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Abstract—In digital geometry processing and shape
modeling, the Laplace-Beltrami and the heat diffusion
operator, together with the corresponding Laplacian eigen-
maps, harmonic and geometry-aware functions, have been
used in several applications, which range from surface
parameterization, deformation, and compression to seg-
mentation, clustering, and comparison. Using the linear
FEM approximation of the Laplace-Beltrami operator,
we derive a discrete heat kernel that is linear, stable
to an irregular sampling density of the input surface,
and scale covariant. With respect to previous work, this
last property makes the kernel particularly suitable for
shape analysis and comparison; in fact, local and global
changes of the surface correspond to a re-scaling of the
time parameter without affecting its spectral component.
Finally, we study the scale spaces that are induced by the
proposed heat kernel and exploited to provide a multi-scale
approximation of scalar functions defined on 3D shapes.

Keywords-scale-space methods; heat kernel; Laplacian
matrix; spectral analysis; signal and function smoothing;
critical points; shape analysis

1. INTRODUCTION

In digital geometry processing and shape modeling,
the Laplace-Beltrami and the heat diffusion operator,
together with the corresponding Laplacian eigenmaps,
harmonic and geometry-aware functions, have been used
in several contexts. For instance, the eigenvectors of the
graph Laplacian are exploited to project the input signal
into the frequency [23], [50] or a lower dimensional
space [2], [22]; to smooth surfaces [8], [19], [20],
[27], [29], [48] and signals [33], [45]; to compress
3D shapes [18], [42]; to process meshes [31], [32]
and graphs [9], [21]. The Laplacian eigenvectors [34],
[35], [37], [38], [46] are also used for parameterizing
surfaces homeomorphic to the sphere [15] or with an
arbitrary genus [51], [52]. In the frequency space, mesh
segmentation [24], [49], shape correspondence [16] and
comparison [34], [37], [38], [39], [40] have been suc-
cessfully addressed. Finally, mesh Laplacian operators,
whose stability and convergence have been studied
in [12], [17], [47] and [34], [36], [37], play a central role
in the definition of differential coordinates for surface
deformation [41], [43] and quadrilateral remeshing [2],
[10], [11], [30].

The Laplace-Beltrami operator is strictly related to the
heat diffusion equation, which provides an embedding of
a given function in a hierarchy of smoothed approxima-
tions. The heat kernel and the associated diffusion metric

have been exploited to approximate the gradient of
maps defined on triangulated surfaces or point sets [25].
Finally, the heat kernel has important applications such
as shape segmentation [14], [7] and matching [3], [28]
with diffusion distances [6], [22], multi-scale [44] and
isometry-invariant [3], [28] signatures.

The main limitation of the current discretizations of
the heat kernel kt proposed by previous work is its
dependence on the scale of M; i.e., rescaling M to
αM, α ∈ R+, kt becomes k̃t = α2kα2t. This means
that global and local changes to the surface provide
different kernels, which must be “normalized” before
their use as shape signatures. To partially overcome this
drawback, in [26] the heat kernel signature is sampled
logarithmically in time, scaled, and derived; then, the
descriptor is defined by the magnitude of the Fourier
Transform coefficients. In this case, the normalization
steps are neither unique nor intrinsically defined by
the input shape. Alternatively, in [14] the eigenvalues
are normalized by the first non-null eigenvalue, thus
guaranteeing that k̃t = α2kt but without removing the
scale term α2.

Overview and contributions

Combining the weak formulation of the heat equation
with the linear FEM approximation of the Laplace-
Beltrami operator, we derive a discretization of the heat
kernel that is linear, intrinsically invariant to surface
scalings, and stable to irregular sampling densities. As
main feature with respect to previous work, the proposed
kernel is scale covariant; i.e., local and global changes
of the surface correspond to a re-scaling of the time pa-
rameter without affecting the spectral term of the kernel.
Then, the scale invariance is achieved by normalizing
the eigenvalues by the first non-null eigenvalue, thus
avoiding a-posteriori changes to the kernel itself or to
the surface. Due to these two properties, the kernel
is particularly suitable for shape comparison and the
proposed approach improves the invariance and stability
of the corresponding shape signatures. To assess these
aims, the underlying idea is to compute the solution of
the heat equation using the inner product induced by the
mass matrix of the linear FEM discretization. In fact, this
scalar product is adapted to the sampling density of M
through the distribution of the areas of its triangles.



Combining the heat kernel operator with the Lapla-
cian spectral properties, we define a feature map
Φt : F(M)→ F(M), where F(M) is the space of
piecewise linear scalar functions defined on a trian-
gulated surface M. The real parameter t and the
map Φt induce a multi-scale hierarchy of approx-
imations {Φt(f)}t of an arbitrary scalar function
f :M→ R. Through Φt, the local noise of f (e.g.,
noisy level sets and/or critical points of f with low
persistence) is removed with small time values, and the
global behavior of f is enhanced at larger scales. In this
way, the global structure of f is separated from local
details, which are preserved or discarded according to
the target accuracy. Constraining the approximation to
preserve a set of feature values of the input map, we also
define a multi-scale and feature-driven approximation.
To further characterize Φt, we will discuss its linearity,
the estimation of the approximation error, and the com-
putational aspects behind the induced approximations.
Finally, recent results on the robustness and usefulness
of the proposed heat kernel for shape retrieval are
presented in [4].

The paper is organized as follows. Section II defines
a discrete heat kernel on trianglulated surfaces. In Sec-
tion III, we introduce the feature spaces and their main
properties. Future work is outlined in Section IV.

2. DISCRETE HEAT KERNEL INDUCED BY THE
LINEAR FEM WEIGHTS

Assuming that h : N ⊆ Rd → R is a scalar func-
tion defined on a compact manifold N , the scale-
based representation H : N × R→ R of h, with
limt→0H(x, t) = h(x), x ∈ N , provides an embedding
of h in a hierarchy of simplified and/or smoothed
approximations. One way to accomplish the construction
of this one-parameter family is to solve the linear
diffusion problem (heat equation){

∂tH(x, t) = − 1
2∆H(x, t),

H(x, 0) = h(x), x ∈ N , t ∈ R,
(1)

with ∆ Laplace-Beltrami operator. Since N is com-
pact, H(x, t) := kt(x, ·) ? h =

∫
N kt(x,y)h(y)dy is

the scale-based representation of h, where kt(·, ·)
is the heat kernel and ? is the convolution oper-
ator. Indicating with φi the ith eigenfunction of ∆
related to the eigenvalue λi (i.e., ∆φi = λiφi),
kt(x,y) :=

∑+∞
i=0 exp(− 1

2λit)φi(x)φi(y) is the spec-
tral decomposition of kt. Finally, the heat diffusion and
the Laplace-Beltrami operator share the same eigen-
functions {φi}+∞i=1 and λi, ρi := exp(− 1

2λit) are the
corresponding eigenvalues.

In the following, we introduce the weighted linear
FEM discretization of the heat kernel (Section II-A),
prove its invariance to scalings (Section II-B), discuss
its properties and computational aspects (Section II-C).

2.1 Weak and discrete formulation of the heat equation
In the following, we derive the weak formulation of

the heat equation through the Galerkin formulation and

introduce its weighted linear FEM discretization.

Weak formulation of the heat equation
To convert the heat equation into a variational prob-

lem, we miltiply (1) with test functions ϕ ∈ C2 and
integrate the resulting relation over N ; i.e.,∫

N
ϕ∂tHdσ +

1
2

∫
N
ϕ∆Hdσ = 0,

where dσ is the surface element. Then, using the Green
formula we get∫

N
ϕ∂tHdσ +

1
2

∫
N
∇(H,ϕ)dσ = 0,

or equivalently∫
N
ϕ∂tHdσ +

1
2

∫
N

∑
r,s

gr,s(∂xrH)(∂xsϕ)dσ = 0,

(2)
where grs’s are the entries of the first fundamental
matrix. To compute the solution of the variational
problem, we apply the Galerkin techniques. More pre-
cisely, we choose n linearly independent basis func-
tions B := {ϕi}ni=1, ϕi : N → R and consider the linear
space F generated by B. We now approximate the
solution H(x, t) of Equation (2) as a linear combination
of the basis functions in B; i.e.,

H̃(x, t) :=
n∑
i=1

ai(t)ϕi(x), x ∈ N , t ∈ R+.

Then, for any value t ∈ R+ we compute the n coef-
ficients a(t) := (ai(t))ni=1 by imposing that Equation
(2) is satisfied by H̃(x, t) for any test function ϕj ,
j = 1, . . . , n; i.e.,∫

N
ϕj∂tH̃dσ +

1
2

∫
N
ϕj∆H̃dσ = 0.

Indeed, for j = 1, . . . , n we get the relation
n∑
i=1

∂tai(t)
∫
N
ϕiϕjdσ+

+
1
2

n∑
i=1

ai(t)
∫
N

∑
r,s

grs(∂xr
ϕi)(∂xs

ϕj)dσ = 0.
(3)

Introducing the matrices L := (L(i, j))ni,j=1 and
B := (B(i, j))ni,j=1, whose elements are{

L(i, j) :=
∫
N
∑
r,s g

rs(∂xrϕi)(∂xsϕj)dσ,
B(i, j) :=

∫
N ϕiϕjdσ,

Equation (3) is rewritten as
n∑
i=1

B(i, j)∂tai(t) +
1
2

n∑
i=1

L(i, j)ai(t) = 0,

j = 1, . . . , n, and its matrix formulation is
B∂ta(t) + 1

2La(t) = 0. An analogous relation can
be derived for the boundary condition H(x, 0) = h(x),
x ∈ N . Since B is the Gram matrix associated to B, it is
invertible and the previous system of equations becomes[
∂t + 1

2B
−1L

]
a(t) = 0. Comparing this expression

with Equation (1), it follows that the Laplace-Beltrami
operator is discretized by the matrix L̃ := B−1L.
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Weighted linear FEM discretization of the heat kernel

To define the discrete counterpart of Equation (1),
let M := (M,T ) be a triangulated surface that ap-
proximates N . Here M := {pi, i = 1, . . . , n} is a set
of n vertices and T is an abstract simplicial complex,
which contains the adjacency information. Choosing a
common set of piecewise linear basis and test functions
{ϕi}ni=1 such that ϕi(pj) := δij , the matrices L and B
previously introduced become [38], [39], [46]

L(i, j) :=

 w(i, j) := cotαij+cot βij

2 j ∈ N(i),
−
∑
k∈N(i) w(i, k) i = j,

0 else,

B(i, j) :=


|tr|+|ts|

12 j ∈ N(i),P
k∈N(i)|tk|

6 i = j,
0 else.

Here, N(i) := {j : (i, j) edge} is the 1-star of i; | ti |
is the area of the triangle ti; tr and ts are the triangles
that share the edge (i, j); and αij , βij are the angles
opposite to the edge (i, j).

According to the weak formulation of the heat equa-
tion previously discussed, the discrete heat problem is{

∂tF (p, t) = − 1
2 L̃F (p, t), p ∈M,

F (pi, 0) = f(pi), i = 1, . . . , n,
(4)

where L̃ := B−1L is the weighted Laplacian matrix
associated to M and F :M× R→ R is the un-
known function, which is a n× 1 vector for each
value of the real parameter t. To compute the solu-
tion to (4), let us consider the generalized eigensys-
tem {(λi,xi)}ni=1 of (L,B), which satisfies the re-
lations Lxi = λiBxi, i = 1, . . . , n. Since the Lapla-
cian eigenvectors {xi}ni=1 form a basis of Rn and
(F (pi, t))ni=1 ∈ Rn, for any t ∈ R we express the solu-
tion as F (·, t) =

∑n
i=1 αi(t)xi, where α := (αi(t))ni=1

is the unknown vector.
Using the aforementioned relations, the invertibility

of the matrix B, and the linear independence of the
Laplacian eigenfunctions, the following identities hold

B∂t

[
n∑
i=1

αi(t)xi

]
= −1

2
L

[
n∑
i=1

αi(t)xi

]
←→

n∑
i=1

α′i(t)xi = −1
2

n∑
i=1

λiαi(t)xi ←→

n∑
i=1

[
α′i(t) +

1
2
λiαi(t)

]
xi = 0←→

α′i(t) +
1
2
λiαi(t) = 0, i = 1, . . . , n.

Then, the unknown vector satisfies a system of dif-
ferential equations of first order. Since the Laplacian
eigenvectors are orthonormal with respect to 〈·, ·〉B , the
boundary conditions {F (pi, 0) = f(pi)}ni=1 are equiv-

alent to

(F (pi, 0))ni=1 = f ↔
n∑
i=1

αi(0)xi = f ↔

αi(0) = 〈f ,xi〉B , i = 1, . . . , n.

We conclude that the coefficients α(t) := (αi(t))ni=1

that satisfy the system of differential equations{
α′i(t) = − 1

2λiαi(t),
αi(0) = 〈f ,xi〉B ,

i = 1, . . . , n,

are αi(t) = exp
(
− 1

2λit
)
〈f ,xi〉B , i = 1, . . . , n and the

scale-based representation of f :M→ R is

F (·, t) =
n∑
i=1

exp
(
−1

2
λit

)
〈f ,xi〉Bxi, t ∈ R, (5)

or, in matrix form,

F (·, t) = XDtX
TBf , X := [x1, . . . ,xn],

Dt := diag
(
exp

(
− 1

2λ1t
)
, . . . , exp

(
− 1

2λnt
))
.

(6)

We refer to Kt := XDtX
TB as the weighted linear

FEM heat kernel; if B := I , then Kt := XDtX
T is the

linear FEM heat kernel, which is commonly used by
previous work. Figure 1 shows the multi-scale approx-
imations of a noisy map, whose behavior at different
scales is almost the same in terms of level sets. Their
main difference is related to the number and location of
the critical points (Figure 1(i-k)).

2.2 Scale invariance of the discrete heat kernel

We now verify that the discretization of the heat
kernel previously introduced is scale covariant and
intrinsically independent of uniform rescalings. This
means that rescaling M to αM changes the kernel
kt(M) to kt/α2(αM); i.e., only the time component is
rescaled. Roughly speaking, this property is guaranteed
by the mass matrix B, which changes according to
the rescaling of the input surface and compensates the
variation of the corresponding Laplacian eigenvalues.
Finally, we normalize the eigenvalues to make the kernel
scale invariant.

According to the continuous case previously intro-
duced, {(exp(− 1

2λit),xi)}
n
i=1 is the eigensystem of Kt;

in fact, from equation (6) it follows that

Ktxi =
n∑
j=1

exp
(
−1

2
λjt

)
〈xi,xj〉Bxj

= exp
(
−1

2
λit

)
xi, i = 1, . . . , n.

Rescaling M by a factor α, the matrix L is the same,
the mass matrix B becomes α2B, and the eigensystem
{(λi,xi)}ni=1 changes into {( λi

α2 ,
xi

α )}ni=1. Replacing the
matrices B, Dt, and X in Kt(M) := XDtX

TB with
α2B, Dt/α2 , and X/α, we have

Kt(αM) =
(
X

α

)
Dt/α2

(
XT

α

)
α2B = Kt/α2(M),

3



(a) (b) m = 52, M = 52 (c) (d)
s = 102

(e) (f) (g) (h)

(i) m = 52, M = 52 (j) m = 4, M = 2 (h) m = 3, M = 2 (k) m = 2, M = 1
s = 102 s = 4 s = 3 s = 1

Fig. 1. (a) Level sets and (b) critical points of a noisy map f . Variation (y-axis) of the (c) approximating map Φt and (d) critical points
at different scales t (x-axis). (e-h) Level sets and (i-k) critical points of Φt(f) at each scale. The M maxima, m minima, and s saddles are
shown in red, blue, and green. See also Figure 3.

for any α ∈ R\0. It follows that the discrete heat kernel
induced by the linear FEM discretization of the Laplace-
Beltrami operator is scale covariant. Finally, the entries
of Kt := (Kt(i, j))ni,j=1 are

Kt(i, j) :=
n∑

a,b=1

exp
(
−1

2
λbt

)
x(i)
b x(a)

b B(a, j),

and the heat kernel signature is

Kt(i, i) :=
n∑

a,b=1

exp
(
−1

2
λbt

)
x(i)
b x(a)

b B(a, i),

for i = 1, . . . , n. Assuming that λ2 6= 0 and re-
defining Kt as K̃t := XD̃tX

TB, where D̃t is the
n× n diagonal matrix with entries exp

(
− 1

2
λi

λ2
t
)
δij ,

i, j = 1, . . . , n, we get that K̃t is scale invariant.

2.3 Remarks on the weighted linear FEM heat kernel

Before discussing the computation and possible gen-
eralizations of the weighted linear FEM heat kernel,
we briefly recall that the heat kernel is commonly
discretized by the n× n matrix whose entries are
kt(pr,ps) :=

∑n
i=1 exp(− 1

2λit)x
(r)
i x(s)

i , where x(r)
i

is the rth component of the Laplacian eigenfunc-
tion xi [44]. Using the relation between the convolution
operator and Equation (1), the heat approximation of f

at time t is usually computed as the vector (F (pi, t))ni=1,
t ∈ R, whose entries are

F (pi, t) :=
n∑
j=1

kt(pi,pj)a(j)f(pj), i = 1, . . . , n,

(7)
where a(j) is the Voronoi area of the vertex pj . Recent
results on the robustness and usefulness of the proposed
kernel for shape retrieval are presented in [4]. Here,
among the compared feature detection and description
methods the heat kernel descriptors provide the high-
est overall repeatability in most of the transformation
classes. Among these descriptors and with respect to
Equation (7), our discretization of the heat kernel pro-
vides the higher robustness against topological and local
scale changes, irregular sampling densities, and noise.

Numerical computation and iterative discretization of
the heat kernel

The decay of the filter factor σi := exp(− 1
2λit) in

(5) as λi decreases and the computational bottleneck of
evaluating the whole Laplacian spectrum suggest us to
consider only a part of the Laplacian spectrum. To this
end, the sum in (5) is truncated by considering only
the contribution related to the first k eigenvalues and

4



(a) (b) (c) M = 1574 (d) ε∞ = 3.1× 10−4 (e) M = 4 (f) ε∞ = 1.9× 10−3

m = 1629 m = 3
s = 3203 s = 7

(g) M = 4, m = 3 (h) ε∞ = 2.1× 10−6 (i) M = 3, m = 2 (j) ε∞ = 2.9× 10−6 (k) M = 3, m = 2
s = 7 s = 5 s = 5

Fig. 2. (a) Input map and (b,c) its noisy perturbation f . Level sets and critical points of the multi-scale approximation of f at two scales
using the first (d,e), (f,g) 10 and (h,i), (j,k) 100 Laplacian eigenvalues. The value ε∞ refers to the discrepancy between the input map and its
approximation. A lager number of eigenfunctions provides a higher approximation accuracy and a number of critical points of the same order.
See also Figure 7.

eigenvectors; i.e.,

Fk(·, t) =
k∑
i=1

exp
(
−1

2
λit

)
〈f ,xi〉Bxi

= XkD
(k)
t XT

k Bf , t ∈ R,

where the n× k full matrix Xk := [x1, . . . ,xk]
has the first k eigenfunctions as columns and
D

(k)
t := diag(exp(− 1

2λ1t), . . . , exp(− 1
2λkt)) ∈ Glk(R)

is the diagonal matrix with the filter factors. If t := 0,
then Fk(·, 0) =

∑k
i=1〈f ,xi〉Bxi is the least-squares

approximation of f in the linear space generated by
the first k eigenfunctions and with respect to the norm
‖ · ‖B . Note that both the parameters k and t define
the hierarchy of approximations. In fact, reducing
the number of basis functions results in a smoothing
of the input map, a larger approximation error, and
a further simplification of its critical points, with
more emphasis on those with low persistence values
(Figure 2(d-g), (h-k)). The approximation error is
measured as ε∞ := ‖f−Φt(f)‖∞

‖f‖∞ .
In our implementation, the multi-scale hierarchy is

generated by varying the parameter t on an uniform
sampling of the interval [0, λ−1

k ]; generally, from five
to ten scales {ti := i

10λ
−1
k }10

i=1 are enough to provide
a set of approximations that highlight the global and
local behavior of the input map (Section III-C). As
shown in [46], the first k Laplacian eigenvalues and
eigenvectors are computed in superlinear time and the
computational cost for the evalutation of the scale-based
representation at time t and for any f is O(kn).

Alternatively, the partial derivative ∂tF (p, ·) is ap-
proximated by the incremental ratio

∂tF (p, ·) ≈ F (p, t+ dt)− F (p, t)
dt

, dt→ 0.

Indeed, the heat equation becomes{
F (pi,t+dt)−F (pi,t)

dt = − 1
2B
−1LF (pi, t),

F (pi, 0) = f(pi),
i = 1, . . . , n,

which is equivalent to the sparse linear system

BF (·, t+ dt) =
[
−1

2
dtL+B

]
F (·, t). (8)

In this case, the mass matrix still provides better results
than the identity matrix. However, the smoothing effect
is not as good as the one provided by the schemes
previously introduced. In fact, the quality of the ap-
proximation of the partial derivative with respect to t
decreases while increasing t (Figure 3(d,e)). Further-
more, the smoothing effect of the projection on the
Laplacian eigenfunctions is not exploited in (8). This
approach also resembles the one discussed in [8], where
the implicit integration of the diffusion equation is used
to fairing a noisy 3D surface M. In this case, the new
approximationM(k+1) ofM(k) is computed by solving
a sparse linear system whose coefficient matrix involves
the Laplacian matrix of M(k) and is updated at each
iteration k. On the contrary, we iteratively smooth the
input signal f without recomputing the eigensystem in
(5) or the coefficient matrix of the corresponding linear
system in (8).
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(a) (b) (c) (d) t := 0.1 (e) t := 0.2
Fig. 3. (a) Level sets and (b) critical points of a noisy map f on an irregularly-sampled surface M. Map achieved by applying (c) the
discretization (7) and (d,e) the iterative kernel approximation Φt(f) in (8) with two different scales. Comparing (d) and (e) shows that a higher
value of t provides a smoother result. See also Figure 6.

Generalized scale-based approximations

Note that we can also consider the generalized dis-
crete problem{

∂tF (p, t) = − 1
2ϕ(L)F (p, t), p ∈M,

F (pi, 0) = f(pi), i = 1, . . . , n,

where ϕ : R→ R is a transfer function. Solving
this problem as done before shows that the gener-
alized scale-based approximation of the function f
is F (·, t) =

∑n
i=1 exp

(
− 1

2ϕ(λi)t
)
〈f ,xi〉Bxi. This ex-

pression differs from (5) only for the spectral coef-
ficients. Common choices of ϕ are the polynomials
of degree strictly lower than n, which improve the
convergence to zero of the filter factors in (5). For more
details on the choice of the filter factor and related
parameters, we refer the reader to [19].

3. SCALE-SPACES INDUCED BY THE HEAT KERNEL

In the following, we introduce a feature map
Φt : F(M)→ F(M) on the space of piecewise linear
(PL, for short) maps defined on a triangulated sur-
face M; i.e., F(M) := {f :M→ R, f PL function}.
To characterize Φt, we study its main properties such as
linearity, approximation error, numerical computation,
and stability against noise (Section III-A). Then, the
canonic basis functions (Section III-B) are used to
define a feature-driven and multi-scale approximation of
discrete signals (Section III-C).

3.1 Feature map: definition and properties

To introduce a linear structure in the feature
space F(M), we consider the following oper-
ations: ∀f, g ∈ F(M), (f + g)(pi) := f(pi) + g(pi)
and (αf)(pi) := αf(pi), ∀α ∈ R, i = 1, . . . , n. Note
that F(M) is isomorphic to Rn; i.e., any vector
f := (fi)ni=1 ∈ Rn is associated to a unique map f
on M such that the value f(pi) is equal to fi and
viceversa.

In F(M), we define the linear feature map associated
to the weighted linear FEM heat kernel as

Φt : F(M) −→ F(M)
f 7→ Φt(f) := XDtX

TBf .

It follows that Φt(f) is the discrete solution to
the heat equation with initial condition Φ0(f) := f
and the multi-scale approximation of f is given by

Φt(f) =
∑n
i=1 exp(− 1

2λit)〈f ,xi〉Bxi. Indeed, the be-
havior of Φt(f) is mainly controlled by the first eigen-
maps, which code the global structure of f . The con-
tribution of the eigenfunctions related to the largest
eigenvalues, which locate local features and noise, is
smoothed by the corresponding filter factors that de-
crease to zero as the eigenvalue magnitude grows.

We now verify that the feature map is self-adjoint
with respect to the scalar product induced by B; in fact,

〈f ,Φt(g)〉B = fTBΦt(g)

= fTBXDtX
TBg

= 〈fTBXDtX
T ,g〉B

= 〈Φt(f),g〉B , ∀f ,g ∈ F(M).

The self-adjointness of Φt is equivalent to the sym-
metry of the linear FEM kernel XDtX

T for B := I .
Since the matrix XDtX

TB is invertible, the in-
verse functional Φ−1

t : F(M)→ F(M) is defined as
Φ−1
t (f) = B−1X−1D−1

t X−T f , f ∈ F(M).

Linearity of Φt with respect to f

Let f, g :M→ R be two scalar functions defined
on M, Φt(f) and Φt(g) their corresponding scale-
based representations. Then, using the linearity of the
scalar product we get that the scale-based representation
Φt(αf + βg) of αf + βg, α, β ∈ R, is a linear combi-
nation αΦt(f) + βΦt(g) of the corresponding approxi-
mations; in fact,

Φt(αf + βg) = (XDtX
TB)(αf + βg)

= αΦt(f) + βΦt(g), t ∈ R.

Estimation of the error between f and Φt(f)
We now estimate the discrepancy between the in-

put scalar function f ∈ F(M) and the corresponding
smooth approximation Φt(f) ∈ F(M). Rewriting the
f -values as f =

∑n
i=1〈f ,xi〉Bxi, the approximation er-

ror between f and Φt(f) is estimated as

‖f − Φt(f)‖B =

∥∥∥∥∥
n∑
i=1

[
1− exp

(
−1

2
λit

)]
〈f ,xi〉Bxi

∥∥∥∥∥
B

≤
n∑
i=1

∣∣∣∣1− exp
(
−1

2
λit

)∣∣∣∣ |〈f ,xi〉B |
≤ 2

n∑
i=1

|〈f ,xi〉B |, t ∈ R,
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Linear FEM heat kernel

t := 0.1 t := 0.2 t := 0.3 t := 0.4

(a) (b) (c) (d)
Regularly-sampled surface

(e) (f) (g) (h)
Irregularly-sampled surface

Fig. 4. Multi-scale canonic basis function Φt(ei) computed with respect to the linear FEM kernel and centered at a point pi on the elbow
of the (a-d) regularly- and (e-h) irregularly-sampled surfaces in Figure 1(a) and 3(a), respectively. See also Figure 5.

where we have used the relations ‖xi‖B = 1,
i = 1, . . . , n. Finally, the energy of Φt with respect to
the Euclidean norm is bounded as follows

‖Φt(f)‖2 ≤ ‖XDtX
TBf‖2

≤ λ2
max(X)λmax(B)‖f‖2.

Using the norm induced by B, we have that

‖Φt(f)‖B ≤
n∑
i=1

exp
(
−1

2
λit

)
|〈f ,xi〉B | ‖xi‖B

≤
n∑
i=1

|〈f ,xi〉B |.

Stability of Φt against noise

Perturbing the f -values as f̃ := f + e, the difference
between the corresponding multi-scale approximations
Φt(f), Φt(f̃) is bounded as follows

‖Φt(f)− Φt(f̃)‖B = ‖Φt(e)‖B

≤

∥∥∥∥∥
n∑
i=1

exp
(
−1

2
λit

)
〈e,xi〉Bxi

∥∥∥∥∥
B

≤ ‖e‖B
n∑
i=1

exp
(
−1

2
λit

)
≤ n‖e‖B , t ∈ R.

If we consider the l2 norm, then this inequality becomes

‖Φt(f)− Φt(f̃)‖2 = ‖XDtX
TBe‖2

≤ ‖X‖22‖B‖2‖e‖2
≤ λ2

max(X)λmax(B)‖e‖2.

Note that the previous bounds are independent of the
time step and proportional to the perturbation vector e.

Stop criteria

The parameter t provides an intrinsic notion of scale
for the approximation and smoothing of the input scalar
function f . Increasing t, local shape features together
with noise are filtered out until the global structure
of f appears and is preserved through diffusion. For
the diffusion process, we consider two stop conditions.
The first criterion is to terminate the iteration when
the l∞-error ‖Φti(f)− Φti+1(f)‖∞ between two con-
secutive approximations is lower than a given threshold.
As second criterion, we consider the variation of the
critical points of Φt(f) and stop the iteration when
two consecutive approximations share the same set of
critical points. For piecewise linear maps defined on
triangulated surfaces, the critical points are computed
according to [1]. Increasing t forces Φt(f) to converge to
a constant function on M; in fact limt→+∞ Φt(f) = 1.

For the tests of this paper, we have applied the first
stop criterion and our experiments, which deal with
noisy maps defined on irregularly-sampled surfaces,
confirm that the smoothness of Φt(f) is effectively
improved by the mass matrix. This property is strictly
related to the higher accuracy of the FEM methods
with respect to other discretizations (e.g., constant [5],
cotangent [35], normalized cotangent weights [8]) of the
Laplace-Beltrami operator, which has been investigated
in the pioneering work [34], [39].

3.2 Canonic basis in F(M)

Even though the function space F(M) is isomorphic
to Rn, only specific choices of the vector f ∈ Rn
identify scalar functions on M with interesting prop-
erties (e.g., smoothness, low number of critical points).
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Weighted linear FEM heat kernel
t := 0.1 t := 0.2 t := 0.3 t := 0.4

(a) (b) (c) (d)
Regularly-sampled surface

(e) (f) (g) (h)
Irregularly-sampled surface

Fig. 5. With reference to Figure 4, the example shows the canonic basis functions associated to the weighted linear FEM heat kernel, which
provides smoother results at every scale, on both (a-d) the regularly- and (e-h) irregularly-sampled surface.

For instance, the canonic basis B := {ei}ni=1 of Rn,
(ei)j := δij , is not useful for shape analysis; in fact, the
corresponding maps on M have abrupt variations from
one to zero. Indeed, it is interesting to find a counterpart
of this basis in F(M), which retains its main properties
such as localization and linear independence, has a
smooth behavior on M, and is significative for signal
approximation (Figure 4, 5).

Since the feature map Φt is bijective on the
space F(M), any basis of Rn is mapped to a
basis of F(M); in particular, as canonic basis
of the feature space F(M) we refer to the set
C := {Φt(ei) := XDtX

TBei}ni=1 corresponding to the
(canonic) basis of Rn. The function Φt(ei), t ∈ R, is
a multi-scale and smooth approximation of the map
that attains the value one at the vertex pi and zero at
all the other vetices of M. This basis will guide the
feature-driven approximation of scalar functions, which
is described in Section III-C.

If the surface M has a regular sampling density,
then the canonic basis function ΦIt (ei) := XDtX

Tei
and Φt(ei) := XDtX

TBei, which are provided by the
linear and weighted linear FEM heat kernel, have a
similar behavior at the same scales and in a neighbor
of the point pi (Figure 4(a-d), 5(a-d)). Irregularly-
sampled patches onM generally affects the smoothness
of Φt(ei) at smaller scales (Figure 4(e,f)); increasing t
improves the smoothness of Φt(ei) in terms of regularity
of the level sets and of a low number of critical points
(Figure 4(g,h)). On the contrary, the smoothness of
Φt(ei) is guaranteed through all the scales in spite of the
discretization quality ofM (Figure 5(e-h)). In all the ex-
amples, the canonic basis function Φt(ei) is distributed
on the whole surface and concentrated mainly in a

neighbor of its center pi. This is due to the fact that each
basis Φt(ei) is a linear combination of the Laplacian
eigenfunctions, which have a global support (i.e., they
vanish on sets of null measure). Finally, the canonic
basis provides a multi-scale alternative to the geometry-
aware functions [42], which involves the linear FEM or
any other discretization of the Laplace-Beltrami operator
and is not restricted to constant weights.

To express a scalar function f :M→ R as a lin-
ear combination of the canonic basis in F(M), let
us identify f with the array f := (f(pi))ni=1 and
let α := (αi)ni=1 be the unknown vector such that
f =

∑n
i=1 αiΦt(ei). Applying the linear operator Φ−1

t

to both members of the previous identity, we get that

Φ−1
t (f) := Φ−1

t

(
n∑
i=1

αiΦt(ei)

)
=

n∑
i=1

αiei = α,

and the vector α is the solution to the sparse linear
system Ktα = f . If B := I , then α = XD−1

t XT f is
evaluated in linear time as matrix-vector product.

3.3 Projection operator and feature-driven approxima-
tion of scalar functions

Given a map f :M→ R, the family {Φt(f)}t is
computed by treating all the f -values with the same
degree of importance. In this context, it is interesting
to adapt the approximation in such a way that specific
values of f , which are related to its global behavior, are
preserved at various scales. To this end, let us consider
a set A ⊆ {1, . . . , n} of indices such that {f(pi)}i∈A is
the corresponding set of feature values of f ; i.e., a set of
values that characterize the behavior of f . These points
{pi}i∈A might be identified by using the simplification
of the critical points of f [1], [13], [33] or a clustering
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(a) (b)

Fig. 6. With reference to the map f shown in Figure 3(a), level sets
of the projection Φt(prA(f)), where A is the set of (a) all the critical
points of f and (b) those (i.e., the 42% of the input ones) preserved
by the δ-simplifcation [33]. This last choice provides smoother results
through a lower number of constraints.

of the f -values. In F(M), the projection operator with
respect to A is defined as

prA : F(M) −→ F(M)

f 7→ (prA(f))(pi) :=
{
f(pi) i ∈ A,

0 else.

Then, the smooth approximation of f constrained toA is
Φt(prA(f)) ∈ F(M). Once the set A has been chosen,
we define the global component of f as

fglob := Φt(prA(f)) :=
∑
i∈A

f(pi)Φt(ei).

Due to the linearity of Φt, the fglob-values on M are
computed as fglob = Ktf̃ , where the vector f̃ ∈ R
has entry f̃ (i) := f(pi), if i ∈ A, and zero otherwise.
Indeed, it is not necessary to explicitly compute the
canonic basis functions {Φt(ei)}i∈A. Finally, the differ-
ence between f (or Φt(f)) and fglob is the correspond-
ing local component. Note that the local component
of Φt(f) is given by Φt(prAC (f)); i.e., the image
of the projection prAC (f) of f through Φt using the
complementary set AC .

For smoothing a noisy map f , as A we consider the
set of critical points of f with a high persistence, which
are computed according to [1], [13], [33]. In this case,
we expect that floc codes the local feature or noise of f
and fglob identifies its global behavior. While traditional
approaches to function approximation are mainly driven
by a numerical error estimation, combining the critical
points with the previous scheme provides a natural
feature-driven approximation (Figure 6, 7). In fact, the
critical points usually represent a relevant information
about the phenomena coded by f . Using the critical
points of f with a high persistence generally provides
results that are smoother than using all the critical
points (Figure 6) and affects neither the approximation
accuracy ε∞ nor the number of critical points (Figure 7).

4. CONCLUSIONS AND FUTURE WORK

In this paper, a new weighted linear FEM discretiza-
tion of the heat kernel has been exploited to define the
feature spaces associated to 3D shapes, which have been
characterized in the context of signal approximation. The

(a) ε∞ = 1.7× 10−6 (b) M = 3, m = 1, s = 4

(c) ε∞ = 1.9× 10−6 (d) M = 3, m = 1, s = 4
Fig. 7. With reference to Figure 2, level sets and critical points
of feature-driven approximation with 100 Laplacian eigenfunctions
and constrained to the f -values at (a,b) all (i.e., 6406) the critical
points or (c,d) those (i.e., the 11% of the input ones) preserved by the
simplification [33].

proposed kernel is intrinsically scale invariant, stable to
irregular sampling densities of the input surface, and
suitable for shape comparison with heat kernel shape
signatures and related descriptors. The usefulness of our
results for shape retrieval through the heat kernel signa-
ture and related descriptors has been recently presented
in [4]. As main future work, we plan to investigate the
connection between the proposed approach, the diffusion
wavelets [6], and the Tikhonov regularization.
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have been partially funded by the GNCS-INdAM “F.
Severi”, “Young Researcher Programme”. This work has
been partially supported by the FOCUS K3D Coordina-
tion Action. Models are courtesy of the AIM@SHAPE
Repository.

REFERENCES

[1] T. Banchoff. Critical points and curvature for embedded poly-
hedra. Journal of Differential Geometry, 1:245–256, 1967.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimension-
ality reduction and data representation. Neural Computations,
15(6):1373–1396, 2003.

[3] A. Bronstein, M. Bronstein, R. Kimmel, M. Mahmoudi, and
G. Sapiro. A Gromov-Hausdorff framework with diffusion
geometry for topologically-robust non-rigid shape matching.
International Journal of Computer Vision, To appear, 2009.

[4] A. M. Bronstein, M. M. Bronstein, B. Bustos, U. Castellani,
M. Crisani, B. Falcidieno, L. J. Guibas, V. Murino I. Kokkinos,
I. Isipiran, M. Ovsjanikov, G. Patanè, M. Spagnuolo, and J. Sun.
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fairing of irregular meshes using diffusion and curvature flow.
In ACM Siggraph 1999, pages 317–324, 1999.

[9] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout
problems. ACM Computing Surveys, 34(3):313–356, 2002.

[10] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart.
Spectral surface quadrangulation. ACM Siggraph 2006, pages
1057–1066, 2006.

[11] S. Dong, S. Kircher, and M. Garland. Harmonic functions for
quadrilateral remeshing of arbitrary manifolds. Computer Aided
Geometric Design, 22(5):392–423, 2005.

[12] R. Dyer, R. H. Zhang, T. Moeller, and A. Clements. An
investigation of the spectral robustness of mesh laplacians. 2007.

[13] H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-
sensitive simplification functions on 2-manifolds. In Proc. of the
Symposium on Computational Geometry, pages 127–134. ACM,
2006.

[14] K. Gebal, J. Andreas Bærentzen, H. Aanæs, and R. Larsen.
Shape analysis using the auto diffusion function. Computer
Graphics Forum, 28(5):1405–1413, 2009.

[15] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical
parameterization for 3D meshes. In ACM Siggraph 2003, pages
358–363, 2003.

[16] V. Jain and H. Zhang. A spectral approach to shape-based
retrieval of articulated 3D models. Computer Aided Design,
39:398–407, 2007.

[17] K. Polthier K. Hildebrandt and M. Wardetzky. On the conver-
gence of metric and geometric properties of polyhedral surfaces.
Geometria Dedicata, pages 89–112, 2006.

[18] Z. Karni and C. Gotsman. Spectral compression of mesh
geometry. In ACM Siggraph 2000, pages 279–286, 2000.

[19] B. Kim and J. Rossignac. Geofilter: Geometric selection of mesh
filter parameters. Computer Graphics Forum, 24(3):295–302,
2005.

[20] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive
multi-resolution modeling on arbitrary meshes. In ACM Siggraph
1998, pages 105–114, 1998.

[21] Y. Koren. On spectral graph drawing. volume 2697, pages 496–
508. Lecture Notes in Computer Science, 2003.

[22] S. Lafon, Y. Keller, and R. R. Coifman. Data fusion and multicue
data matching by diffusion maps. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28:1784–1797, 2006.

[23] B. Levy. Laplace-Beltrami eigenfunctions: towards an algorithm
that understands geometry. In Proc. of the IEEE Shape Modeling
and Applications, page 13, 2006.

[24] R. Liu and H. Zhang. Mesh segmentation via spectral embedding
and contour analysis. Eurographics 2007, 26:385–394, 2007.

[25] C. Luo, I. Safa, and Y. Wang. Approximating gradients for
meshes and point clouds via diffusion metric. Computer Graph-
ics Forum, 28(5):1497–1508, 2009.

[26] A. M. Bronstein M. M. Bronstein. Analysis of diffusion
geometry methods for shape recognition. IEEE Trans. Pattern
Analysis and Machine Intelligence, Submitted, 2010.

[27] J.-L. Mallet. Discrete smooth interpolation. ACM Transactions
on Graphics, 8(2):121–144, 1989.

[28] F. Mémoli. Spectral Gromov-Wasserstein distances for shape
matching. In Workshop on Non-Rigid Shape Analysis and
Deformable Image Alignment, october 2009.

[29] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Laplacian
mesh optimization. In Proc. of Computer graphics and interac-
tive techniques, pages 381–389, 2006.

[30] X. Ni, M. Garland, and J. C. Hart. Fair Morse functions for
extracting the topological structure of a surface mesh. In ACM
Siggraph 2004, pages 613–622, 2004.

[31] R. Ohbuchi, A. Mukaiyama, and S. Takahashi. A frequency-
domain approach to watermarking 3D shapes. Computer Graph-
ics Forum, 21(3), 2002.

[32] R. Ohbuchi, S. Takahashi, T. Miyazawa, and A. Mukaiyama. Wa-
termarking 3D polygonal meshes in the mesh spectral domain.
In Graphics Interface 2001, pages 9–17, 2001.
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