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Abstract In the digital era, patient-specific 3D models (3D-PSMs) are be-
coming increasingly relevant in computer-assisted diagnosis, surgery training
on digital models, or implant design. While advanced imaging and recon-
struction techniques can create accurate and detailed 3D models of patients’
anatomy, software tools able to exploit fully the potential of 3D-PSMs are
still far from being satisfactory. In particular, there is still a lack of integrated
approaches for extracting, coding, sharing and retrieving medically-relevant
information from 3D-PSMs and use it concretely as a support to diagnosis
and treatment. In this article, we propose the SemAnatomy3D framework,
which demonstrates how the ontology-driven annotation of 3D-PSMs and of
their anatomically relevant features (parts-of-relevance) can assist clinicians
to document more effectively pathologies and their evolution. We exemplify
the idea in the context of the diagnosis of rheumatoid arthritis of the wrist
district, and show how feature extraction tools and semantic 3D annotation
can provide a rich characterization of anatomical landmarks (e.g., articular
facets, prominent features, ligament attachments) and pathological markers
(e.g., erosions, bone loss). The core contributions are an ontology-driven part-
based annotation method for the 3D-PSMs and a novel automatic localization
and quantification of the OMERACT RAMRIS erosion score. Finally, our re-
sults have been compared against a medical ground-truth which was created
by the rheumatologists.
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1 Introduction

Medical scans and 3D reconstructions contain a wealth of information about
the patient’s condition, which is often not explicit and computationally ac-
cessible. An important component that often accompanies medical images is
the concept of region-of-interest (ROI) and its annotations, which aim at de-
livering an improved understanding of the data by means of critical commen-
taries. Ontology-driven annotations were introduced in medicine for coding
the findings of clinicians (semantics) to images in a human and machine un-
derstandable way, opening the possibility to perform several other automatic
operations on these processable knowledge. For example, the iPAD system [20]
extends the functionalities of the image viewing platform OsiriX so that se-
mantic tags from the RadLex ontology [12] can be linked to 2D medical scans.
The application pushed forward by this extension is the support to an efficient
retrieval of similar cases from clinical archives, which could improve greatly
the automation of statistical studies in the field. However, the annotation pro-
cess, that is the identification of ROI and the association of ontology’s tags,
is mostly manual and can only be applied to 2D DICOM images. A similar
semantic annotation tool for medical images is RadSem, which leverages the
MEDICO ontology to cover various aspects of clinical procedures [13]. Rad-
Sem uses an ontology-driven metadata extractor only for the image format
DICOM, and allows the users to link images with anatomical annotations and
clinical findings to generate an integrated view of a patient’s medical history.
The Medico system [22] applies an automatic detection and localization of
anatomical structures within CT scans of the human torso and maps them to
the concepts that are derived from FMA [19], ICD10 [16], RadLex. However,
this approach is applicable only for CT data sets of human torso, and has been
verified within a small set of sample images.

Advanced image segmentation and 3D reconstruction methods offer a whole
spectrum of technologies to create detailed patient-specific 3D anatomical
models (3D-PSMs), but a standard methodology to perform rich annotations
of patient-specific 3D model is still lacking. Benefits of introducing part-based
annotations for 3D-PSMs are many: tagging clinical explanation within an
annotated 3D model can highlight the location of anomalies; interpretation
becomes easier; identifying components becomes faster; and interactions be-
come more effective when compared to an unannotated 3D model. Moreover,
3D part-based annotation offers a way to index relevant subparts in 3D re-
constructed models, making them accessible more efficiently, and supports an
integrated management of the 3D data together with its semantic content. The
semantics-driven indexing of the 3D model and its relevant parts could also
play a fundamental role in offering sophisticated information retrieval tech-
niques to support speeding up the diagnosis process and improving accuracy
in treatment of complex disease.

In this paper, we discuss the importance of a 3D part-based annotation
system, using the context provided by Rheumatoid Arthritis (RA) as exam-
ple of pathology affecting the hand district. To this aim, we first describe the
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characteristics of the annotation framework SemAnatomy3D, which has been
presented recently in [4]. Semantics, as formalized in a biomedical ontology, is
discussed for its role in the annotation process, as a conveyor of information
supporting the documentation and diagnosis of rheumatoid arthritis. In par-
ticular, two modalities of annotation are described: a manual one, where the
terminology is controlled by the ontology, and an automatic top-down method,
which propagates the annotation of a 3D annotated template to the 3D-PSM.
Also, the data model we have devised for coding part-based annotations is
described, which is necessary to share 3D geometries enriched with semantics.

Novel contributions brought by this paper concern the development of a
computational approach that integrates the semantic annotation with tools
for measuring diagnostic metrics: erosion score and erosion map. Rheumatoid
arthritis is a chronic inflammatory musculoskeletal disorder that affects the
lining of joints, causing a painful swelling that can eventually result in bone
erosion and joint deformity. In the clinical practice, the OMERACT score
is a widely used quantitative parameter measuring the rheumatoid arthritis
simpthoms. However, the erosion scoring is mostly a qualitative process that
assesses bone erosion directly from the T1-weighted MRI images based on
visual assessment. The OMERACT RAMRIS [17] reduces the inter-observer
variability in erosion assessment task by introducing the EULAR-OMERACT
RA MRI reference image atlas. Additionally, the manual evaluation of bone
erosions volume from the MRI images is tedious, time consuming and not fully
repeatable, especially for inexperienced users. In the diagnosis of rheumatoid
arthritis, 3D-PSMs have not been yet considered, although they can provide
interesting insights about the patient’s condition and may help to minimize
the manual efforts. Preliminary results about the computer-assisted evaluation
of erosion scores was presented in [18], addressing the support to experts in
the diagnosis of rheumatoid arthritis from MRI images.

The proposed method is based on an evolution of a 3D template model,
used in the qualitative top-down annotation, which is further refined to pro-
vide a good estimate of the non-eroded 3D-PSM model. Similarity, or better,
dissimilarity from the healthy anatomical areas is used to characterize erosion.
A validation of the scoring results is also presented, which also demonstrate
further the interest of the users with respect to this innovative methods to
analyze 3D anatomical reconstructions. The complete annotation pipeline cre-
ates a bridge between the patient-specific geometry and the formal domain
knowledge, and can be considered as a first step towards an intelligent 3D
indexing for semantic-based retrieval from the medical knowledge-bases. The
methods presented here are specialized to the context of rheumatoid arthritis
of carpal bones, but in principle can support similar tasks in other clinical
applications.

The paper is organized as follows: in Sect. 2, we discuss the requirements
and design of the SemAnatomy3D framework, together with the developed
knowledge formalization of the carpal area, and in Sect. 3 we describe the
methods for descriptive quantitative annotation. Then, in Sect. 4 the compu-
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tation of the erosion score within SemAnatomy3D is presented and Sect. 5
concludes the paper.

2 SemAnatomy3D: requirements and design

The requirements of a semantics-driven annotation framework have been stud-
ied within the scope of several international and national research projects
(MultiScaleHuman [15], MEDIARE [1], POLITECMED consortium [2]). Lessons
learnt from those projects gave us indications of the benefits of coupling com-
putational approaches to biomedical data processing with knowledge man-
agement techniques, thus defining new features for the next-generation CAD
systems.

The design, development, and validation of SemAnatomy3D were guided by
a requirement analysis phase in which we first collected the basic requirements,
opinions and perspectives through the distribution of questionnaires to clinical
professionals and external research groups. We investigated the features that
clinicians/radiologists expect from a patient-specific 3D model annotation sys-
tem, and how they intend to employ them in their routine practice [5]. Experts
mentioned that in the diagnosis of rheumatoid arthritis, it is crucial to have
an idea about the patient’s bone morphology, as well as position and char-
acterization of the PoRs that can help quantifying diagnostic parameters in
order to distinguish pathological cases from normal ones, or to determine the
attachment areas of the ligaments. Besides comments related to the clinical
relevance of the framework, we also received a positive feedback on the bene-
fits of the part-based annotation of 3D-PSMs for facilitating interoperability,
querying, reasoning and discovery in the 3D medical repositories.

This requirement analysis have led us to the following conclusions: a seman-
tically rich and interoperable annotation system should - (i) express semantics
not only of the whole 3D-PSM but also of the PoRs, where the PoRs can
have either an anatomical significance (anatomical landmarks, prominent fea-
tures) or pathological significance (erosion, lesion); (ii) describe the semantics
of the data by relying on a formal knowledge of both anatomy and quantitative
parameters/indicators; (iii) provide tools to compute automatically the quan-
titative parameters and diagnostic indicators from patient-specific 3D models.
The envisaged system should also leave flexibility to adjust the annotations
so that the user can tune the results obtained. SemAnatomy3D system con-
sist of two main components - SemAnantomy3D annotation tool (Sect. 3) and
SemAnatomy3D knowledge-base. The SemAnatomy3D annotation tool, and
its graphical user interface, allows to annotate of a 3D-PSM and its parts-of-
relevance. The SemAnatomy3D Knowledge Base, instead, stores the results of
the annotation process adding relevant medical information to the 3D-PSM.

Formalization of knowledge about the carpal district The ontology we defined
in our research investigations is focused on rheumatic arthritis and includes
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Fig. 1 Knowledge formalization: (a) taxonomy of carpal bones and PoRs; (b) articulation
relations between the facets of Hamate and Capitate bones; (c) part-hood relation between
Hook of Hamate and Hamate bone.

the medical background knowledge on carpal anatomy. The attributes formal-
ized for each anatomical concepts reflect the parameters of interest for medical
investigations. Also, the concept of patients and acquisition sessions/protocols
were formalized. We represented this domain knowledge in OWL and we fol-
lowed the knowledge re-use guidelines where possible [8]. To support the part-
based annotation of 3D models of the carpal region, we consider the subpart
of the FMA ontology related to this anatomical district. The extracted sub-
part is then enriched with the part-hood and articulation relations between
the facets, as depicted on Fig. 1. This additional information was needed to
support the user scenarios considered and was not included in the 1Bioportal
version of the FMA ontology. We kept the same labels for our two main OWL
classes of the carpal region conceptualization (Cavitated organ and Zone of
Short bone (Fig. 1) as in FMA for compatibility with other applications which
use FMA ontology.

The formalization of medical background knowledge consisting of patient
information, acquisition sessions, acquisition protocols, and relations between
these concepts: patients undergoing acquisitions sessions, acquisition protocols
performed during the acquisition sessions is captured by the MultiScaleHuman
Ontology [14].

1 http://bioportal.bioontology.org/ontologies/FMA



6 Imon Banerjee et al.

Table 1 Additional restrictions in SemAnatomy3D data model.

Restriction Meaning
oa:SpecificResource rdf:subClassOf sem3D:has source

exactly 1 sem3D:Media
oa:SpecificResource should have exactly one data file.

Sem3D:3DModel rdf:subClassOf sem3D:has specific resource

some oa:SpecificResource
sem3D:3DModel can have some (one or multiple) specific resource(s).

Knowledge base and annotation data model The SemAnatomy3D knowledge
base creates a bridge between the semantic representation and their geometry
since the ontology-driven annotations are instances of the defined ontology.
In the following, we describe the new data model and file format we have
proposed for the storage of annotated 3D-PSMs.

Fig. 2 SemAnatomy3D extension of OA model - saving of 3D surface fragment annotation.

The main role of the Sem3D annotation data model (Figs. 2, 3) is to
manage the annotation so that it facilitates the interoperability, querying,
reasoning, and discovery of 3D-PSMs. A number of semantic annotation data
models have been proposed to support interoperability on the Web. These
include the Annotea model [11], and the Open Annotation (OA) [10], but they
do not provide sufficient specifications for annotating 3D-PSMs, their subparts,
and varying-dimensional fragments. In particular, the OA data model [21]
developed by W3C Open Annotation Community Group specifies a extensible
data model to support interoperable annotations for enabling discovery and
sharing of annotations without using a particular set of protocols.
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Fig. 3 SemAnatomy3D extension of OA model - formalization of annotation.

We extended the OA model to fulfill the main requirements of SemAnatomy3D
annotation framework: i.e. to store the annotation of varying-dimensional 3D
fragment and to support whole and part-based annotation with descriptive
and quantitative attributes, multimodal annotation with textual tag/numeric
value, 2D image or text file. In addition to the Open annotation model (OA)
new concepts in the Sem3D annotation data model have been defined:

– sem3D:3DFragmentSelector is specified as a rdfSubClassOf the oa:Selector
element to model different representations of the 3D PoRs (Sect. 2). It
also has 3 subclasses to describe: points sem3D:PointSelector, edges -
sem3D:EdgeSelector, and areal patches sem3D:SurfaceSelector.

– sem3D:Media stores various types of data format, e.g., 3D triangulated
models, 3D fragments (.sem3D), 2D images, textDocument, which can ei-
ther have their own annotation (source of annotation) or can be considered
as annotation of another data (body of annotation).

– sem3D:Quantitativevalue stores a single numeric value parameter or
scalar value map computed from the sem3D:Media. It can be considered
as form of annotation. It has two rdf:DataProperties:sem3D:paramtype -
describes the type of quantitative parameters, e.g., volume, area, curvature
map; sem3D:paramvalue - stores the numeric value of the parameter.

– Restriction - In Table 1, we describe the restrictions that we implied on
oa:SpecificResource and sem3d:3DModel.

In Fig. 2, the SemAnatomy3D annotation data model snapshot is related
to the saving of a 3D surface fragment annotated as “Hook of hamate”, which
represents the core classes and the relationships between. Each instance of
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oa:Annotation is linked to the instance of oa:specific resource and each
oa:specific resource instance oa:has source exactly 1 sem:3D Media in-
stance. The sem3D:Media instance describes the data by storing the actual
file location of annotation source. If a oa:specific resource instance corre-
sponds to a PoR (sub-part) annotation, then it will be linked with a specific
sem3D:FragmentSelector instance, e.g., for “Hook of Hamate” it is linked
with sem3D:SurfaceSelector. In Fig. 3, we show how the annotation in-
stances are related to various information, such as semanticURI, external link,
quantitative values in the SemAnatomy3D knowledge-base.

In addition, we have developed a simple and effective file format .sem3D
with three main goals: support a faster way of reading, writing and rendering
of 3D subpart annotation; be as simple as it can, so it can be customized for
various applications; avoid storing redundant information. We came up with an
index-based method of storing varying topological dimensional 3D fragments
in a .sem3D file as follows: (i) surface fragment in .sem3D - we store only
the index of the cells (triangle) belonging to the fragment, (ii) Line fragment
in .sem3D - we store index of the points of belonging to the line fragment.
We maintain adjacency of the points in the form of- xy, yz, zk, . . ., (iii) point
fragment in .sem3D - we only store the index of the points.

3 SemAnantomy3D: annotation tools

SemAnatomy3D supports both descriptive and quantitative annotation: the
first describes patient-specific 3D carpal bone models and their parts-of-relevance
by means of anatomical concepts/terms derived from the defined ontology
(Fig. 4); the latter refers to the quantitative measurements and characteriza-
tions of the 3D-PSM via a set of geometric and shape analysis tools (Fig. 5).
SemAnatomy3D allows the user to annotate the complete district (Fig. 4(a)),
which is a relevant feature when performing an analysis of anatomical joints.

In our case-study of carpal bones, PoRs may corresponds to surface patch
(regions) - articular and non-articular facets of the bone, prominent features
such as scaphoid tubercle, hook of hamate, ligament insertion sites; edges (poly-
lines) - boundaries between anatomical landmark regions, contours indicating
abnormalities/disease affected regions, e.g. eroded regions; vertices (points) -
extremal features of the bone, such the tip of a protruded facet, extreme pres-
sure point. Thus, the realization of 3D annotation becomes more challenging
in terms of PoR identification and management.

3.1 Descriptive annotation

Since the identification of the PoRs in a 3D-PSM is not trivial in terms of
interaction, SemAnatomy3D supports both interactive and controlled selection
of PoRs. The interactive way is manual, thus offering more flexibility to the
user, while the controlled mode is automatic but may require some tuning.
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Fig. 4 SemAnatomy3D: (a)Annotation of a complete “Carpal region”, (b)Individual anno-
tation of Hamate bone.

Interactive annotation In order to allow the user to select the PoRs from
a 3D model, an interactive tool palette has been incorporated within Sem-
Anatomy3D, which offers multiple interaction tools, such as smart-cut, draw,
paint and delete strokes, points’ picking. For instance, in smart-cut the user
can simply select a region over a 3D-PSM using a stretchable screen rectangle,
and the system automatically computes the minimal cut in the 3D surface.
In draw, the user can select only the visible portion of the 3D model using
the same stretchable rectangle. Furthermore, the system allows for the mod-
ification of the boundaries by inserting/deleting elements from the selected
PoRs. The main target of the tools is to make the 3D subpart selection an
easy and quick task from the users’ point of view. Afterwards, they can asso-
ciate the corresponding conceptual tags to the selected PoRs by the interactive
navigation of the reference ontologies.

Controlled annotation The automatic annotation method is based on the def-
inition of a parametric 3D template model [6] that contains the anatomical
landmark positions as parameters, registers the parametric template against
the targeted model using an elastic transformation, and propagates the anno-
tation onto the target model. Additional annotations, such as personal notes,
text documents, can be added in a manual way after the automatic PoR recog-
nition process.

To create the statistical model, we generate the mean shape of each carpal
bone from the reconstructed healthy sample data by using an elastic shape
analysis method guided by anatomical landmark-driven correspondences [6].
An important strength of the approach is that one to one correspondences
between the training samples have been established while generating the mean
shape. Given the mean shape µ and the registered sample population, for each
class of carpal bone we obtain the most significant modes of variation by
standard Principal Component Analysis (PCA) [3]. In Fig. 6, we present the
principal modes of variation for Scaphoid bone (right hand). In the similar
way, we conceive a set of statistical variances for each class of carpal bone.
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Fig. 5 Computation of the diagnosis metrics “Erosion score” and “Erosion map” from the
3D PSM.

After an elastic co-registration between the template model and the in-
put model [4], the annotation is propagated from the vertices of annotated
template to closest vertices of the target mesh. Then, the system automati-
cally detects the boundary of each annotated surface fragments, and a filter
based on the 1-ring neighbors adjacency generates an annotated region with
smooth boundary which can be further refined by the user interaction tools
described in Sect. 3. Fig. 4 presents an example of the automatic annotation
and Fig. 7 shows the annotation of an eroded hamate bone, affected by a
rheumatic arthritis at stage 2, where the PoRs are correctly recognized also in
highly eroded regions.

The global complexity of the registration algorithm is O(Nx logNy) where
Nx and Ny represent the number of vertices in the template and the target
model. The propagation of annotation is done in the liner time O(Np), where
Np is the number of vertices belong to a landmark. In a standard machine,
our method takes a few seconds to annotate 6-8 anatomical landmarks in a 3D
model, where the total number of vertices 3080 and number of triangles 5156.

3.2 Quantitative annotation

In clinical investigation, it is important to capture the quantitative aspects of
the patients’ data and to derive a detailed characterization of anatomy that
illustrates various facets of medical knowledge, e.g. anatomical, functional, and
pathological ones.

In the case study of rheumatoid arthritis, we developed a 3D shape analysis
library to automatically compute some of the quantitative parameters directly
from a 3D-PSM or from its annotated PoRs. Additionally, we incorporated a
specialized set of feature descriptors to characterize automatically the carpal
district, in terms of functional regions, e.g., articulation and adjacency. A few
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Fig. 6 Principal modes of variation: Scaphoid bone.

Table 2 List of parameters to support the characterization of rheumatoid arthritis.

Computation Input Output Parameters

Quantitative measurements

3D-PSM

Scalar value

Bone Volume (BV)
Bone Surface (BS)
Bone Length (BL)
Bone Volume/ConvexHull Volume
(BV/CV)

Scalar value map

Curvature map (Mean, Gaussian)
(CMap)
Average geodesic (GMap)
Distance from CovexHull
(HMap)

Complete district
(a set of 3D-PSMs)

Shadow Map (SMap)
Inter-bone adjacency graph

Scalar value Carpal height and width

3D-PSM and annotated PoRs Scalar value
Area of articulation region
Geodesic distance between
landmarks

Dissimilarity measurement
from normality

Statistical template model
and target 3D-PSM

Scalar value map Erosion map

Scalar value
OMERACT RAMRIS
erosion score

Identified PoR Eroded region

parameters do not have an immediate clinical significance but they are still
useful to evaluate the potential of a rich 3D-PSM characterization in clinical
investigation. In Table 2, we summarize the parameters we computed to char-
acterize rheumatoid arthritis. The quantitative measurements have been de-
veloped using state-of-the-art algorithms for shape analysis, as detailed in [7].
In Sect. 4, we introduce a novel approach to estimate the erosion score through
the dissimilarity measurements from normality.
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Fig. 7 Annotation of a patient-specific Hamate - eroded.

4 Computing erosion score with SemAnatomy3D

In the following, we discuss the detection of anomalies (e.g., bone loss) and
the computation of pathological markers (e.g., OMERACT RAMRIS erosion
score [17]). More precisely, we tackle the computation of the erosion score by
measuring the dissimilarity from the “normal” shapes. Defining shape normal-
ity in anatomy is not trivial, since the variability of shapes even within the
healthy samples is considerable. Recently, statistical shape modeling has been
proven a successful method for capturing anatomical variabilities. However,
the performance of statistical shape modeling crucially depends on the way
anatomical regions of inter-patient shapes are mapped to each other, and such
correspondence is in general difficult to fulfill for 3D anatomical shapes.

In our novel method, we integrated the template introduced in Sect. 3 with
a semantics-based structural descriptor to capture shape variance. After devis-
ing the principal shape variations for each class, we implement an automatic
method that identifies the most similar shape variation, where the relevant
anatomical features (landmarks) are “similar” to the target model. We com-
pute a semantics-based structural descriptor of the target shape as well as of
each shape variance, depending either on annotated articulation regions or on
annotated prominent bony features. Fig. 8 shows the semantics-based struc-
tural descriptor for a patient-specific scaphoid bone where the black node is
the center of mass of the 3D model, the other colored nodes represent the
corresponding annotated regions, and the edge weight is computed as the Eu-
clidean distance from the center of mass and the connected node. We describe
the descriptor as an undirected weighted graph where the nodes are labeled
with semantic tags of the corresponding annotations. The edge attribute rep-
resents the Euclidean distance from the center of mass, which highlights the
distribution of the object with respect to its barycenter.

We saved the pre-computed values of the descriptor for the variances of
each bone class, while for the target shape we compute the descriptor on the
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Fig. 8 Semantics-based structural descriptor for scaphoid.

fly by using the template-based automatic annotation method. To retrieve the
matching variance, we normalize the edge weights for the target descriptors
with respect to the maximum edge weight, since the variances being generated
from the parameterized sample sets are already normalized. Afterwards, we
execute an iterative search mechanism to retrieve the “best match” covariance
where the correspondence between the nodes of the target shape descriptor
and the ones of the covariances descriptors are already established by the
semantic tags. Thus, a “best matching” candidate is simply picked, where the
difference in total edge weight is minimum between the target and variance
descriptors.

Thanks to the statistical template, we adopt a double characterization us-
ing two distinct metrics: “Erosion score” and “Erosion map”. The two types
of metrics have complementary strengths in depicting local and global mor-
phology of the bone. To measure the erosion score, we follow the standard
OMERACT scoring system [9], which grades the bone loss due to erosion on
a 0-10 scale based on percentage of estimated bone volume loss. Then, the
co-registration aligns the centroid of the statistical template with the target
shape and applies an uniform scaling (Fig. 9 (a)) and iterative rotations based
on the principal axes alignment which optimizes the distance computed as the
square root of the average of the sum of squares of the closest point distances
(Fig. 9 (b)).

After the optimal alignment, we measure the percentage of bone loss as
Boneloss = BVR−BVT

BVT
× 100, where BVR refers the volume of co-registered

model, BVT is the target bone volume. The score is derived as: 0 ≤ Boneloss ≤
1 erosion score is 0, 1 < Boneloss ≤ 10 erosion score is 1, 10 < Boneloss ≤ 20
erosion score is 2, and so on. The erosion score offers a global characterization
of pathological data, also it does not bring any knowledge about the exact
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Fig. 9 Rigid registration steps (Case-study: 3D-PSM of Hamate bone): (a) coarse registra-
tion based on translation and uniform scaling (registered template in green); (b) refinement
based on iterative rotation (registered template in blue).

locations of erosion. We propose a novel metric “Erosion map” in order to
detect the exact location of the erosion through the rigid co-registration of a
healthy statistical template. The Erosion map is evaluated upon the targeted
data by measuring the vertex-wise Euclidean distance from the co-registered
template model. In the erosion map, the scalar value of a vertex p of the
target model is define as ErosionMap(p) = min(d(p, q1), d(p, q2) . . . , d(p, qn)),
where qi is the ith vertex of the co-registered template and n is the total
number of vertex in the template model. After the erosion map computation,
contours have been drawn based on a pre-define range of values (Fig. 5). This
investigation can recognize specific area of anomalies for fine grain analysis.

In a standard machine, our method takes a 2 - 3 seconds to compute the
erosion in a regular 3D bone model, where the total number of vertices 5156
(see Fig. 10), and 7 - 8 seconds to compute the erosion in a high resolution
mesh (vertices > 20,000).

Validation A validation with expert evaluation has been performed on the
various levels of our quantitative measures: eroded volume, erosion location,
and the OMERACT RAMRIS erosion scoring. As a ground truth, we have uti-
lized an online clinical database [23] which consists of MRI images and corre-
sponding manually segmented surface models along with the expert-evaluated
erosion score value. The ground truth was created by a group of rheumatol-
ogists from the department of clinical rheumatologist (DIMI), University of
Genova (Unige), and they were assisted by a professional computer aided di-
agnosis system [18]. In this study, 30 patients affected by rheumatic arthritis
(RA) and 10 healthy patients have been considered, and a total 40× 8 = 320
3D carpal bone models have been evaluated. Results on eroded volume and
OMERACT scoring comparison is presented in Table 3, where the “Manual:%
of bone loss” column represents expert-assessed value of the bone loss, and the
“SemAnatomy3D: % of bone loss” column shows the automatically measured
value where the bone loss and erosion scoring have been computed according
to method described.
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Table 3 Comparison for Lunate bone.

Patient id
Manual:
% of bone loss

Manual:
scoring

SemAnatomy3D:
% of bone loss

SemAnatomy3D:
scoring

1543 0 0 0 0
5778 0 0 0 0
1432 1.17 1 0.95 1
3425 4.37 1 3.97 1
6264 0 0 0 0
5509 0 0 0 0
1984 0 0 0.67 1
2996 0 0 0 0
2736 0 0 0 0
1646 0 0 0.61 1
3218 1.14 1 0.74 1
2513 0 0 0.63 1
3107 0 0 0 0
1964 24.56 3 23.78 3
2625 0 0 0 0
3321 0.43 1 0.36 1
2095 0 0 0 0
1815 11.89 2 10.79 2
4817 16.69 2 15.73 2

In most cases the automatic evaluation scoring correlates with the ground
truth (green text), however the eroded volume measured by the automatic
algorithm differs a bit compared to the manual assessment mainly because the
manual evaluation has been performed on the voxel space, whereas the auto-
matic evaluation has been performed on 3D shapes. In a few cases (red text)
a mismatch in the scoring observed, mainly for healthy data. After discussing
the mismatch with clinical experts, we derived that it is mainly caused either
by a specific healthy shape variation, which is not captured by the statistical
template, or due to a segmentation error which was manually corrected during
the expert’s assessment.

Additionally, the manually evaluated eroded surfaces were compared with
the erosion location identified automatically by the “Erosion map” metric
(Fig. 5). Fig. 10 represents the comparison result, where the manually eval-
uated eroded surface has been colored according to distance from the auto-
matically evaluated erosion location. In this case, the automatically evaluated
result closely matches with the ground truth.

Furthermore, for other non-erosive pathological data sets where the bone
shape differs from the normality (e.g., osteoarthritis, avascular necrosis) the
erosion map may highlight also the area of these anomalies and behaves more
like an “Abnormality map”.

5 Conclusions and perspectives

In this study, we have proposed an extension of the SemAnatomy3D to com-
pute expressive characterizations of 3D-PSMs, in the context of computer-
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Fig. 10 Erosion location comparison result: (a) manually eroded surface colored according
to the distance from automatic evaluation; (b) automatic evaluation result.

assisted diagnosis of rheumatoid arthritis. The novel methods introduced for
extracting the erosion map and evaluating quantitatively the erosion score have
been presented and discussed with respect to the score assigned by experts in
the domain, demonstrating the usefulness of the approach proposed. We be-
lieve that these examples are useful to demonstrate concretely the potential
of 3D part-based annotations to open new perspectives for computer-assisted
diagnosis systems, until now dominated by image content rather then 3D mod-
els.

SemAnatomy3D integrates computer-processable knowledge and geometry
processing tools which, together, contribute to support both automatic and
manual part-based annotations of 3D anatomical models. The results of this
advanced semantic enrichment are stored using a novel 3D annotation data
model, which enables sharing of the medical reasoning within and across com-
munities of specialists. The fine-grained shape characterization of anatomical
structures, properly annotated, can support efficient semantic-based retrieval
from medical knowledge-bases, enabling the analysis of the 3D-PSM with in-
formation related to anatomy and pathology, and consequently efficient clinical
reporting of patient’s status. Information retrieval and content-based retrieval
mechanisms could be established on this enriched vision of medical knowledge-
bases, contributing to the establishment of novel investigation procedures in
the medical field. For instance, let us consider the following scenario: A clini-
cian, when consulting a surface fragment of a 3D-PSM annotated as an artic-
ulation facet, might be willing to consult adjacent facets of the fragment with
which it articulates. In fact, in the case of RA, if one articulation facet in a
joint contains erosion or lesion, there can be a certain chance of erosion in ad-
jacent articulation regions. A query addressing this search could be expressed
as “Where could be located a probable chance of erosion in “Carpal region” of
patient XX, if “Capitate facet of Hamate” has average erosion value 2.5?”.
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SemAnatomy3D could answer this query, since the anatomical formalization
(Sect. 2) captures adjacency relations between the articular facets of bones,
together with annotated quantitative parameters. Among the quantitative pa-
rameters, there is the average erosion value therefore we could first retrieve the
adjacent facets, and then filter the results so that only those whose average
erosion value falls inside the required range.

We envisage that content-based retrieval could be integrated easily in the
framework, supporting reasoning based on shape similarity: shape is indeed
essential when analyzing anatomy and difference to canonical forms is a com-
mon indicator of pathological conditions. For instance, we could imagine that
a clinician wants to look for other patients having some analogies to the case
in question, as expressed by a simple query such as n: Retrieve the cases where
“Capitate facets of Hamate” are similar to that of the Patient X’s one?. One
way to establish the similarity between cases is querying the knowledge-base
for 3D models of patients annotated with similar quantitative parameters to
those of the given patient. Another way to approach the problem would be to
make a query by example to the knowledge-base using the patient’s 3D model
of hamate as query model.

Similarity-based reasoning could be very useful also to analyze the evo-
lution of a pathology, in a typical follow-up process. An advanced query re-
lated to this example scenario could be summarized as “Retrieve all “Articular
facet” (s) of patient XX “Carpal bone” where erosion increased compared to
the last acquisition session”. SemAnatomy3D supports the annotation of the
3D models of the same PoR (e.g., capitate facet of hamate), belonging to the
same patient associated with two different acquisition sessions and ultimately
store their annotations. Based on this, to support follow-up monitoring of
the patient, the query could first look for the 3D-PSMs created from differ-
ent acquisition sessions of the same patient XX, which he/she underwent at
different times. Then, filter the answer set to get ‘Articular facet” PoR anno-
tations of carpal bone with their quantitative measurements. Finally, pairs of
annotations of the same PoR, distinguished by their acquisition time, could
be compared and only those annotations which exhibit a difference returned.

The adoption of 3D annotation systems tailored to the clinical domain, as
we proposed with SemAnatomy3D, allow us to envision distributed medical
repositories where querying, reasoning and discovery of 3D-PSMs can be done
over the Web.
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