which acts as a ground truth (leave-one-out
strategy). Then, the rainfall data measured by the municipality stations are used
as ground-truth to validate the values approximated from the ARPAL data set: in
this setting, the cross-validation aims at evaluating the capability of the different
methods to estimate the local features of rain fields interpolated over a sparse data
set, with different spatial distributions.

The comparative study also includes the analysis of the spatial configuration
of local maxima extracted from the rainfall fields produced by each approximation
scheme. In this case, local maxima are endowed with a notion of prominence bor-
rowed from topological persistence, which is used to quantify the importance that a
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(a) (b)

Figure 1: (a) Input rainfall measures at 143 stations (regional level, white points) and 25 stations
(municipality level, red circles). (b) Map of the maximum rain rate recorded at each weather
station, which highlights that only the central west of the region has been involved by heavy rain
and the remaining part were interested by drizzle. Radar data used for our experiments cover the
whole region and the scale of the color coding is mm.

maximum has in characterizing the associated rainfall field.
For this set of experiments, the approximated precipitation fields were sampled

at the vertices of a digital terrain model, extracted from the SRTM (Shuttle Radar
Topography Mission (Farr et al., 2007)), available in the public domain at the URL
http://www2.jpl.nasa.gov/srtm/, and with a mesh size of 100 m.

4. Theoretical background

We give an overview of the six approximation methods (Sect. 4.1) and of the per-
sistence analysis framework used to analyze the evolution of precipitations (Sect. 4.2).

4.1. Approximation schemes

We briefly review the following approximation schemes: nearest neighbor method,
piecewise linear approximation with barycentric coordinates, LR B-splines, implicit
approximation with radial basis functions, and kriging.

Nearest neighbor approximation. The value of the rainfall approximation at a sam-
ple p is equal to the rainfall value measured by the rainfall station closest to p.

Piecewise linear approximation. Given an input triangulation T (e.g., the Delaunay
triangulation of the rainfall stations) and assuming that a set of values (f(pi))

n
i=1

(e.g., the rainfall values) is associated with the vertices P := {pi}ni=1 of T , the piece-
wise linear approximation f(p) at a sample p in T is computed by identifying
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Figure 2: The synthetic field and the position of the 200 random rain gauges (black dots) used
as ground truth for the evaluation of the approximation schemes. The values of the field varies
from 0mm (blue) to 6.94mm (yellow).

the triangle t ∈ T of vertices (pi,pj,pk) that contains p and expressing f(p) :=
α1f(pi) + α2f(pj) + α3f(pk) as a linear combination of the f -values at the vertices
of t. In this case, the coefficients (αi)

3
i=1, αi ≥ 0, i = 1, 2, 3, α1 + α2 + α3 = 1, are

the barycentric coordinates of p with respect to the vertices of t.

LR B-Splines. The rainfall values are parameterized on the xy-values of the corre-
sponding geographic location and the rainfall is approximated by a 2.5D LR B-spline
surface (Dokken et al., 2013). Similar to tensor product B-spline surfaces, the LR
B-spline surfaces are defined from basis functions (B-splines) that have a local sup-
port. The approximation of the rainfall data is performed by an iterative procedure
starting from a lean tensor-product B-spline surface being constantly equal to zero.
For each iteration the distance between the current surface and the rainfall data is
computed, the surface is refined locally where a given tolerance is not met, and the
surface coefficients are updated using Multilevel B-spline approximation (MBA) (Lee
et al., 1997) adapted for LR B-splines.

The MBA method is a local and explicit approximation method, where the surface
coefficients are updated based on the data points situated in the support of the
corresponding B-spline. The performance depends on three components, which are
done at each iteration step: refinement of the LR B-spline, distance computations,
and update of the surface coefficients. The latter two elements are the most time
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(a) (b) (c)

Figure 3: Rainfall fields computed for the event of September, 23: (a) LR B-Spline, (b) RBF, (c)
Kriging. Colors represent the field values from low (blue) to high (red).

consuming. For each iteration, the coefficients are updated twice and one additional
distance computation is performed. Let the number of data points be N . The
number of non-zero B-splines for each data point varies, but will be in the magnitude
of (d1+1)×(d2+1) where d1 and d2 are the polynomial degrees in the two parameter
directions of the surface. The surface is bi-quadratic so d1 = d2 = 2. In our tests,
the algorithm is run with 20 iterations giving a total of 3 × 20 × N × 9 bi-variate
B-spline evaluations (Fig. 3a).

Inverse distance weighting. Using the inverse weighted distance (IWD) schema, the
unknown value z, at location p0 can be estimated as a linear combination of nearby
measured values, with the weights being inversely proportional to some power of the
distance between observations and p0; i.e.,

z(p0) =
N∑
i=1

ωiz(pi), ωi =
dpi0∑N
i=1 d

p
i0

,

where the weights ω are expressed as functions of distances d. The basic idea of
the IDW method is that observations that are close to each others on the ground
tend to be more similar than those ones that are further apart (Tobler, 1970); hence,
observations closer to p0 receive a larger weight. This interpolation method requires
the choice of the exponent p (e.g., p := 2) and of a search radius R or, alternatively,
the minimum number N of points required for the interpolation. Greater values of
the exponent p assign greater influence to values closest to the interpolated point,
with the result turning into a mosaic of tiles (like a Voronoi diagram) with nearly
constant interpolated value for large values of p.

Implicit approximation with Radial Basis Functions. The implicit approximation
computes the map F (p) :=

∑n
i=1 αiϕi(p) as a linear combination of the basis B :=

{ϕi(p) := ϕ(‖p − pi‖2)}ni=1, where ϕ is the kernel function (Aronszajn, 1950; Dyn
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(a) (b)

(c) (d)

Figure 4: Ordinary kriging approximation of rainfalls computed with (a) rain gauges and (b)
integrated with radar measurements. (c) Rain gauges weights and (d) radar data set mapped in
(b). Colors represent the field values from low (blue) to high (red).

et al., 1986; Micchelli, 1986; Patanè et al., 2009). Depending on the properties of ϕ,
we distinguish globally- (Carr et al., 2001; Turk and O’Brien, 2002) and compactly-
(Wendland, 1995; Morse et al., 2001) supported radial basis functions. Then, the
coefficients (αi)

n
i=1 solve a n × n linear system, which is achieved by imposing the

interpolating constraints F (pi) = f(pi), i = 1, . . . , n. Since a n× n linear system is
solved once, the computational cost of the approximation with globally- and locally-
supported RBFs is O(n3) and O(n log n), respectively. In our experiments, we have
chosen the Gaussian kernel ϕ(st) := exp(−st1/2), which has a global support; in
fact, its fast decay makes it suitable to approximate rainfalls with a sparse spatial
distribution and that change quickly in time (Fig. 3b). To this end, the width of each
basis function is automatically adapted to the local sampling density by selecting its
width according to the local spatial distribution of the rainfall stations (Dey and
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Figure 5: Two scalar fields f , g and their local maxima. On the right, pictorial representation
for the persistence of each local maxima. Segments on the right of the dotted line stand for the
persistence of topological noise.

Sun, 2005; Mitra and Nguyen, 2003).

Kriging. The previous approximation methods do not take into account in an ex-
plicit manner the correlation among observations, which may have unwanted effects
especially in the case of unevenly distributed observations. Furthermore, there is no
natural mechanism for propagating the individual quality of the observations into a
quality description of the estimation. A class of methods that takes care of these is-
sues is kriging, (Wackernagel, 2003), which is a common technique in environmental
sciences and a special case of the maximum likelihood estimation. The underlying
assumptions are that the quality of the observations is given as variance values, and
that the covariance between observations only depends on their mutual spatial or
temporal distance, and not on their location (Fig. 3c).

Formally, kriging is expressed as F (p) :=
∑n

i=1 ωif(pi), where the weights ω :=
(ωi)

n
i=1 are the solution to the linear system Cω = d, where C is the covariance ma-

trix of the of the input points, d is the array of the covariance between the positions
of the rainfall stations and the points that belong to a neighborhood of the sample
point. The covariance is expressed by the variogram model, which reflects the priors
on the spatial variability of the values. The main problem with kriging is the low
computational efficiency, as the solution of the linear systems scales quadratically
with the number of observations. In the implementation used, the problem is ad-
dressed by combining kriging with deterministic spatial division techniques, which
efficiently restrict the number of observations to the closest ones. More specifically,
the Kd-tree is used to select only the 20 closest neighbors for the matrix inversion,
and in our tests we have used a constant variogram, whose nugget is set equal to 10%
and the range is 30Km. Fig. 4 shows the results obtained by kriging when radar
rain data are integrated.
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Figure 6: A function F :M→ R, color-coded from blue (low) to red (high) values, and the associ-
ated local maxima having persistence greater than α(maxF −minF ), with α = 0.05, 0.15 (middle)
and 0.25.

4.2. Prominent rainfall maxima via persistence analysis

The importance of precipitation maxima is evaluated by means of the persistence
analysis. Given a scalar field F : M → R (e.g., the interpolated rainfall field),
persistence analysis is used to study the evolution of the connectivity in the superlevel
sets Mt = {p ∈ M : F (p) ≥ t}, for t ∈ (−∞,+∞). Sweeping t from +∞ to −∞,
new connected components of Mt are either born, or previously existing ones are
merged together. A connected component C is associated with a local maximum p
of F , where the component is first born. The value F (p) is referred to as the
birth time of C. When two components corresponding to local maxima p1, p2, with
F (p1) < F (p2), merge together, we say that the component corresponding to p1 dies.
In this case, the component associated with the smaller local maximum is merged into
that associated with the larger one. Each local maximum p of F is associated with its
persistence value persF (p), which is defined as the difference between the birth and
the death level of the corresponding connected component. Maxima associated with
a higher persistence value identify relevant features and structures of the underlying
phenomena, while maxima having a low persistence value are interpreted as local
information or noise (Fig. 5).

To compute the local maxima and the associated persistence values, F is inter-
polated on the vertices of a triangle mesh M. The points of M are first sorted
in decreasing values, from maxF to minF ; then, the classical 0th-persistence algo-
rithm (Edelsbrunner et al., 2002; Edelsbrunner and Harer, 2010) is used. The cost
of sorting the n points of M is O(n log n); after sorting, by using a union-find data
structure the persistence algorithm requires linear storage and running time at most
proportional to O(mα(m)), where m is the number of edges in the mesh and α(·)
is the inverse of the Ackermann function. An example for the extraction of local
maxima at three different persistence levels is given in Fig. 6.
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Method Max Mean Median Std. dev. MSE
[mm] [mm] [mm] [mm] [mm2]

Syntethic

Ord. krig. 0.93 (14.1%) 0.15 0.10 0.22 0.04
RBFs 0.55 (8.3%) 0.14 0.10 0.18 0.03
LR B-Splines 0.48 (7.1%) 0.16 0.11 0.22 0.05
IDW 1.16 (17.4%) 0.22 0.15 0.31 0.097
NN 1.46 (21.7%) 0.29 0.20 0.41 0.17
BC 0.79 (11.9%) 0.34 0.11 0.88 0.83

Day 1

Ord. krig. 32.44 (54.1%) 0.02 0 2.38 5.64
RBFs 37.80 (63.0%) 0.97 0.34 2.12 5.44
LR B-Splines 27.2 (45.3%) -0.04 0 2.73 7.05
IDW 27.2 (45.32%) 0.78 0.055 2.58 6.66
NN 35.2 (58.67%) 0.83 0.0 2.94 8.63
BC 27.19 (45.33%) 0.71 0.02 2.40 5.79

Day 2

Ord. krig. 16.6 (88.3%) 1.95 1.18 2.88 8.61
RBFs 16.59 (88.3%) 1.28 0.80 1.97 3.88
LR B-Splines 16.6 (88.3%) 1.27 0.79 1.98 3.95
IDW 7.6 (40.5%) 1.19 0.79 1.82 3.34
NN 16.6 (88.3%) 1.49 0.80 2.35 5.52
BC 16.6 (88.3%) 1.35 0.80 2.08 4.36

Table 1: Statistics for the error distribution of the cross validation.

5. Approximation behavior

In the following, we discuss the comparison of the behavior with respect to the
approximation performance (Sect. 5.1), the local analysis of the field differences
(Sect. 5.2), and the computational complexity (Sect. 5.3).

5.1. Approximation accuracy

For the leave-one-out cross-validation strategy, we have checked the results by
computing the six approximation fields turning off, iteratively, each rainfall station
at pi, for each cumulated interval. The value of the approximation function F
obtained was then compared at pi with the rain value measured by the corresponding
rain gauge at pi, acting as a ground truth. The statistics of the evaluation are shown
in Table 1; the approximation methods behave in a slightly different way depending
on the three scenarios.
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Ord. krig. error RBFs error LR B-Splines error

IDW error BC error NN error

Figure 7: Histograms of the differences among the three approximated rainfall fields and a synthetic
ground truth.

The nearest neighbor perform worst in most of the scenarios while ordinary krig-
ing, LR B-spline and RBFs have overall the better performances. In the synthetic
and the day-2 case studies, the best performances are achieved by IDW (day-2)
followed by RBFs and LR B-splines, while ordinary kriging has a larger maximum
error in the synthetic case and larger mean absolute error for day-2. In the day-1
case study, ordinary kriging and LR B-Splines have a smaller maximum error, but
the RBFs have a lower mean-squares error and standard deviation.

The histogram of the error in the Fig. 7 shows clearly that the distribution of
ordinary kriging and nearest neighbor are normally distributed while RBF and IDW
have positive skewness and LR B-spline and BC have a negative skewness. The global
behavior of the approximation techniques is also well shown in the map depicted in
Fig. 8, the distance between the approximated fields and synthetic ground truth are
plotted: ordinary kriging produces more spots that are characterized by an error
higher than RBF and LR B-spline.

The second set of results concerns the cross-validation with the rainfall data
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Figure 8: Error between the six approximated fields and the synthetic ground truth.

measured by the municipality stations as ground-truth to validate the values that
approximate only the ARPAL data set. This validation aims at gathering indicators
on the behavior, in terms of accuracy, on different spatial distributions of the sample
points. This approach is meaningful as the two observation networks cover an over-
lapping region of the study area. The network from Genova municipality is located
within the boundary of the city and is denser than the ARPAL one, which covers the
whole study area, and some of the ARPAL stations are located in the Genova munic-
ipality. Comparing the approximation results at these two scales, we have evaluated
the sensitivity of the approximation to local distributions of the samples and the ca-
pability to estimate the local features of rain fields interpolated over a sparser data
set. According to the results in Table 2, IDW and BC have the smaller maximum
error, but the RBFs have a smaller mean-squares error. The worst performance is
achieved by the nearest neighbor method.

5.2. Local analysis of the field differences

To measure the smoothness of the approximated rainfall fields, we compare the
corresponding normalized gradients (Fig. 9). More precisely, given the approximated
rainfall fields F1, F2 and the gradients ∇F1 and ∇F2, their point-wise difference at
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Table 2: Statistics for the error distribution of the accuracy evaluation at different scales for day 1.

Method Max Mean Median Std. dev. MSE
[mm] [mm] [mm] [mm] [mm2]

Ord. krig. 28.62 (47.7%) 0.59 0.01 4.45 20.21
RBFs 36.77 (61.2%) 1.41 0.44 3.25 12.58
LR B-Splines 30.39 (50.6%) 0.59 0.01 4.45 20.19
IDW 27.2 (45.3%) 1.80 0.3 4.27 18.55
BC 27.2 (45.3%) 1.84 0.3 4.36 19.32
NN 35.2 (58.6%) 1.90 0.2 4.86 24.01

the node (i, j) of a uniform grid contained in the bounding box of Liguria is measured
as Biasotti et al. (2007)

d(∇F1,∇F2)(i, j) := 1− |〈∇F1(i, j),∇F2(i, j)〉2| .

As expected, the behavior of the gradients and their dot product reflects the punctual
difference of the rainfall fields. We also compare the rainfall approximations looking
at the differences of the rain values assumed on the DTM and the local smoothness
of the three fields. First, we show the point-wise difference of the rainfall fields
(Figs. 11, 12 at page 30). As expected, the difference of the fields is zero at the
rain stations and, for the radar data also in the nodes of the regular grid. Since for
the kriging approximation we adopted a local support, it gives a slightly perturbed
approximation of the field far from the rain gauges and the radar nodes. Furthermore,
the approximations with LR B-Splines and RBFs have a smoother behavior and a
lower approximation error. Finally, Fig. 13 (page 32) represents the difference of the
gradients over the selected grid: it can be seen that kriging has noisy values far from
the sampling points, as a matter of the local behavior of the algorithm; RBF and
ordinary kriging behave in a similar way near the samples while LR B-Spline show
difference in the gradient with respect to both other methods.

5.3. Computational complexity

The computational complexity of the different algorithms has been tested over
a 64 bits workstation 8 cores at 1.6GHz and RAM of 16 GB. The system runs an
Ubuntu 14.04LTS with 3.13.0 kernel. The computational time is measured on the
rainfall data from the first day and with only rain gauges (no radar).

The run of BC takes 61.54 seconds to compute the approximation over the whole
region (20K points) for the one time interval. For the same task, the ordinary kriging
takes 1.746 seconds and RBFs approximation takes 6.23 seconds. The IDW takes the
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Figure 9: Gradient field of the six methods; in these images, the fields are approximated only with
the rain stations.

shortest times needing only 1.61 seconds. One important point to make here is that,
for all the methods, the computational complexity and the timing collected are well
below the time interval analyzed (30min). This important characteristic tells us that
we could use any of them for real-time monitoring of the rain events. The analysis
carried on until now does not tell us much about the scalability of the methods for a
larger set of observation points, where the computational complexity could become
an issue.

6. Analysis of rainfall field

We discuss the identification (Sect. 6.1), comparison (Sect. 6.2), and tracking
(Sect. 6.3) of persistent maxima.

6.1. Identification of rainfall maxima

Tables 3-6 report the comparative results about the extraction of persistent max-
ima when considering the rainfall fields produced by the approximation schema using
the ARPAL rainfall stations and when these stations are integrated with the radar
data. For these tests, we used the rain data of the first precipitation event and
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Table 3: Statistics for the average number of extracted persistent maxima.

Method τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig. 28.31 11.27 6.70 4.37
IDW 27.15 13.55 7.69 4.57
RBFs 18.54 10.31 6.12 4.08
LR B-Splines 20.54 12.50 7.41 4.67
BC 24.54 12.92 7.98 4.88
NN 18.52 12.33 7.94 5.13

Table 4: Statistics for the maximum number of extracted persistent maxima.

Method τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig. 48 19 13 9
IDW 40 22 17 10
RBFs 26 17 11 9
LR B-Splines 28 18 13 10
BC 70 55 42 12
NN 24 18 14 10

radar data (Sect. 3). Hence, for each approximation scheme, we considered the 48
approximated fields, one for each cumulative step. For each field F , the associated
persistence maxima have been extracted according to four different values for a per-
sistence threshold ε, namely ε = τ(maxF −minF ) with τ = 0.05, 0.15, 0.25, 0.35.
In practice, a maximum is preserved only if its persistence is larger than ε, while the
others are filtered away.

Table 3 reports the total number of extracted persistent maxima, averaged by the
amount of considered cumulative steps on the rainfall fields approximated from the
rainfall stations only. Table 4 shows the maximum number of local maxima that have
been extracted, method by method, from the 48 fields. Despite some slight differences
in the results, the general trend is to have a decreasing number of persistent maxima
as the threshold τ increases. This situation is actually not surprising, since a higher
persistence threshold implies that a larger portion of local maxima are pruned out.
Also, for low values of the persistence threshold, we can relate the number of detected
maxima to the smoothness of the considered approximation: in this view, the RBF
schema appears to have a higher smoothing effect, as indicated by the smaller number
of maxima characterized by a low persistence value.

Similarly, Tables 5 and 6 report the same data when the approximation schema
integrate also the radar data. The trend to have a decreasing number of persistent
maxima as the threshold τ increases is confirmed and much more evident. Indeed,
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Table 5: Statistics for the average number of extracted persistent maxima with radar data.

Method τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig. 99.22 26.46 10.91 5.15
IDW 114.05 26.54 10.67 5.11
RBFs 93.35 24.85 9.85 4.68
LR B-Splines 113.46 31.58 13.05 6.33
BC 105.48 29.5 12.29 5.69
NN 124.33 37.98 15.65 6.94

Table 6: Statistics for the maximum number of extracted persistent maxima with radar data.

Method τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig. 175 62 27 13
IDW 191 61 24 11
RBFs 165 60 24 11
LR B-Splines 195 76 35 19
BC 181 70 32 12
NN 222 97 48 21

the approximation of the fields with such a higher number of constraints introduces a
quite large number of local maxima that are not really relevant and that are discarded
when the persistence threshold increases. Our tests further confirm that the RBF
schemes generally have a higher smoothness, as indicated by the slightly smaller
number of maxima.

6.2. Comparing sets of persistent maxima

In order to refine the above comparative analysis, we use the tracking procedure
introduced in (Biasotti et al., 2015) to quantitatively assess a (dis)similarity measure
between two sets of local maxima, originated from the three approximation schema.
Data are considered the same cumulative step.

According to (Biasotti et al., 2015), for two sets F , G of local maxima of two
rainfall fields F,G : M→ R, it is possible to compare them by measuring the cost
of moving the points associated with one function to those of the other one, with the
requirement that the longest of the transportations should be as short as possible. In-
terpreting the local maxima in F and G as points in R3 (i.e., geographical position and
persistence value), the collections of local maxima are compared through the bottle-
neck distance between F and G, which is defined as dB(F ,G) = infγ supp d(p, γ(p)),
where p ∈ F , γ ranges over all the bijections between F and G, d(·, ·) is the pseudo-
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Table 7: Average geographical distance (Km) between sets of local maxima (Liguria area
size: 5.410Km2).

Method1/Method2 τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig / RBFs. 71.19 Km 13.76 Km 4.67 Km 2.46 Km
Ord. krig / LR B-Splines 104.59 Km 52.42 Km 29.66 Km 25.45 Km
Ord. Krig / IDW 142.32 Km 31.86 Km 17.26 Km 5.71 Km
Ord. Krig / BC 92.02 Km 43.03 Km 25.61 Km 5.92 Km
Ord. Krig / NN 110.69 Km 96.32 Km 61.58 Km 30.49 Km
RBFs / LR B Spline 81.85 Km 54.47 Km 28.79 Km 14.46 Km
RBFs / IDW 61.66 Km 39.48 Km 21.16 Km 5.82 Km
RBFs / BC 85.33 Km 45.47 Km 25.03 Km 9.68 Km
RBFs / NN 117.52 Km 94.96 Km 59.08 Km 35.91 Km
LR B Spline / IDW 75.48 Km 65.23 Km 36.67 Km 20.98 Km
LR B Spline / BC 87.26 Km 71.34 Km 35.85 Km 26.43 Km
LR B Spline / NN 121.40 Km 106.46 Km 74.18 Km 50.19 Km
IDW / BC 88.79 Km 39.71 Km 33.44 Km 18.14 Km
IDW / NN 469.05 Km 396.51 Km 274.33 Km 169.76 Km
BC / NN 121.09 Km 97.78 Km 60.34 Km 41.06 Km

distance
d(p,q) := min{‖p− q‖,max{persF (p), persG(q)}},

which measures the cost of moving p to q, and ‖ · ‖ is a weighted modification
of the Euclidean distance. In practice, the cost of taking p to q is measured as
the minimum between the cost of moving one point onto the other and the cost of
moving both points onto the plane xy : z = 0. Matching a point p with a point
of xy, which can be interpreted as the annihilation of p, is allowed by the fact that
the number of points for F and G is usually different. The matching γ between the
points of F and those of G, for which dB is actually occurred, is referred to as a
bottleneck matching (Fig. 10). Through the bottleneck matching and the bottleneck
distance, it is then possible to derive quantitative information about the differences
in the spatial arrangement and the rain measurements for the points in F and G.

The bottleneck distance can be evaluated by applying a pure graph-theoretic
approach or by taking into account geometric information that characterizes the
assignment problem. We opt for a graph-theoretic approach, which is independent
of any geometric constraint, and our implementation is based on the push-relabel
maximum flow algorithm (Cherkassky and Goldberg, 1997). For each iteration, the
algorithm runs in O(k2.5), where k is the number of local maxima involved in the
comparison. We note that the computational complexity is not an issue, because
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Table 8: Average geographical distance (Km) between sets of local maxima (Liguria area
size: 5.410Km2).

Method1/Method2 τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig + radar/ RBFs. + radar 186.01 Km 135.04 Km 7.27 Km 4.94 Km
Ord. krig + radar/ LR B-Splines + radar 121.49 Km 60.99 Km 30.10 Km 11.79 Km
Ord. Krig + radar/ IDW + radar 136.48 Km 70.59 Km 36.863 Km 7.99 Km
Ord. Krig + radar / BC + radar 125.16 Km 94.78 Km 36.85 Km 20.44 Km
Ord. Krig + radar / NN + radar 147.49 Km 75.01 Km 64.52 Km 15.73 Km
RBFs + radar / LR B Spline + radar 223.89 Km 150.99 Km 23.20 Km 6.21 Km
RBFs + radar / IDW + radar 493.61 Km 304.45 Km 107.18 Km 30.79 Km
RBFs + radar / BC + radar 159.47 Km 75.10 Km 64.51 Km 15.73 Km
RBFs + radar / NN + radar 234.11 Km 168.15 Km 50.72 Km 14.10 Km
LR B Spline + radar/ IDW + radar 130.95 Km 71.61 Km 44.30 Km 16.26 Km
LR B Spline + radar / BC + radar 125.16 Km 94.79 Km 36.86 Km 20.45 Km
LR B Spline + radar / NN + radar 142.97 Km 104.58 Km 63.38 Km 30.22 Km
IDW + radar / BC + radar 147.49 Km 75.01 Km 64.52 Km 15.73 Km
IDW + radar / NN + radar 140.82 Km 80.73 Km 54.68 Km 18.89 Km
BC + radar / NN + radar 147.49 Km 75.00 Km 64.51 Km 15.73 Km

the number of points to be considered is very limited in general. For example, in
tracking applications the number of persistent maxima to be monitored is usually no
more than a dozen for each time sample.

6.3. Tracking rainfall maxima

For each cumulative step, we consider the interpolated rainfall fields, and ex-
tract the sets of local maxima according to the four persistence thresholds discussed
above. For each threshold, the three collections of persistent maxima are pairwise
compared as follows. Since geographic coordinates and rainfall measurements come
with different reference frames and at different scales, local maxima to be matched
are first normalized so that their coordinates range in [0,1]; then, they are processed
by computing the associated bottleneck matching and the bottleneck distance, and
afterwards projected back in the original reference frames. Finally, a measure of their
distance in terms of both geographical coordinates and rainfall values is derived by
combining the information contained in the bottleneck matching and the associated
numerical (dis)similarity score. Precisely, we consider the geographical and rainfall
distances, which are defined as the largest difference in geographical position and
rainfall value for two persistent maxima paired by the bottleneck matching.

Tables 7, 8, 9 and 10 report the obtained results, in terms of geographical and
rainfall distances, respectively, averaged by the total number of considered cumula-
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Table 9: Average rainfall distance (mm) between sets of local maxima.

Method1/Method2 τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig / RBFs. 3.83 mm 1.87 mm 1.15 mm 0.28 mm
Ord. krig. / LR B-Sp. 3.63 mm 3.32 mm 2.63 mm 1.74 mm
Ord. Krig / IDW 3.17 mm 3.24 mm 2.56 mm 1.33 mm
Ord. Krig / BC 4.32 mm 2.64 mm 1.91 mm 1.32 mm
Ord. Krig / NN 3.81 mm 3.03 mm 2.45 mm 2.03 mm
RBFs / LR B Sp. 3.21 mm 3.13 mm 3.10 mm 2.13 mm
RBFs / IDW 4.09 mm 3.76 mm 2.58 mm 1.68 mm
RBFs / BC 3.33 mm 2.59 mm 2.10 mm 1.54 mm
RBFs / NN 3.03 mm 3.08 mm 2.68 mm 2.57 mm
LR B Sp. / IDW 3.88 mm 3.42 mm 3.02 mm 1.48 mm
LR B Spline / BC 4.01 mm 3.51 mm 2.74 mm 2.01 mm
LR B Spline / NN 3.33 mm 3.28 mm 2.47 mm 2.17 mm
IDW / BC 4.53 mm 3.32 mm 2.65 mm 1.60 mm
IDW / NN 15.35 mm 13.12 mm 10.18 mm 8.24 mm
BC / NN 3.11 mm 2.45 mm 2.31 mm 1.65 mm

tive steps. To have a clearer picture of the comparative evaluation in terms of the two
distances, these results should be jointly interpreted for each persistence threshold.
For instance, when τ = 0.05 we have (relatively) high values for the geographical dis-
tance together with quite low rainfall distance values: this can be interpreted as slight
numerical variations for the three approximations, possibly appearing spatially far
one from each other. From this perspective, approximations with RBFs and kriging
have an analogous behavior, both producing higher values for the geographical and
rainfall distances when compared with LR-B Splines. Moving to higher persistence
thresholds, the values of the geographical distance decrease, as an effect of filtering
out non-relevant maxima, and the corresponding rainfall distance values reveal now
the differences occurring at prominent maxima, which appear to be quite small.

In Table 11, we show a similar comparison of the results obtained when rainfall
fields are interpolated by considering either observed rainfall measurements or an
integration of these data with radar acquisitions (Sect. 5). Integrated data can
reveal useful information for rainfall tracking over time, as a matter of the higher
spatial and temporal resolution of radar data with respect to point-wise rainfall
fields measured by instruments at the ground level. Although rainfall measurements
are more reliable, integrating them with radar data makes it possible to extend the
rainfall field interpolation in larger areas and to have a clearer picture about the
temporal evolution of the associated precipitation event. According to the results
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Table 10: Average rainfall distance (mm) between sets of local maxima.

Method1/Method2 τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35

Ord. krig + radar / RBFs. + radar 10.22 mm 7.39 mm 4.22 mm 1.47 mm
Ord. krig. + radar / LR B-Sp. + radar 11.35 mm 9.80 mm 8.52 mm 5.18 mm
Ord. Krig + radar / IDW + radar 14.00 mm 10.63 mm 6.33 mm 2.76 mm
Ord. Krig + radar / BC + radar 11.55 mm 9.44 mm 7.89 mm 4.51 mm
Ord. Krig + radar / NN + radar 11.17 mm 11.10 mm 9.75 mm 8.39 mm
RBFs + radar / LR B Sp. + radar 11.38 mm 10.22 mm 8.86 mm 5.79 mm
RBFs + radar / IDW + radar 42.34 mm 32.27 mm 21.96 mm 12.43 mm
RBFs + radar / BC + radar 11.18 mm 11.11 mm 9.75 mm 8.38 mm
RBFs + radar / NN + radar 11.52 mm 11.70 mm 10.91 mm 7.68 mm
LR B Sp. + radar / IDW + radar 13.99 mm 12.25 mm 8.99 mm 6.19 mm
LR B Spline + radar / BC + radar 11.55 mm 9.44 mm 7.89 mm 4.52 mm
LR B Spline + radar / NN + radar 11.30 mm 10.38 mm 9.16 mm 5.30 mm
IDW + radar / BC + radar 11.55 mm 11.11 mm 9.75 mm 8.39 mm
IDW + radar / NN + radar 13.79 mm 12.93 mm 10.87 mm 8.21 mm
BC + radar / NN + radar 11.17 mm 11.10 mm 9.76 mm 8.39 mm

Figure 10: Two fields F,G : M → R, color-coded from blue (low) to red (high) values, and the
associated local maxima. On the right, bottleneck matching between local maxima.

in Table 11, which are characterized by high values in both the geographic and the
rainfall distance, radar data can sensibly change the spatial location and the rainfall
value of persistent maxima. This result can be interpreted as the introduction of
complementary information with respect to rainfall measurements, which hopefully
support a clearer understanding of precipitation events.

7. Conclusions and future work

The aim of this study was the comparison of different spatial approximation
methods finalized to compute the amount of rainfalls for hydro-metereological anal-
ysis and civil protection. For the approximation of rainfall data all the approaches
differ provide satisfactory results except for nearest neighbor that lower performance
in most of our test, with a slightly better behavior for LR Splines and RBFs, and
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Table 11: Average geographical (Km) and rainfall distance (mm) between sets of local maxima.

Krig/ τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35
(Radar + Krig)

Geogr. dist. 146.08 Km 100.68 Km 104.25 Km 83.48 Km
Rainfall dist. 17.52 mm 17.23 mm 16.90 mm 16.04 mm

RBF/ τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35
(Radar + RBF)

Geogr. dist. 95.38 Km 96.13 Km 93.29 Km 88.88 Km
Rainfall dist. 17.71 mm 17.25 mm 16.56 mm 16.21 mm

LR B-spline/ τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35
((Radar +LR B-Spline)

Geogr. dist. 93.53 Km 94.72 Km 86.56 Km 77.09 Km
Rainfall dist. 18.77 mm 18.26 mm 17.953 mm 16.74 mm

IDW / τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35
((Radar + IDW)

Geogr. dist. 106.46 Km 116.31 Km 107.07 Km 90.63 Km
Rainfall dist. 18.52 mm 17.00 mm 16.32 mm 15.79 mm

BC / τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35
((Radar + BC)

Geogr. dist. 91.58 Km 94.49 Km 99.88 Km 79.65 Km
Rainfall dist. 17.66 mm 17.25 mm 16.81 mm 16.35 mm

NN / τ = 0.05 τ = 0.15 τ = 0.25 τ = 0.35
((Radar + NN)

Geogr. dist. 101.07 Km 96.58 Km 104.61 Km 87.66 Km
Rainfall dist. 18.93 mm 18.68 mm 18.71 mm 17.83 mm

differences that are in any case significant with respect to the resolution and error of
the measuring instruments. Those methods, moreover, easily support the integration
of further sources of rain measures, for instance those captured by radar. The tests
were run on events that were particularly targeting the comparison under conditions
of sparsity and heterogeneity of accuracy, but there is no reason to think that the
trends delineated would not consistently extend to other conditions of measurement
locations and orographic context.

At the theoretical level, we plan to proceed further with the presented compari-
son framework, including several more aspects and extending the evaluation to more
elaborate correlation analysis, taking into account other relevant data, such as ter-
rain morphology, satellite imagery, and meteorological situation. At the application
level, there are several venues for exploiting the comparison framework we have built:
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for instance, the identification of the areas where a significant difference among ap-
proximations persist, could indicate where new rain gauges could improve best the
monitoring of the precipitation events. Most importantly, we believe that the pro-
posed comparison framework will support more robust storm tracking methods via
a better understanding of the nature of the underlying precipitation event.
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LR B-Splines vs IDW LR B-Splines vs BC LR B-Splines vs NN

RBFs vs IDW RBFs vs BC RBFs vs NN

IDW vs BC IDW vs NN BC vs NN

Figure 11: Point-wise difference of the rainfall fields evaluated on the rain stations. Colors represent
the difference from low (blue) to high (yellow) values.
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Ord. krig. vs LR B-Splines Ord. krig. vs RBFs LR B-Splines vs RBFs
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LR B-Splines vs IDW LR B-Splines vs BC LR B-Splines vs NN

RBFs vs IDW RBFs vs BC RBFs vs NN

IDW vs BC IDW vs NN BC vs NN

Figure 12: Point-wise difference of the rainfall fields integrated with the radar data. Colors represent
the difference from low (blue) to high (yellow) values.
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LR B-Splines vs IDW LR B-Splines vs BC LR B-Splines vs NN

RBFs vs IDW RBFs vs BC RBFs vs NN

IDW vs BC IDW vs NN BC vs NN

Figure 13: Local difference of the gradients of the six fields; colors represent the value of the
distance d over the model grid from 0 (blue) to 1 (yellow).
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