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SIGGRAPH 2017 � Short Course
An Introduction to Laplacian Spectral Kernels and Distances:

Theory, Computation, and Applications
Giuseppe Patané⇤

1 Course description

In geometry processing and shape analysis, several applications
have been addressed through the properties of the spectral kernels
and distances, such as commute-time, biharmonic, diffusion, and
wave distances. Our course is intended to provide a background
on the properties, discretization, computation, and main applica-
tions of the Laplace-Beltrami operator, the associated differential
equations (e.g., harmonic equation, Laplacian eigenproblem, dif-
fusion and wave equations), the Laplacian spectral kernels and dis-
tances (e.g., commute-time, biharmonic, wave, diffusion distances).
While previous work has been focused mainly on specific applica-
tions of the aforementioned topics on surface meshes, we propose a
general approach that allows us to review the Laplacian kernels and
distances on surfaces and volumes, and for any choice of the Lapla-
cian weights. All the reviewed numerical schemes for the compu-
tation of the Laplacian spectral kernels and distances are discussed
in terms of robustness, approximation accuracy, and computational
cost, thus supporting the reader in the selection of the most appro-
priate method with respect to shape representation, computational
resources, and target applications.

Part I - Introduction

We present the outline and the main aims of this course on the the-
ory, computation, and applications of the Laplacian spectral dis-
tances and kernels.

Part II - Laplace-Beltrami operator on surfaces and
volumes

Firstly, we define a unified representation of the isotropic and
anisotropic discrete Laplacian on surfaces and volumes; then, we
introduce the associated differential equations. For the harmonic
equation and the Laplacian eigenproblem, we focus on the stabil-
ity and accuracy of numerical solvers, also presenting their main
applications.

Part III - Heat equation and diffusion distances

Part II provides the background for a detailed analysis of the heat
equation and allows us to identify the main limitations (e.g., com-
putational cost, storage overhead, selection of user-defined param-
eters) of previous work on the approximation of the diffusion dis-
tances, which is based mainly on the evaluation of the Laplacian
spectrum and on linear approximations of the exponential matrix.
For the heat equation, we discuss the selection of the time scale and
the main approaches for the computation of the solution to the heat
equation, such as linear, polynomial, and rational approximations.

Part IV - Laplacian spectral kernels and distances

Filtering the Laplacian spectrum, we introduce the Laplacian spec-
tral distances, which generalize the commute-time, biharmonic, dif-
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fusion and wave distances, and their discretization in terms of the
Laplacian spectrum. The growing interest on these distances is mo-
tivated by their capability of encoding local geometric properties
(e.g., Gaussian curvature, geodesic distance) of the input shape,
their intrinsic and multi-scale definition with respect to the input
shape, their invariance to isometries, shape-awareness, robustness
to noise and tessellation. While previous work has been focused
mainly on surfaces discretized as triangle meshes, we introduce a
unified representation of the spectral distances and kernels, which
is independent of the selected Laplacian weights, of the surface or
volume representation as polygonal mesh, point set, tetrahedral or
voxel grids. From this general representation, we show that the
main properties of the spectral distances are guided mainly by the
filter that is applied to the Laplacian eigenpairs.

The expensive cost for the computation of the Laplacian spectrum
and the sensitiveness of multiple Laplacian eigenvalues to surface
discretization generally preclude an accurate evaluation of the spec-
tral kernels and distances on large data sets. To discuss these prob-
lems, we review and compare different methods for the numerical
evaluation of the spectral distances and kernels. In particular, we
detail their spectrum-free computation, which is defined through a
polynomial or rational approximation of the filter function. The re-
sulting computational scheme only requires the solution of sparse
linear systems, is not affected by the Gibbs phenomenon, is in-
dependent of the representation of the input domain, the selected
Laplacian weights, and the evaluation of the Laplacian spectrum.

Part V - Conclusions

As main applications, we detail the Laplacian smoothing and the
definition of basis functions for geometry processing and shape
analysis. Finally, we conclude our review with a discussion of open
questions and challenges.

2 Course schedule

Part I � Introduction (10 min.)

1. Outline and motivations

2. Goals and contributions

Part II - Laplace-Beltrami operator on surfaces and
volumes (15 min.)

1. Laplacian matrix and eigenproblem

2. Laplacian spectrum: computation and properties

Part III - Heat equation and diffusion distances
(30 min.)

1. Heat diffusion equation

2. Diffusion kernel and distances: definition and properties

3. Computation of the diffusion kernel and distances



• Geometry-driven approaches: multi-resolution prolon-
gation operator

• Spectrum-based approaches: truncated spectral approx-
imation, Euler backward method, and power method

• Spectrum-free approaches: Padè-Chebyshev approxi-
mation, polynomial approximation, and Krylov sub-
space projection

4. Discussion

• Approximation accuracy and stability

• Robustness with respect to noise, discretisation, geo-
metric and topologucal noise

• Computational cost

5. Main applications

• Approximation of geodesic and optimal transportation
distances via heat kernel

• Diffusion distances for shape analysis and manifold
learning

Part IV - Laplacian spectral kernels and distances
(25 min.)

1. Distance definition and properties: geometry-driven, func-
tional, and mixed approaches

2. Laplacian spectral distances

• Equivalent formulations: spectral operator, distance,
and embedding

• Filter selection and distance properties: smoothness, lo-
cality, and shape encoding

3. Main examples: commute-time, bi-harmonic, wave and diffu-
sion distances

4. Discretisation and computation

• Truncated spectral computation

• Spectrum-free computation: polynomial and rational
approaches

5. Main applications: spectral signatures for shape comparison

Part V - Conclusions (10 min.)

• Conclusions, Questions & Answers

3 Course Rationale

Target audience The target audience of this tutorial includes
graduate students and researchers interested in numerical geometry
processing and spectral shape analysis. Our course is intended to:

• present a unified definition of the Laplacian spectral kernels
and distances with respect to the dimensionality and discreti-
sation of the input domain, the discretisation of the Laplace-
Beltrami operator, and the selected filter. In this way, we will
provide a unified view on the definition and computation of
well-known distances, such as random walks, heat diffusion,
biharmonic, and wave kernel distances;

• provide a common background for those research areas and
applications that apply the Laplacian spectral kernels and dis-
tances to geometry processing and shape analysis. In particu-
lar, shape segmentation and comparison with multi-scale and
isometry-invariant signatures, diffusion geometry, dimension-
ality reduction with spectral embeddings, data visualisation,
representation, and classification;

• introduce and discuss the properties and applications of the
Laplacian spectral kernels and distances that are relevant for
shape modelling and, more generally, computer graphics;

• discuss open problems and applications.

Prerequisites Knowledge about linear algebra, discrete geom-
etry processing, and computer graphics.

Level of difficulty: Intermediate course.

Tutorial originality While previous courses have been focused
mainly on the application of the Laplacian spectral kernels and dis-
tances, our focus is on their definition and computation, thus ad-
dressing their main common aspects and properties. Indeed, it is
the first course that systematically presents the theory, algorithm,
and applications of these topics.

Related tutorials organised by the lecturer This course
proposal revises and extends our Eurographics 2016 STAR “Lapla-
cian Spectral Kernels and Distances for Geometry Processing and
Shape Analysis”, which was attended by more than 120 partici-
pants. According to recent results of the authors and the feedback to
the previous course, this SIGGRAPH course will include additional
material on the definition of the Laplacian spectral kernels and dis-
tances in a more general setting, which will allow us to review a
larger spectrum of research areas (e.g., graph theory, spectral ge-
ometry processing, manifold learning) and applications (e.g., shape
analysis and comparison).

Previous tutorials on related topics Course C1 reviewed
the main methods for the computation of the correspondences be-
tween geometric shapes. Tutorial C2 has addressed the definition
and application of diffusion distances to shape analysis and com-
parison. Course C3 focused on the discrete exterior calculus and
its relation with digital geometry processing and discrete differ-
ential geometry. Course C4 presented the main concepts behind
spectral mesh processing on 3D shapes and its applications to fil-
tering, shape matching, remeshing, segmentation, and parameteri-
sation. Indeed, our tutorial is complementary to previous work and
provides a common background for previous tutorial and research
papers.

(C1) SIGGRAPH Asia 2016 Courses “Computing and Process-
ing Correspondences with Functional Maps”, M. Ovsjanikov,
E. Corman, M. M. Bronstein, E. Rodolá, M. Ben-Chen, L.
Guibas, F. Chazal, and A. M. Bronstein;

(C2) Eurographics Tutorial 2012, A. “Diffusion geometry in shape
analysis, Bronstein, M., Castellani, U., Bronstein, A.;

(C3) SIGGRAPH’2013 Course “Geometry Processing with Dis-
crete Exterior Calculus ” (F. de Goes, K. Crane, M. Desbrun,
P. Schroeder);

(C4) SIGGRAPH Asia’2010 “Spectral Geometry Processing” (B.
Levy, R. H. Zhang).



4 Lecturer biography

Giuseppe Patanè

Affiliation CNR-IMATI, Genova, Italy
e-mail patanel@ge.imati.cnr.it
URL http://www.ge.imati.cnr.it

Giuseppe Patanè is researcher at CNR-IMATI (2001-today).
He received a Ph.D. in ”Mathematics and Applications” from the
University of Genova (2005) and a Post Lauream Degree Master
from the ”F. Severi National Institute for Advanced Mathematics”
(2000). From 2001, his research activities have been focused on
numerical geometry processing, the modelling and analysis of 3D
shapes and multi-dimensional data, with applications to computer
graphics and bio-medicine. Since 2013, he has organised the
following SIGGRAPH and Eurographics courses

• Eurographics STAR 2016 “Laplacian Spectral Kernels and
Distances for Geometry Processing and Shape Analysis”
(G.Patanè);

• SIGGRAPH Asia 2014 Course “An Introduction to Ricci
Flow and Volumetric Approximation with Applications to
Shape Modeling” (G.Patanè, X.D. Gu, X.S. Li);

• SIGGRAPH Asia 2013 Course “Surface-Based and Volume-
Based Techniques for Shape Modeling and Analysis” (G.
Patanè, X.S. Li, X.D. Gu).

Since 2008, he was speaker of the following courses

• Shape Modeling International’2012 Tutorial “Spectral, Cur-
vature Flow Surface-Based and Volume-Based Techniques for
Shape Modeling and Analysis” (G. Patanè, X.D. Gu, X.S. Li,
M. Spagnuolo);

• Eurographics 2007 Tutorial “3D shape description and
matching based on properties of real functions” (S. Biasotti,
B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, S. Marini, G.
Patanè, M. Spagnuolo);

• ICIAM2007 Mini-Symposium “Geometric-Topological
Methods for 3D Shape Classification and Matching” (M.
Spagnuolo, G. Patanè);

• SMI’2008 Mini-Symposium on “Shape Understanding via
Spectral Analysis Techniques” (B. Levy, R. Zhang, M. Retuer,
G. Patanè, M. Spagnuolo).

For more information, we refer to the personal web-page: http:
//pers.ge.imati.cnr.it/patane/Home.html.

Main author publications on the course topics

• Patanè G., Accurate and Efficient Computation of Laplacian
Spectral Distances and Kernels. In: Computer Graphics Fo-
rum. In press, 2017.

• Patanè G., “Laplacian Spectral Kernels and Distances for Ge-
ometry Processing and Shape Analysis”, STAR-State-of-the-
Art Report. In: Computer Graphics Forum, 35(2): 599-624
(2016).

• Patanè G., Volumetric Heat Kernel: Padè-Chebyshev
Approximation, Convergence, and Computation. In:
Computer&Graphics, Volume 46, February 2015, pp. 64-71.

• Patanè G., Diffusive Smoothing of 3D Segmented Medical
Data. In: Journal of Advanced Research, Elsevier, Volume
6, Issue 3, May 2015, pp. 425-431.

• Patanè G., Laplacian spectral distances and kernels on 3D
shapes. In: Pattern Recognition Letters 47, pp. 102-110
(2014).

• Patanè G., wFEM Heat Kernel: Discretization and Applica-
tions to Shape Analysis and Retrieval. In: Computer Aided
Geometric Design, Vol. 30, Issue 3, March 2013, pp. 276-
295.

• Patanè G., Spagnuolo M., An Interactive Analysis of Har-
monic and Diffusion Equations on Discrete 3D Shapes. In:
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Abstract

In geometry processing and shape analysis, several applications
have been addressed through the properties of the spectral kernels
and distances, such as commute-time, biharmonic, diffusion, and
wave distances. Our survey is intended to provide a background on
the properties, discretization, computation, and main applications
of the Laplace-Beltrami operator, the associated differential equa-
tions (e.g., harmonic equation, Laplacian eigenproblem, diffusion
and wave equations), Laplacian spectral kernels and distances (e.g.,
commute-time, biharmonic, wave, diffusion distances). While pre-
vious work has been focused mainly on specific applications of
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the aforementioned topics on surface meshes, we propose a gen-
eral approach that allows us to review Laplacian kernels and dis-
tances on surfaces and volumes, and for any choice of the Lapla-
cian weights. All the reviewed numerical schemes for the compu-
tation of the Laplacian spectral kernels and distances are discussed
in terms of robustness, approximation accuracy, and computational
cost, thus supporting the reader in the selection of the most appro-
priate method with respect to shape representation, computational
resources, and target application. aplace-Beltrami operator, Lapla-
cian spectrum, harmonic equation, Laplacian eigenmproblem, heat
equation, diffusion geometry, Laplacian spectral distance and ker-
nels, spectral geometry processing, shape analysis, numerical anal-
ysis.

1 Introduction

In geometry processing and shape analysis, several applications
have been addressed through the properties of the spectral kernels
and distances, such as commute-time, biharmonic, diffusion, and
wave distances. Spectral distances are easily defined through a fil-
tering of the Laplacian eigenpairs and include random walks [Fouss
et al. 2005; Ramani and Sinha 2013], heat diffusion [Bronstein et al.
2010a; Bronstein et al. 2011; Coifman and Lafon 2006; Gebal et al.
2009; Lafon et al. 2006; Luo et al. 2009], biharmonic [Lipman et al.
2010; Rustamov 2011b], and wave kernel [Bronstein and Bronstein
2011b; Aubry et al. 2011] distances. Laplacian spectral distances
have been applied to shape segmentation [de Goes et al. 2008]
and comparison [Bronstein et al. 2011; Gebal et al. 2009; Memoli
2009; Ovsjanikov et al. 2010; Sun et al. 2009] with multi-scale and
isometry-invariant signatures [Dey et al. 2010b; Lafon et al. 2006;
Mèmoli and Sapiro 2005; Memoli 2011; Raviv et al. 2010; Rusta-
mov 2007; Mahmoudi and Sapiro 2009]. In fact, they are intrinsic
to the input shape, invariant to isometries, multi-scale, and robust to
noise and tessellation. Biharmonic [Lipman et al. 2010; Rustamov
2011b] and diffusion [Bronstein et al. 2010a; Bronstein et al. 2011;
Coifman and Lafon 2006; Gebal et al. 2009; Lafon et al. 2006; Luo
et al. 2009; Patanè and Spagnuolo 2013b] distances provide a trade-
off between a nearly geodesic behavior for small distances and the
encoding of global surface properties for large distances, thus guar-
anteeing an intrinsic and multi-scale characterization of the input
shape. The heat kernel [Berard et al. 1994] is also central in diffu-
sion geometry [Belkin and Niyogi 2003; Coifman and Lafon 2006;
Gine and Koltchinskii 2006; Singer 2006], dimensionality reduc-
tion with spectral embeddings [Belkin and Niyogi 2003; Xiao et al.
2010], and data classification [Smola and Kondor 2003]. As main
applications, we mention the multi-scale approximation of func-
tions [Patanè and Falcidieno 2010] and gradients [Luo et al. 2009],
shape segmentation and comparison through heat kernel shape de-
scriptors, auto-diffusion functions, and diffusion distances. The
diffusion kernel and distance also play a central role in several ap-
plications, such as dimensionality reduction with spectral embed-
dings [Belkin and Niyogi 2003; Xiao et al. 2010]; data visualiza-
tion [Belkin and Niyogi 2003; Hein et al. 2005; Roweis and Saul
2000; Tenenbaum et al. 2000], representation [Chapelle et al. 2003;
Smola and Kondor 2003; Zhu et al. 2003], and classification [Ng
et al. 2001; Shi and Malik 2000; Spielman and Teng 2007].
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Abstract

In geometry processing and shape analysis, several applications
have been addressed through the properties of the spectral kernels
and distances, such as commute-time, biharmonic, diffusion, and
wave distances. Our survey is intended to provide a background on
the properties, discretization, computation, and main applications
of the Laplace-Beltrami operator, the associated differential equa-
tions (e.g., harmonic equation, Laplacian eigenproblem, diffusion
and wave equations), Laplacian spectral kernels and distances (e.g.,
commute-time, biharmonic, wave, diffusion distances). While pre-
vious work has been focused mainly on specific applications of
the aforementioned topics on surface meshes, we propose a gen-
eral approach that allows us to review Laplacian kernels and dis-
tances on surfaces and volumes, and for any choice of the Lapla-
cian weights. All the reviewed numerical schemes for the compu-
tation of the Laplacian spectral kernels and distances are discussed
in terms of robustness, approximation accuracy, and computational
cost, thus supporting the reader in the selection of the most appro-
priate method with respect to shape representation, computational
resources, and target application.

1 Introduction

In geometry processing and shape analysis, several applications
have been addressed through the properties of the spectral kernels
and distances, such as commute-time, biharmonic, diffusion, and
wave distances. Spectral distances are easily defined through a fil-
tering of the Laplacian eigenpairs and include random walks [Fouss
et al. 2005; Ramani and Sinha 2013], heat diffusion [Bronstein et al.
2010a; Bronstein et al. 2011; Coifman and Lafon 2006; Gebal et al.
2009; Lafon et al. 2006; Luo et al. 2009], biharmonic [Lipman et al.
2010; Rustamov 2011b], and wave kernel [Bronstein and Bronstein
2011b; Aubry et al. 2011] distances. Laplacian spectral distances
have been applied to shape segmentation [de Goes et al. 2008]
and comparison [Bronstein et al. 2011; Gebal et al. 2009; Memoli
2009; Ovsjanikov et al. 2010; Sun et al. 2009] with multi-scale and
isometry-invariant signatures [Dey et al. 2010b; Lafon et al. 2006;
Mèmoli and Sapiro 2005; Memoli 2011; Raviv et al. 2010; Rusta-
mov 2007; Mahmoudi and Sapiro 2009]. In fact, they are intrinsic
to the input shape, invariant to isometries, multi-scale, and robust to
noise and tessellation. Biharmonic [Lipman et al. 2010; Rustamov
2011b] and diffusion [Bronstein et al. 2010a; Bronstein et al. 2011;
Coifman and Lafon 2006; Gebal et al. 2009; Lafon et al. 2006; Luo
et al. 2009; Patanè and Spagnuolo 2013b] distances provide a trade-
off between a nearly geodesic behavior for small distances and the
encoding of global surface properties for large distances, thus guar-
anteeing an intrinsic and multi-scale characterization of the input
shape. The heat kernel [Berard et al. 1994] is also central in diffu-
sion geometry [Belkin and Niyogi 2003; Coifman and Lafon 2006;
Gine and Koltchinskii 2006; Singer 2006], dimensionality reduc-
tion with spectral embeddings [Belkin and Niyogi 2003; Xiao et al.
2010], and data classification [Smola and Kondor 2003]. As main
applications, we mention the multi-scale approximation of func-
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tions [Patanè and Falcidieno 2010] and gradients [Luo et al. 2009],
shape segmentation and comparison through heat kernel shape de-
scriptors, auto-diffusion functions, and diffusion distances. The
diffusion kernel and distance also play a central role in several ap-
plications, such as dimensionality reduction with spectral embed-
dings [Belkin and Niyogi 2003; Xiao et al. 2010]; data visualiza-
tion [Belkin and Niyogi 2003; Hein et al. 2005; Roweis and Saul
2000; Tenenbaum et al. 2000], representation [Chapelle et al. 2003;
Smola and Kondor 2003; Zhu et al. 2003], and classification [Ng
et al. 2001; Shi and Malik 2000; Spielman and Teng 2007].

Course topics and contributions Our survey is intended to
provide a common background on the definition and computation
of Laplacian spectral kernels and distances for geometry process-
ing and shape analysis. All the reviewed numerical schemes are
discussed and compared in terms of robustness, approximation ac-
curacy, and computational cost, thus supporting the reader in the se-
lection of the most appropriate with respect to shape representation,
computational resources, and target application. Indeed, our review
is complementary to previous work, which has been focused mainly
on specific applications, such as mesh filtering [Taubin 1999], sur-
face coding and spectral partitioning [Karni and Gotsman 2000],
3D shape deformation based on differential coordinates [Sorkine
2006], spectral methods [Zhang et al. 2007] and Laplacian eigen-
functions [Levy 2006] for geometry processing and diffusion shape
analysis [Bronstein et al. 2012].

Firstly, we define a unified representation of the isotropic and
anisotropic discrete Laplacian on surfaces and volumes (Sect. 2);
then, we introduce the associated differential equations. For the har-
monic equation (Sect. 3) and the Laplacian eigenproblem (Sect. 4),
we focus on the stability and accuracy of numerical solvers, also
presenting their main applications. This discussion provides the
background for a detailed analysis of the heat equation (Sect. 5)
and allows us to identify the main limitations (e.g., computational
cost, storage overhead, selection of user-defined parameters) of pre-
vious work on the approximation of the diffusion distances, which
is based mainly on the evaluation of the Laplacian spectrum and
on linear approximations of the exponential matrix. For the heat
equation, we discuss the selection of the time scale and the main
approaches for the computation of the solution to the heat equation,
such as linear, polynomial, and rational approximations.

Filtering the Laplacian spectrum, we introduce the Laplacian spec-
tral distances (Sect. 6), which generalize the commute-time, bi-
harmonic, diffusion and wave distances, and their discretization in
terms of the Laplacian spectrum. The growing interest on these
distances is motivated by their capability of encoding local geomet-
ric properties (e.g., Gaussian curvature, geodesic distance) of the
input shape, their intrinsic and multi-scale definition with respect
to the input shape, their invariance to isometries, shape-awareness,
robustness to noise and tessellation. While previous work has been
focused mainly on surfaces discretized as triangle meshes, we intro-
duce a unified representation of the spectral distances and kernels,
which is independent of the selected Laplacian weights, of the sur-
face or volume representation as polygonal mesh, point set, tetrahe-
dral or voxel grid. From this general representation, we show that
the main properties of the spectral distances are guided mainly by



the filter that is applied to the Laplacian eigenpairs.

The expensive cost for the computation of the Laplacian spectrum
and the sensitiveness of multiple Laplacian eigenvalues to surface
discretization generally preclude an accurate evaluation of the spec-
tral kernels and distances on large data sets. To discuss these prob-
lems, we review and compare different methods for the numerical
evaluation of the spectral distances and kernels. In particular, we
detail their spectrum-free computation, which is defined through a
polynomial or rational approximation of the filter function. The re-
sulting computational scheme only requires the solution of sparse
linear systems, is not affected by the Gibbs phenomenon, is in-
dependent of the representation of the input domain, the selected
Laplacian weights, and the evaluation of the Laplacian spectrum.

As main applications (Sect. 7), we detail the Laplacian smoothing
and the definition of basis functions for geometry processing and
shape analysis. Finally (Sect. 8), we conclude our review with a
discussion of open questions and challenges.

2 Laplace-Beltrami operator and related
equations

We review the isotropic and anisotropic Laplace-Beltrami operators
and introduce a unified representation of the corresponding Lapla-
cians for surfaces and volumes. Additional results have been pre-
sented in [Sorkine 2006; Taubin 1999; Karni and Gotsman 2000;
Zhang et al. 2007].

Let N be a smooth surface, possibly with boundary, equipped
with a Riemannian metric and let us consider the scalar prod-
uct h f ,gi2 :=

R
N f (p)g(p)dp defined on the space L 2(N ) of

square integrable functions on N and the corresponding norm
k ·k2. Then, the intrinsic smooth Laplace-Beltrami operator
D :=�div(grad) satisfies the following properties [Rosenberg
1997]:

• self-adjointness: hD f ,gi2 = h f ,Dgi2, 8 f ,g;

• positive semi-definiteness: hD f , f i2 � 0, 8 f . In particular, the
Laplacian eigenvalues are positive;

• null eigenvalue: the smallest Laplacian eigenvalue is null and
the corresponding eigenfunction f , Df = 0, is constant;

• locality: the value D f (p) does not depend on f (q), for any
couple of distinct points p, q;

• linear precision: if N is planar and f is linear, then D f = 0.

The anisotropic Laplace-Beltrami operator [Andreux et al. 2014]
is defined as DD f = div(D— f ), where D is a 2⇥2 matrix applied
to vectors belonging to the tangent plane and controls the direc-
tion and strength of the deviation from the isotropic case. The ten-
sor D := diag(ja (km),ja (kM)) takes into account the directions
and the values km, kM of low and high curvature, where the filter
is ja (s) := (1+a|s|)�1, a > 0. As a ! 0, we get the isotropic
Laplace-Beltrami operator (i.e., D := I). The alternative defini-
tion [Kim et al. 2013] of the anisotropic Laplace-Beltrami operator
applies a non-linear factor D(v), which modifies the magnitude of
D(v) without changing its direction.

We now introduce a unified representation of the Laplacian matrix
on surfaces and volumes, which is independent of the underlying
discretization.

Discrete Laplacians and spectral properties Let us con-
sider a (triangular, polygonal, volumetric) mesh M := (P,T ),
which discretizes a domain N , where P := {pi}n

i=1 is the set

(a) (b) (c)

Figure 1: Neighbor and Laplacian stencil for a (a) point set, (b)
triangle and (c) tetrahedral mesh.

of n vertices and T is the connectivity graph (Fig. 1). On M , a
piecewise linear scalar function f : M ! R is defined by linearly
interpolating the values f := ( f (pi))n

i=1 of f at the vertices using
barycentric coordinates. For point sets, f is defined only at P
and T is the k-nearest neighbor graph.

We represent the Laplace-Beltrami operator on surface and volume
meshes in a unified way as L̃ := B�1L, where B is a sparse, sym-
metric, positive definite matrix (mass matrix) and L is sparse, sym-
metric, and positive semi-definite (stiffness matrix). We also as-
sume that the entries of B are positive and that the sum of each
row of L is null. In particular, we consider the B-scalar product
hf,giB := f>Bg and the induced norm kfk2

B := f>Bf. Analogously
to the continuous case, the Laplacian matrix satisfies the following
properties.

• self-adjointness: L̃ is adjoint with respect to the B-scalar prod-
uct; i.e., hL̃f,giB = hf, L̃giB = f>Lg. If B := I, then this
property reduces to the symmetry of L;

• positive semi-definiteness: hL̃f, fiB = f>Lf � 0. In particular,
the Laplacian eigenvalues are positive;

• null eigenvalue: by construction, we have that L̃1 = 0;

• locality: since the weight w(i, j) is not null for each edge
(i, j), the value (L̃f)i depends only on the f -values at pi and
its 1-star neighbor N (i) := { j : (i, j) edge}.

For a detailed discussion of these properties with respect to the se-
lected Laplacian weights, we refer the reader to [Wardetzky et al.
2007].

Laplacian matrix on graphs, triangle and polygonal
meshes Associating a set {w(i, j)}i, j of positive weights with
the edges (i, j) of T , the entries of the stiffness matrix are defined as
L(i, j) =�Âk 6=i w(i,k)+w(i, j). The entries of the mass matrix B
are normalization coefficients that take into account the geometry
of the input domain.

On graphs [Chung 1997], the weights of the stiffness matrix are
equal to 1 for each edge and zero otherwise; each diagonal entry of
the mass matrix is equal to the valence of the corresponding node.
On triangle meshes, the stiffness matrix L and the mass matrix B
of the linear FEM Laplacian weights [Reuter et al. 2006; Vallet and
Lèvy 2008] are defined as

L(i, j) :=

(
w(i, j) :=� cotai j+cotbi j

2 j 2 N(i),
�Âk2N(i) w(i,k) i = j,

B(i, j) :=

(
|tr |+|ts|

12 j 2 N(i),
Âk2N(i)|tk |

6 i = j,

where N(i) is the 1-star of the vertex i; ai j, bi j are the angles oppo-
site to the edge (i, j) (Fig. 1b); tr, ts are the triangles that share the



edge (i, j); and |t| is the area of the triangle t. Lumping the mass
matrix B to the diagonal matrix D, D(i, i) = 1

3 Ât2N(i) |t|, whose en-
tries are the areas of the Voronoi regions, L̃ reduces to the Lapla-
cian matrix D�1L with Voronoi-cotangent weights [Desbrun et al.
1999], which extend the cotangent weights introduced in [Pinkall
and Polthier 1993] (B := I). The mean-value weights [Floater
2003] have been derived from the mean value theorem for harmonic
functions and are always positive. In [Chuang et al. 2009], the weak
formulation of the Laplacian eigenproblem is achieved by selecting
a set of volumetric test functions, which are defined as k⇥ k⇥ k
B-splines (e.g., k := 4) and restricted to the input shape. For the
anisotropic Laplacian [Andreux et al. 2014], the entries of L are a
variant of the cotangent weights (i.e., with respect to different an-
gles) and the entries of the diagonal mass matrix B are the areas of
the Voronoi regions.

While the Laplace-Beltrami operator depends only on the Reiman-
nian metric (intrinsic property), its discretization is generally af-
fected by the quality of the input triangulation [Shewchuk 2002;
Hildebrandt et al. 2006]. For instance, two (simplicial) isometric
surfaces with two different triangulations are associated with two
different Laplacian matrices. According to [Bobenko and Spring-
born 2007], the cotangent weights are non-negative if and only if
the input triangulation is Delaunay and the corresponding Lapla-
cian matrix is more accurate than the one evaluated on the original
mesh. We briefly recall [Dyer et al. 2007; Liu et al. 2015a; Liu
et al. 2015b] that a triangulation of a piecewise flat surface is a De-
launay triangulation if and only if all its interior edges are locally
Delaunay (i.e., the sum of the angles opposite to an edge in the
adjacent triangles does not exceed p). Furthermore, the minimum
of the Dirichlet energy of a piecewise linear function, on all the
possible triangulations of a piecewise flat surface M , is attained
at the Delaunay triangulation of M and the corresponding discrete
Laplace-Beltrami operator is intrinsic to the input surface.

On polygonal meshes, the Laplacian discretization in [Alexa and
Wardetzky 2011; Herholz et al. 2015] generalizes the Laplacian ma-
trix with cotangent weights to surface meshes with non-planar, non-
convex faces. Finally, an approximation of the Laplace-Beltrami
operator with point-wise convergence has been proposed in [Belkin
et al. 2008].

Laplacian matrix for point sets In [Belkin and Niyogi 2003;
Belkin and Niyogi 2006; Belkin and Niyogi 2008; Belkin et al.
2009], the Laplace-Beltrami operator on a point set P has been
discretized as the Laplacian matrix

L(i, j) :=
1

nt(4pt)3/2

(
exp

⇣
�kpi�p jk2

4t

⌘
i 6= j,

�Âk 6=i L(i,k) i = j.

To guarantee the sparsity of the Laplacian matrix, for each point pi
we consider only the entries L(i, j) related to the points {p j} j2Npi
that are closest to pi with respect to the Euclidean distance. In
this case, we select either the k-nearest neighbor or the points that
belong to a sphere centered at pi and with radius s . As described
in [Dey and Sun 2005; Mitra and Nguyen 2003], the choice of s
can be adapted to the local sampling density e := k(ps2)�1 and
the curvature of the surface underlying P . The computation of
the k- or s -nearest neighbor graph takes O(n logn)-time [Arya et al.
1998; Bentley 1975], where n is the number of input points.

Starting from this approach, a new discretization [Liu et al. 2012]
has been achieved through a finer approximation of the local ge-
ometry of the surface at each point through its Voronoi cell. More

(a) (1,1,2) (b) (2,2,4) (c) (3,3,6)

Figure 2: Level sets and critical points (m,M,s) of harmonic func-
tions with (a) two, (b) four, and (c) six Dirichlet boundary condi-
tions. The insertion of new initial constraints locally affects the
resulting harmonic function.

precisely, as t ! 0 the stiffness and mass matrix are defined as

L(i, j) :=

(
1

4pt2 exp
⇣
�kpi�p jk2

2
4t

⌘
i 6= j,

�Âk 6=i L(i,k) i = j,
B(i, i) = vi,

and vi is the area of the Voronoi cell associated with the point pi.
The Voronoi cell of pi is approximated by projecting the points of a
neighbor of pi on the estimated tangent plane to M at pi. If B := I,
then this approximation reduces to the previous one and both ap-
proaches converge to the Laplace-Beltrami operator, as t ! 0+.

Laplacian matrix on volumes Representing the input do-
main as a tetrahedral mesh [Alliez et al. 2005; Liao et al.
2009; Tong et al. 2003], the entries of the stiffness matrix are
(Fig. 1c) L(i, j) := w(i, j) := 1

6 Ân
k=1 lk cotak for each edge (i, j),

L(i, i) :=�Â j2N(i) w(i, j), and zero otherwise; the diagonal mass
matrix B encodes the tetrahedral volume at each vertex.

3 Harmonic equations

The harmonic function h : N ! R is the solution of the Laplace
equation Dh = 0 with Dirichlet boundary conditions h|S = h0,
S ⇢ N . We recall that a harmonic function

• minimizes the Dirichlet energy E (h) :=
R
N k—h(p)k2

2dp;

• satisfies the locality property; i.e., if p and q are two distinct
points, then Dh(p) is not affected by the value of h at q;

• verifies h(p) = (2pR)�1 R
G h(s)ds = (pR2)�1 R

B h(q)dq,
where B ✓ N is a disc of center p, radius R, and boundary G
(mean-value theorem).

According to the maximum principle [Rosenberg 1997], a harmonic
function has no local extrema other than at constrained vertices. In
the case that all constrained minima are assigned the same global
minimum value and all constrained maxima are assigned the same
global maximum value, all the constraints will be extrema in the
resulting field. Harmonic and poly-harmonic (i.e., Dih = 0) func-
tions have been applied to volumetric parameterization [Li et al.
2007; Li et al. 2010], to the definition of shape descriptors with
pairs of surface points [Zheng et al. 2013] and coupled biharmonic
bases [Kovnatsky et al. 2013], to shape approximation [Feng and
Warren 2012] and deformation [Joshi et al. 2007; Jacobson et al.
2014; Weber et al. 2012].

Discrete harmonic functions The harmonic equation is ap-
proximated at the vertices of M as the homogeneous linear system



Lf = 0, with initial conditions f (pi) = ai, i 2 I ✓ {1, . . . ,n}. Ac-
cording to the Euler formula c(M ) = m� s+M, the number of
minima m, maxima M, and saddles s of a harmonic function de-
pends on the Dirichlet boundary conditions, which determine the
maxima and minima of the resulting harmonic function. In partic-
ular, a harmonic function with one maximum and one minimum
has a minimal number of 2g saddles, where g is the genus of M
(Fig. 2). Harmonic functions are efficiently computed in O(n) time
with iterative solvers of sparse linear systems; their computation
is stable for the mean-value weights while negative Voronoi cotan-
gent weights generally induce local undulations in the resulting har-
monic function. Main applications include surface quadrangula-
tion [Dong et al. 2005; Ni et al. 2004], the definition of volumetric
mappings [Li et al. 2009; Li et al. 2010; Martin et al. 2008; Mar-
tin and Cohen 2010], and biharmonic distances [Ovsjanikov et al.
2012; Lipman et al. 2010; Rustamov 2011b] (Sect. 6.2.2).

In the paper examples, the level sets of a given function, or ker-
nel, or distance are associated with iso-values uniformly sampled
in its range. For spectral distances, the minimum and the maximum
values are depicted in blue and red, respectively. For all the other
functions, colors begin with red, pass through yellow, green, cyan,
blue, and magenta, and return to red. Finally, the color coding rep-
resents the same scale of values for multiple shapes.

4 Laplacian eigenproblem

We introduce the Laplacian eigenpairs (Sect. 4.1), their discretiza-
tion (Sect. 4.2), and the stability of their computation (Sect. 4.3).

4.1 Laplacian eigenfunctions

Since the Laplace-Beltrami operator is self-adjoint and
positive semi-definite, it has an orthonormal eigensystem
B := {(ln,fn)}+•

n=0, Dfn = lnfn, in L 2(N ). In the following,
we assume that the Laplacian eigenvalues are increasingly ordered;
in particular l0 = 0. Using the orthonormality and completeness
of the Laplacian eigenfunctions in L 2(N ), any function can
be represented as a linear combination of the eigenfunctions
as f = Â+•

n=0h f ,fni2fn, where h f ,fni2fn is the projection of f
on fn. Furthermore, the function D f is expressed in terms of the
Laplacian spectrum as (D f )(p) = Â+•

n=0 lnh f ,fni2fn(p) (spectral
decomposition theorem). A deeper discussion of the analogies
between the heat kernel, the Fourier analysis, and wavelets has
been presented in [Hammond et al. 2011; Boscaini et al. 2015a].

The Laplacian eigenfunctions are intrinsic to the input shape and
those ones related to larger eigenvalues correspond to smooth and
slowly-varying functions. Increasing the eigenvalues, the corre-
sponding eigenfunctions generally show rapid oscillations (Fig. 3).
From the Laplacian spectrum, we can estimate geometric and topo-
logical properties of the input shape. For instance, we can compute
the surface area, as the sum of the Laplacian eigenvalues; estimate
the Euler characteristic of a surface with genus g � 2 through the re-
lation [Nadirashvili 1988] m j  2 j�2c(M )+3, where m j is the
multiplicity of l j; and evaluate the total Gaussian curvature [Reuter
et al. 2006]. If two shapes are isometric, then they have the same
Laplacian spectrum (iso-spectral property); however, the viceversa
does not hold [Gordon and Szabo 2002; Zeng et al. 2012] and we
cannot recover the metric of a given surface.

4.2 Discrete Laplacian eigenpairs

To introduce the discrete Laplcian eigenpairs, the Lapla-
cian eigenproblem is converted to its weak formulation
hDf ,yi2 = l hf ,yi2 [Allaire 2007], where y is a test func-

f1: (2,2,4) f2: (4,4,8) f3: (5,3,8)

Figure 3: Level sets and number of critical points of different
Laplacian eigenfunctions (linear FEM weights).

tion. The weak formulation is then discretized as Lx = lBx.
Here, L, L(i, j) := hDyi,y ji2, is the stiffness matrix and B,
B(i, j) := hyi,y ji2, is the mass matrix. The generalized Lapla-
cian eigensystem {(li,xi)}n

i=1 (l1 = 0) satisfies the identity
Lxi = liBxi and the eigenvectors are orthonormal with re-
spect to the B-scalar product; i.e., hxi,x jiB = x>i Bx j = di j.
In particular, the spectral decomposition theorem becomes
L̃f = Ân

i=1 lihf,xiiBxi = XGX>Bf, where X is the eigenvectors’
matrix and G is the diagonal matrix of the eigenvalues. The discrete
Laplacian eigenfunctions generally have a global support (i.e.,
they are null only at some isolated points) and eigenfunctions
with a compact support can be calculated by minimizing the
corresponding `1 norm [Neumann et al. 2014].

For the computation of the Laplacian eigenvectors, numerical meth-
ods generally exploit the sparsity of the Laplacian matrix and re-
duce the high-dimensional eigenproblem to one of lower dimen-
sion, by applying a coarsening step. The solution is efficiently
calculated in the low-dimensional space and then mapped back to
the initial dimension through a refinement step. Main examples
include the algebraic multi-grid method [Falgout 2006], Arnoldi
iterations [Lehoucq and Sorensen 1996; Sorensen 1992], and the
Nystrom method [Fowlkes et al. 2004]. Even though the eigen-
values and eigenvectors are computed in super-linear time [Vallet
and Lèvy 2008], this computational cost and the required O(n2)
storage are expensive for densely sampled domains. Indeed, modi-
fications of the Laplacian eigenproblem are applied to locally com-
pute specific sub-parts of the Laplacian spectrum. For instance, the
shift method evaluates the spectrum (li �l ,xi)n

i=1 of (L̃�l I) to
calculate the eigenpairs associated with a spectral band centered
around a value l . To compute the larger eigenvalue and the cor-
responding eigenvector, the inverse method considers the spectrum
(l�1

i ,xi)n
i=2 of the pseudo-inverse L̃†. The power method com-

putes the eigenpairs (l k
i ,xi)n

i=2 of the sequence of matrices (L̃k)k�1
and controls the convergence speed through the selection of k. Fi-
nally, pre-conditioners of the Laplacian matrix tailored to computer
graphics’ applications have been proposed in [Krishnan et al. 2013].

Laplacian eigenfunctions on surfaces In spectral graph
theory, the Laplacian eigenvectors have been applied to graph par-
titioning [Fiedler 1973; Mohar and Poljak 1993; Koren 2003] into
sub-graphs, which are handled in parallel [Alpert et al. 1999], to
graph/mesh layout [Dı̀az et al. 2002; Koren 2003], to the reduction
of the bandwidth of sparse matrices [Barnard et al. 1993]. In ma-
chine learning, the Laplacian spectrum have been used for cluster-
ing [Schoelkopf and Smola 2002] (§ 14) and dimensionality reduc-
tion [Belkin and Niyogi 2003; Xiao et al. 2010] with spectral em-
beddings. For instance, a common way to measure the dissimilarity
between two graphs is to compute the corresponding spectral de-



composition in their own [Lee and Duin 2008] or joint [Umeyama
1988; Caelli and K. 2004] eigenspaces.

In geometry processing, the spectral properties of the uniform dis-
crete Laplacian have been used to design low-pass filters [Taubin
1995]. Successively, this formulation has been refined to include
the local geometry of the input surface [Desbrun et al. 1999; Kim
and Rossignac 2005; Pinkall and Polthier 1993] and it has been
applied to implicit mesh fairing [Desbrun et al. 1999; Kim and
Rossignac 2005; Zhang and Fiume 2003] and to fairing function-
als [Kobbelt et al. 1998; Mallet 1989], which optimize the triangles’
shape and/or the surface smoothness [Nealen et al. 2006]. Fur-
ther applications include mesh watermarking [Ohbuchi et al. 2001;
Ohbuchi et al. 2002], geometry compression [Karni and Gotsman
2000; Sorkine et al. 2003], the computation of the gradient [Luo
et al. 2009] and the multi-scale approximation of functions [Patanè
and Falcidieno 2009; Patanè 2013; Patanè and Spagnuolo 2013a;
Patanè and Falcidieno 2009]. The Laplacian eigenvectors have
been also used for embedding a surface of arbitrary genus into the
plane [Zhou et al. 2004; Zigelman et al. 2002] and mapping a closed
genus zero surface into a spherical domain [Gotsman et al. 2003].

In shape analysis, the Laplacian spectrum has been applied to
shape [Liu and Zhang 2007; Zhang and Liu 2005] segmentation
and analysis through nodal domains [Reuter et al. 2009a], corre-
spondence [Jain and Zhang 2007; Jain et al. 2007], and compari-
son [Marini et al. 2011; Reuter et al. 2006; Jain and Zhang 2007].
Mesh Laplacian operators are also associated with a set of differ-
ential coordinates for surface deformation [Sorkine et al. 2004] and
quadrangulation with Laplacian eigenfunctions [Dong et al. 2005].
As detailed in Sect. 6, the Laplacian spectrum is also fundamen-
tal to define random walks [Ramani and Sinha 2013], commute-
time [Bronstein and Bronstein 2011b], biharmonic [Ovsjanikov
et al. 2012; Rustamov 2011b], wave kernel [Bronstein and Bron-
stein 2011b; Aubry et al. 2011], and diffusion distances [Bronstein
et al. 2010a; Bronstein et al. 2011; Coifman and Lafon 2006; Gebal
et al. 2009; Lafon et al. 2006; Luo et al. 2009; Patanè and Spagn-
uolo 2013b].

Laplacian eigenfunctions on volumes Laplacian eigen-
functions on a discrete volumetric domain M are computed ei-
ther by diagonalizing the corresponding Laplacian matrix or by ex-
tending the values of the eigenfunctions computed on the bound-
ary of M to its interior with barycentric coordinates or non-linear
methods (e.g., moving least-squares, radial basis functions) [Patanè
et al. 2009; Patané and Spagnuolo 2012]. The computational cost,
which is generally high in case of volumetric meshes, is effec-
tively reduced but associated with a lower approximation accuracy.
Volumetric Laplacian eigenfunctions have been applied to shape
retrieval [Jain and Zhang 2007] and to the definition of volumet-
ric [Rustamov 2011a] shape descriptors.

4.3 Stability of the Laplacian spectrum

Theoretical results on the sensitivity of the Laplacian spectrum
against geometry changes, irregular sampling density and connec-
tivity have been presented in [Hildebrandt et al. 2006; Xu 2007].
Here, we briefly recall that the instability of the computation of the
Laplacian eigenpairs is generally due to repeated or close eigen-
values, with respect to the numerical accuracy of the solver of
the eigen-equation. While repeated eigenvalues are quite rare and
typically associated with symmetric shapes, numerically close or
switched eigenvalues can be present in the spectrum and in spite of
the regularity of the input discrete surface. The following discus-
sion will be useful also for the definition of the conditions on the
filter function that induces the spectral distances (Sect. 6.4).

To show that the computation of single eigenvalues is numeri-
cally stable, we perturb the Laplacian matrix L̃ by eE, e ! 0,
and compute the eigenpair (l (e),x(e)) of the new problem
(B�1L+ eE)x(e) = l (e)x(e), with initial conditions x(0) = x,
l (0) = l . The size of the derivative of l (e) indicates the variation
that it undergoes when the matrix L̃ is perturbed in the direction
(E,e). By differentiating the previous equation and evaluating the
result at e = 0, we obtain that BEx+Lx0(0) = l 0(0)Bx+lBx0(0).
Multiplying both sides of this last relation with x>, the perturbed
eigenvalue |l 0(0)|= |x>BEx| kExkB is bounded by the B-norm
of Ex. Indeed, the computation of the Laplacian eigenvalue with
multiplicity one is stable.

Assuming that lk is an eigenvalue with multiplicity mk and rewrit-
ing the characteristic polynomial as pL̃(l ) = (l �lk)

mk q(l ),
where q(·) is a polynomial of degree n�mk and q(lk) 6= 0, we

get that (l �lk)
mk = O(e)/q(l ); i.e., l = lk +O(e

1
mk ). It follows

that a perturbation e := 10�mk produces a change of order 0.1 in lk
and this amplification becomes more and more evident while in-
creasing the multiplicity of the eigenvalue. According to [Golub
and VanLoan 1989] (§ 7), repeated eigenvalues are generally asso-
ciated with a numerical instability in the computation of the cor-
responding eigenvectors; in fact, the `2-norm of the difference be-
tween the generalized eigenvectors xi, x j related to the eigenval-
ues li, l j is bounded as

kxi �x jk2  e Â
j 6=i

�����
x>i Ex j

li �l j

�����+O(e2).

Indeed, the computation of the eigenvectors related to multiple or
close Laplacian eigenvalues might be unstable. Finally, the Lapla-
cian eigenvalues might be locally switched (i.e., we are not able to
numerically distinguish two consecutive eigenvalues) and this situ-
ation happens independently of the quality of the discretized surface
in terms of point density, angles, and connectivity.

5 Heat and wave equations

We introduce the heat (Sect. 5.1), wave and mean curvature
flow (Sect. 5.2) equations; then, we discuss their discretization
(Sect. 5.3), the selection of the time scale (Sect. 5.4), and the com-
putation of their solution (Sect. 5.5).

5.1 Heat equation

The scale-based representation H : N ⇥R+ ! R of the func-
tion h : N ! R is the solution to the heat diffusion equation
(∂t +D)H(p, t) = 0, H(·,0) = h. The function H(p, t) represents
the heat distribution at the point p and at time t, where h is the
initial distribution. The solution to the heat equation is written as

H(p, t) = hKt(p, ·),hi2 =
+•
Â
n=0

exp(�lnt)hh,fni2fn(p), (1)

where Kt(p,q) = Â+•
n=0 exp(�lnt)fn(p)fn(q) is the spectral repre-

sentation of the heat diffusion kernel. The heat diffusion and the
Laplace-Beltrami operators have the same eigenfunctions {fn}+•

n=0
and (exp(�lnt))+•

n=0 are the eigenvalues of the heat operator. The
heat kernel is invariant to isometries and verifies the semi-group
hKt1 ,Kt2i2 = Kt1+t2 and inversion K�1

t = K�t properties. The spec-
tral representation (1) shows the smoothing effect on the initial
condition h; as the scale increases, the component of h along the
eigenfunctions associated with the larger Laplacian eigenvalue be-
comes null. We also notice that the normalized function A �1

N H(·, t)



with respect to the surface area AN minimizes the weighted
least-squares error

R
N Kt(p,q)|h(q)�g(p)|2dq on L 2(N ), for a

given h.

Heat equation on surfaces On surfaces, the heat kernel sat-
isfies the following properties [Sun et al. 2009; Grigoryan 2006]:

• for an isometry F : N ! Q between two manifolds N , Q,

KN
t (p,q) = K Q

t (F(p),F(q)), 8p,q 2 N ,8t 2 R+;
(2)

• if F is surjective and Eq. (2) holds, then F is an isometry;

• if D is a compact set of N , then
limt!0 KD

t (p,q) = KN
t (p,q);

• if D1 ✓ D2 ✓ N , then KD1
t (p,q) KD2

t (p,q);

• on smooth and polygonal surfaces, the heat kernel fully deter-
mines the Riemannian metric [Zeng et al. 2012].

For small values of t [Sun et al. 2009; Varadhan 1967], the auto-
diffusivity function

Kt(p,p)⇡
⇢

(4pt)�1(1+1/3tk(p))+O(t2),
(4pt)3/2(1+1/6s(p)),

t ! 0,

encodes the Gaussian k(p) and total s(p) curvature at p. For large t,
Kt(p,q) is dominated by the Fiedler vector f1 [Fiedler 1973], which
encodes the global structure of the input shape. According to [Sun
et al. 2009; de Goes et al. 2008], the surface N at p can be char-
acterized in terms of the average squared diffusion distance at p
(eccentricity), which is defined as

ecct(p)=A �1
N

Z

N
dt(p,q)dq=Kt(p,p)+EN (t)�2A �1

N , t ! 0,

where EN (t) := Â+•
n=0 exp(�lnt) is the sum of the eigenvalues of

the heat kernel. Since the area and trace are independent of the
evaluation point, the functions ecct and Kt(p, ·) have the same level
sets and extrema on N . In particular, for small scales the extrema
of the eccentricity are localized at the curvature extrema.

Heat equation on volumes The analyti-
cal representation of the volumetric heat kernel
Kt(p,q) := (4pt)�3/2 exp(�kp�qk2

2/4t) allows us to solve
the heat equation as F(·, t) = hKt , f i2 and without computing the
Laplacian spectrum (Sect. 5.5.4).

5.2 Wave equation and mean curvature flow

The heat equation is strictly related to the Schroedinger (wave)
equation (iD+∂t)H(·, t) = 0, with initial condition H(·,0) = h,
which represents the physical model of a quantum particle with
initial energy h. The spectral representation of the solution is
H(·, t) = Â+•

n=0 exp(ilnt)hh,fni2fn; i.e., a complex wave function
with oscillatory behavior. This periodic effect is due to the real and
complex parts of the filter exp(ilnt) = cos(lnt)+ isin(lnt). The
norm of the solution is the probability Pt(p) to find a point p after a
time t; in fact, the following identity holds

Pt(p) = lim
T!+•

Z T

0
|H(p, t)|2dt

=
+•
Â
n=0

|hh,fni2|2|fn(p)|2 = kH(p, t)k2
2.

Figure 4: Anisotropic heat kernel centered at a (black) seed point
on a coarse triangle mesh.

Table 1: Main properties of the discrete heat kernel: sparsity, posi-
tive definiteness, and symmetry. The full • and empty � circle means
that the corresponding property is or is not satisfied, respectively.

Heat Ker. Matrix Kt Sp. Pos. Def. Sym. Cov. Inv.
Std XDt X> � • • � �
Vor.-cot XDt X>D � • � • �
wFEM XDt X>B � • � • �

Finally, the heat equation is related to the mean curvature
flow [Crane et al. 2013a; Kazhdan et al. 2012] (∂t +Dt)Ft = 0,
where Ft : M ! R3 is a family of immersions and Dt is the
Laplace-Beltrami operator associated with the metric induced by
the immersion at time t.

5.3 Discrete heat equation and kernel

We briefly introduce the weak formulation [Allaire 2007] of
the heat equation; similar results apply to the equations pre-
viously introduced. Chosen a set B := {yi}n

i=1 of lin-
early independent functions on N , we approximate the so-
lution F̃(p, t) := Ân

i=1 ai(t)yi(p) to the weak heat equation as
h∂t F̃(·, t),yii2 + hDF̃(·, t),yii2 = 0, i = 1, . . . ,n. Introducing the
matrices L := (hDyi,y ji2)

n
i, j=1 and B := (hyi,y ji2)

n
i, j=1, the dis-

crete heat equation becomes (B∂t +L)a(t) = 0, a(t) := (ai(t))n
i=1.

An analogous relation can be derived for the boundary con-
dition F(p,0) = h(p). Since B is the Gram matrix associ-
ated with B, it is invertible and the previous system of equa-
tions is (∂t +B�1L)a(t) = 0, with initial condition F(0) = f.
Then, the solution to the discrete heat equation is expressed
as a linear combination of the Laplacian eigensystem as
F(t) = Ân

i=1 exp(�lit)hf,xiiBxi.

Properties The solution to the discrete heat equa-
tion is F(t) = Kt f (Fig. 4), where Kt := XDtX>B,
Dt := diag(exp(�lit))n

i=1, is the heat kernel matrix (Ta-
ble 1). Lumping the linear FEM mass matrix B, the heat
kernel becomes equal to the Voronoi-cotangent heat kernel
K?

t := XDtX>D, LX = XG. Choosing B := I, we get the heat
kernel K̃t := XDtX> with cotangent weights. Analogously
to the results in Sect. 5.1, the heat kernel matrix satisfies the
following relations: Kt1 ⇥Kt2 = Kt2 ⇥Kt1 = Kt1+t2 (commutative
and semi-group properties), K�1

t = K�t (inversion property).
If B is the linear FEM mass matrix or the diagonal matrix of
the Voronoi areas, then the heat kernel matrix Kt is intrinsically
scale-covariant; i.e., rescaling the points of M by a factor a ,
a > 0, and indicating the new surface as aM , we get that
only the time component of the kernel is rescaled. In fact, the
rescaling changes the matrix B and the eigensystem {(li,xi)}n

i=1



Figure 5: First row: behavior of the L-curve. Second row: selec-
tion of the optimal scale (topt = 0.0032) and corresponding volu-
metric diffusion smoothing, Padé-Chebyshev approximation of de-
gree r = 7) on the noisy volumetric model of a teeth.

of M into a2B and {(a�2li,a�1xi)}n
i=1, respectively. Indeed,

Kt(aM ) = Ka�2t(M ) without an a-posteriori normalization.
The scale-covariance of Kt is guaranteed by the mass matrix,
which changes according to the surface rescaling and compensates
the variation of the corresponding Laplacian spectrum. The kernel
becomes scale-invariant (i.e., Kt(aM ) = Kt(M )) by normalizing
each eigenvalue by ln, which is efficiently computed using the
inverse method [Golub and VanLoan 1989; Vallet and Lèvy 2008].
Alternatively, the scale-invariance and covariance of the heat kernel
is achieved in the Fourier domain [Bronstein and Kokkinos 2010].
In [Bronstein et al. 2010b; Bronstein et al. 2010c], the matching
performances of heat kernel descriptors have been tested against
shape transformation, sampling, and noise.

5.4 Selection of the time scale

For shape analysis, the real line is uniformly sampled in or-
der to consider both small and large scales. For geometry pro-
cessing, the optimal time value is defined as the value of t that
provides the best compromise between a small residual error
kF(·, t)� fk2

2 = Â+•
n=0 |1� exp(�2lnt)|2|h f ,fni2|2 and a low en-

ergy kF(·, t)k2
2 = Â+•

n=0 exp(�2lnt)|h f ,fni2|2. If t tends to zero,
then the residual becomes null and the energy converges to k fk2.
If t becomes large, then the residual increases until it converges
to |h f ,f0i2| and the solution norm decreases until it converges to
(k fk2

2 � |h f ,f0i2|2)1/2. According to these properties, the plot
(L-curve) of the energy (y-axis) versus the residual (x-axis) is L-
shaped [Hansen and O’Leary 1993] and its minimum provides the
optimal time value (Fig. 5). For the computation of the optimal time
value, we mention the corner detection based on cubic B-splines ap-
proximation [Hansen and O’Leary 1993], the evaluation of the cur-
vature of the graph of the L-curve or its adaptive pruning [Hansen
and O’Leary 1993].

5.5 Computation of the discrete heat kernel

For the computation of the solution to the discrete heat equation and
kernel, we consider linear (Sect. 5.5.1), polynomial (Sect. 5.5.2),
and rational (Sect. 5.5.3) approximations of the exponential filter.
On volumes (Sect. 5.5.4), we discuss the solution to the heat equa-
tion based on the analytic representation of the heat kernel. With the
exception of the truncated spectral method, all the previous approx-
imations are independent of the evaluation of the Laplacian spec-
trum and reduce to a set of sparse linear systems (Table 2). The
polynomial and rational approximations generally provide the best
compromise between approximation accuracy and computational
cost.

5.5.1 Linear approximation

For the solution to the heat equation, we review the truncated spec-
tral approximation, the Euler backward method, the first order Tay-
lor approximation, the Krylov and Schur methods.

Truncated spectral approximation and power method
The computational bottleneck for the evaluation of the whole Lapla-
cian spectrum imposes on us to consider only a small subset of the
Laplacian spectrum. Since the decay of the filter factor exp(�lit)
increases with li, in the spectral representation of the solution to the
heat equation we consider only the contribution related to the first k
eigenpairs; i.e., Fk(t) = Âk

i=1 exp(�lit)hf,xiiBxi. The truncated
approximation is accurate only if the exponential filter decays fast
(e.g., large values of time) and the effect of the selected eigenpairs
on the approximation accuracy cannot be estimated without com-
puting the whole spectrum. The multi-resolution prolongation op-
erators [Vaxman et al. 2010] prolongate the values of the truncated
spectral approximation, computed on a low-resolution representa-
tion of the input shape, to the initial resolution through a hierarchy
of simplified meshes. In this case, the number of eigenpairs are
heuristically adapted to the surface resolution and its global/local
features.

Euler backward method In [Clarenz et al. 2000; Desbrun
et al. 1999], the solution to the heat equation is computed through
the Euler backward method (tL̃+ I)Fk+1(t) = Fk(t), F0 = f. The
resulting functions are over-smoothed and converge to a constant
function, as k !+•.

First order Taylor approximation and power method
Since the derivative of Kt at t = 0 equals the Laplacian matrix
(i.e., (I�Kt)/t ! B�1L, t ! 0), the heat kernel Kt is approxi-
mated by (I� tB�1L) and F(t) = Kt f solves the sparse linear sys-
tem B(Kt f) = (B� tL)f. This last relation gives an approximation
of F(t) that is independent of the Laplacian spectrum and is valid
only for small values of t. For an arbitrary value of t, the “power”



Table 2: Numerical computation of the solution to the heat equation; t(n) is the cost for the solution of a sparse linear system.

Method Numerical scheme Scales Comput. cost References

Linear approximation
Trunc. spec. approx. Fk(t) = Âk

i=1 exp(�lit)hf,xiiBxi Any O(kn) [Golub and VanLoan 1989; Vaxman et al. 2010]
Euler backw. approx. (tL̃+ I)Fk+1(t) = Fk(t) Small O(t(n)) [Clarenz et al. 2000; Desbrun et al. 1999; Zhang and Hancock 2008]
I order Taylor approx. BF(t) = (B� tL)f Small O(t(n)) [Clarenz et al. 2000; Desbrun et al. 1999]
Krylov/Schur approx. Projection on Any O(mt(n)), B 6= I [Golub and VanLoan 1989; Saad 1992; Zhang and Hancock 2008]

{gi := (B�1L)if}m
i=1 O(n), B = I

Polynomial approximation
Power approx. F(t) = Âm

i=0 gi/i! Any O(mt(n)), B 6= I
gi := L̃if O(n), B = I [Golub and VanLoan 1989]

Rational approximation
Padé-Cheb. approx. F(t) = a0f+Âr

i=1 gi Any O(rt(n)) [Carpenter et al. 1984; Sidje 1998; Saad 1992]
(tL+qiB)gi =�aiBf [Patanè 2013; Patanè 2014; Patané 2016]

Contour integral approx. F(t) = Âr
i=1 aigi Any O(rt(n)) [Pusa 2011]

(ai)r
i=1 quadr. coeff.

Algorithm 1: Padé-Chebyshev approximation of the solution to the
heat equation.

Require: A function f : P ! R, f := ( f (pi))n
i=1.

Ensure: The approximate solution F(t) = Kt f of f to the heat equa-
tion.

1: Select the value of t (e.g., optimal value, Sect. 5.4).
2: for i = 1, . . . ,r�1 do
3: Compute gi: (tL+qiB)gi =�aiBf.
4: end for
5: Approximate Kt f as a0f+Âr

i=1 gi. =0

method applies the identity (Kt/m)
m = Kt , where m is chosen in

such a way that t/m is sufficiently small to guarantee that the ap-
proximation Kt/m ⇡ (I� t/mL̃) is accurate. However, the selec-
tion of m and its effect on the approximation accuracy cannot be
estimated a-priori.

Krylov and Schur approximations The Krylov subspace
projection [Golub and VanLoan 1989; Saad 1992] computes an ap-
proximation of exp(�tA)f in the space generated by the vectors
f,Af, . . . ,Am�1f, thus processing a m⇥m matrix instead of a n⇥n
matrix, where m is much lower than n (e.g., m ⇡ 20). This ap-
proximation [Zhang and Hancock 2008] becomes computationally
expensive when the dimension of the Krylov space increases, still
remaining much lower than n (e.g., n ⇡ 5K). In both cases, the vec-
tor L̃if = (B�1L)if must be computed without inverting the mass
matrix; to this end, we notice that the vector gi := (B�1L)if satis-
fies the linear system Bgi = Lgi�1, Bg1 = Lf. Since the coefficient
matrix B is sparse, symmetric, and positive definite, the vectors
(gi)m

i=1 are evaluated in linear time by applying iterative solvers
(e.g., conjugate gradient) or pre-factorizing B.

5.5.2 Polynomial approximations

The exponential of a matrix A is defined as the exponential power
series exp(A) = Â+•

n=0 An/n!, which converges for any square ma-
trix A. Even though the input matrix A is sparse, its exponential
exp(�tA) is always full (t 6= 0) and can be computed or stored only
if A has a few hundred rows and columns only. In particular, for
computer graphics applications we can consider 3D shapes only
with a small number of samples (i.e., few hundreds) or evaluate
the heat kernel on a set of seed points that are representative of the
geometry and features of the input shape.

Figure 6: Conditioning number k2 (y-axis) of the matrices
{(tL+qiB)}7

i=1, for several values the time parameter t; the in-
dices of the coefficients {qi}7

i=1 are reported on the x-axis.

5.5.3 Rational approximation

The exponential of an arbitrary matrix A is equal to the com-
plex contour integral exp(tA) = (2pi)�1 R

G exp(z)(zI� tA)�1dz,
where G is a closed contour winding once around the spectrum of
tA [Golub and VanLoan 1989] (§ 11), [Rudin 1987] (§ 10). From
this identity, we introduce two accurate and computationally effi-
cient approximations of the exponential of the Laplacian matrix.

Padé-Chebyshev approximation The rational approxima-
tion of the exponential function of order (k,k) and with simple poles
is rkk(z) := pk(z)/qk(z) = a0 +Âk

i=1 ai(z�qi)�1, where pk, qk
are polynomials of order k, a0 = limz!+• rkk(z), qi is a pole, and ai
is the residual at qi. Applying this last relation to tA, we get
exp(tA) = a0I+Âk

i=1 ai(tA�qiI)�1. Among the rational approx-
imations of the exponential function, we focus on its best approxi-
mation rkk(·) of order k with respect to the `• norm; i.e., the unique
rkk(z) = pk(z)/qk(z) that minimizes the error kp(z)� exp(�z)k•
in the space Pkk 3 p of rational polynomials of order k. Here, the
main difficulty is the evaluation of the coefficients and poles of the
rational approximation of the exponential function for a given k,
which is generally affected by the ill-conditioned computation of



Figure 7: Cost (in seconds, y-axis, log-scale) for the evaluation of
the diffusion distances on 3D shapes with n samples (x-axis), ap-
proximated with k = 500 eigenpairs and the Padé-Chebyshev ap-
proximation. Colors from the source (orange) point vary from blue
(null distance) to red (maximum distance).

the polynomial roots. These coefficients and poles have been com-
puted with a different accuracy and for different orders of the ra-
tional polynomial [Carpenter et al. 1984; Cody et al. 1969; Moler
and Van Loan 2003; Sidje 1998; Saad 1992]. These approximations
are also included in standard numerical libraries for signal process-
ing. Finally, we recall that in spectral graph theory [Orecchia et al.
2012], the Padé-Chebyshev and the Lanczos methods have been
applied to the approximation of exp(�A)f, where A is a symmetric
and positive semi-definite matrix.

The idea behind the spectrum-free computation [Patanè 2013;
Patanè 2014] is to apply the (r,r)-degree Padé-Chebyshev rational
approximation to the exponential representation F(t) = exp(�tL̃)f
of the solution to the heat equation (∂t + L̃)F(t) = 0, F(0) = f (Al-
gorithm 1). In this case, the solution F(t) = a0f+Âr

i=1 gi is the sum
of the solutions of r sparse linear systems (tL+qiB)gi =�aiBf,
i = 1, . . . ,r. The resulting approximation belongs to the linear space
generated by f and {gi}r

i=1, which are calculated as a minimum
norm residual solution [Golub and VanLoan 1989], depend on the
input domain, the initial condition, and the selected time value. In
comparison, the Laplacian eigenfunctions only encode the domain
geometry and it is difficult to select the number of eigenpairs nec-
essary to achieve a given approximation of F(t) with respect to t
and f.

This approximation is independent of the computation of the Lapla-
cian spectrum, user-defined parameters, and multi-resolutive pro-
longation operators [Vaxman et al. 2010], which heuristically adapt
the number of eigenpairs to the surface resolution. The sparse and
well-conditioned matrices of the previous linear systems have the
same structure and sparsity of the connectivity matrix of the input
domain, properly encode the local and global features in the heat
kernel, and can be computed for any representation of the input do-
main and of the Laplacian weights. Finally, the accuracy of the
Padé-Chebychev approximation is lower than 10�r (e.g., r = 5,7).

The value of t influences the conditioning number of the matrices
(tL+qiB), i = 1, . . . ,r. Experiments (Fig. 6,[Patanè 2014]) have
shown that the linear systems associated with the Padé-Chebyshev
approximation are generally well-conditioned; in any case, pre-
conditioners and regularization techniques [Golub and VanLoan
1989] can be applied to attenuate numerical instabilities. Finally,
timings on surfaces and volumes (Fig. 7) are reduced from 20
up to 1200 times with respect to the approximation based on a
fixed number of Laplacian eigenpairs. Laplacian eigenvectors have
been computed with the Arnoldi iteration method [Lehoucq and
Sorensen 1996; Sorensen 1992].

t = 0.1

t = 1

Figure 8: Volumetric heat kernel (r = 7). Level-sets correspond to
iso-values uniformly sampled in the range of the solution restricted
to the volume boundary.

Rational approximation from contour integrals Since
the exponential factor rapidly decays to zero as Re(z)!+•,
in [Pusa 2011] the complex contour integral has been efficiently
computed with quadrature rules. In this case, a0 = 0, the
poles qi := f(xi) are evaluated at the quadrature points {xi}i,
ai :=�(2pi)�1hexp(f(xi))f 0(xi) are the weights of the quadra-
ture rules, and h is the interval length in the quadrature scheme.
The resulting approximation accuracy is guided by the degree of
the quadrature rule; low degrees (e.g., k = 2, k = 4) generally pro-
vide a satisfactory approximation accuracy.

5.5.4 Special case: heat equation on volumes

On a volume, the function F(t) = Ân
i=1 aiViKt(pi, ·) f (pi) is approx-

imated as a linear combination of the basis functions {Kt(pi, ·)}n
i=1.

Here, V = diag(Vi)n
i=1 is the diagonal matrix of the volumes Vi

at pi, Kt is the Gram matrix for the Gaussian kernel, and the
unknowns a = (ai)n

i=1 are determined by imposing the condition
F(pi,0) = f (pi), i = 1, . . . ,n. To overcome the time-consuming so-
lution of the n⇥n linear system VKta = f, the number of condi-
tions is reduced or the coefficient matrix is sparsified according to
the exponential decay of its entries. Alternatively, the volumetric
heat equation is solved by discretizing the Laplace-Beltrami opera-
tor with finite elements [Allaire 2007; Reuter et al. 2009b], or with
finite differences on a 6-neighborhood stencil [Litman et al. 2011;
Litman et al. 2012; Raviv et al. 2010], or with a geometry-driven
approximation of the gradient field [Liao et al. 2009; Tong et al.
2003].

While a discretization of the heat kernel on a voxel grid is ac-
curate enough for the evaluation of diffusion descriptors [Litman
et al. 2011; Raviv et al. 2010], which are quantized and clustered
in bags-of-features, the computation of the solution to the volumet-
ric heat equation generally requires a more accurate discretization
of the input domain. The prolongation of the Laplacian [Rustamov
2011a; Rustamov 2011b], harmonic [Li et al. 2010; Martin et al.
2008], and diffusion functions from the volume boundary to its inte-
rior, through barycentric coordinates or non-linear approximation,
achieves a low accuracy of the solution in a neighbor of the bound-
ary. The multi-resolution simplification of the input volume is also
time-consuming, and the selection of the volume resolution with re-
spect to the expected approximation accuracy are generally guided
by heuristics. Indeed, these methods do not intend to approximate
the heat kernel quantitatively, but provide alternative approaches



jt(s) = s2 jt(s) = exp(ts), t = 10�1 jt(s) = sexp(ts) jt(s) = exp(ts)/s jt(s) = exp(ts)/s2

Biharmonic dist. Harmonic dist.

Figure 9: Level-sets of the spectral distances from a source point (white dot) induced by the filter j and evaluated with the Padé-Chebyshev
approximation (r = 5).

Figure 10: Spectral distances and kernels induced by the filter function j (log-scale on the t- and y-axis) applied to the Laplacian eigenvalues.

Low-resolution shape: biharmonic distances
FEM Voronoi-cot

k = 10 k = 500 k = 10 k = 500
High-resolution shape: biharmonic distances

FEM Voronoi-cot

k = 10 k = 500 k = 10 k = 500

Figure 11: Biharmonic distance on a surface at different resolu-
tions, with different Laplacian weights and k eigenpairs.

that qualitatively behave like the heat kernel on volumes. To im-
prove the accuracy, we consider the volumetric Laplacian matrix of
the input domain and compute the Padé-Chebyshev approximation
of the induced heat kernel (Fig. 8).

6 Laplacian spectral distances

Distances can be defined directly on the input domain M (e.g.,
geodesic distances) or in the space of functions on M (e.g., ran-
dom walks, biharmonic distances, diffusion and wave distances).
For geometry processing and shape analysis, the distance

• satisfies the following properties: positivity (d(p,q) 0);
nullity (d(p,q) = 0 if and only if p ⌘ q); sym-
metry (d(p,q) = d(q,p)); triangular inequality
(d(p,q) d(p,r)+d(r,q));

• should be multi-scale and geometry-aware, through the en-
coding of local/global features and geometric properties;

• should be isometry-invariant through a proper filtering of the
Laplacian spectrum, robust to noise and domain discretiza-
tion.

We introduce the spectral distances (Sect. 6.1), by filtering the
Laplacian spectrum and as a generalization of the commute-time,
biharmonic, diffusion and wave distances (Sect. 6.2). Then,
we discuss their spectral discretization (Sect. 6.3), computation
(Sect. 6.4), and comparison (Sect. 6.5).

6.1 Laplacian spectral kernels and distances

Starting from recent work on the geodesic and heat diffusion
distances [Crane et al. 2013b; Patanè 2013], we address the
definition of spectral distances on a manifold N by filtering
its Laplacian spectrum [Bronstein and Bronstein 2011a; Patanè
2014]. Given a strictly positive filter function j : R+ ! R, let
us consider the power series j(s) = Â+•

n=0 ansn. Noting that



(a)
n = 5K n = 10K n = 26K
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Figure 12: Stability of the biharmonic distance from a source
(black) point with respect to (a) sampling, (b) noise, (c) holes.

Di f = Â+•
n=0 l i

nh f ,fni2fn, we define the spectral operator as

F( f ) =
+•
Â
n=0

anDn f =
+•
Â
n=0

j(ln)h f ,fni2fn. (3)

According to [Patané 2016], if the function j̃(s) := s1/2j(s)
is integrable on R+ then the spectral operator is well-
defined, linear, continuous, and F( f ) = hK, f i2, where
K(p,q) = Â+•

n=0 j(ln)fn(p)fn(q) is the spectral kernel. Through
the spectral operator, in L2(N ) we introduce the spectral scalar
product and distance as

⇢
h f ,gi := hF( f ),F(g)i2 = Â+•

n=0 j2(ln)h f ,fni2hg,fni2
d2( f ,g) = k f �gk2 = Â+•

n=0 j2(ln)|h f �g,fni|2.
(4)

Indicating with dp the function that takes value 1 at p and 0 other-
wise, the spectral distance between p, q is (Fig. 9)

d2(p,q) : = kdp �dqk2

=
+•
Â
n=0

j2(ln)|fn(p)�fn(q)|2

= kK(p, ·)�K(q, ·)k2
2,

where the first row provides the spectral representation and the sec-
ond row expresses the spectral distances in terms of the correspond-
ing kernel.

Properties Analogously to the diffusion kernel, the spectral ker-
nel satisfies the following properties: non-negativity (K(p,p)� 0),
symmetry (K(p,q) = K(q,p)), and positive semi-definiteness:

0  hF( f ), f i2 =
Z

N ⇥N
K(p,q) f (p) f (q)dpdq

=
+•
Â
n=0

j(ln)|h f ,fni2|2.

We also mention the square integrability kKk2
2 = Â+•

n=0 |j(ln)|2,
which is equivalent to the Parseval’s equality and the conserva-
tion:

R
N K(p,q)dp = 1, which is a consequence of the Perron-

Frobenious theorem.

Through the selected filter function and the Laplacian spectrum,
we define the spectral embedding E : M ! `2, which maps each
point p to the sequence E (p) := (j(ln)fn(p))+•

n=0. The equality
d(p,q) = kE (p)�E (q)k2 shows that the spectral distances can be
interpreted as Euclidean distances in the embedding space. Fi-
nally, the spectral shape descriptor SD(p) := Â+•

n=0 |j(ln)|2f 2
n (p)

and signature SE(p) := (j�1/2(ln)fn(p))+•
n=0 generalize the diffu-

sion descriptor and signature [Dey et al. 2010a; Sun et al. 2009]
(Sect. 6.2.1).

Selection of the filter function The filter function is learned
from a training data set [Aflalo et al. 2011] or chosen in such a
way that the corresponding spectral distances satisfy the proper-
ties introduced at the beginning of Sect. 6. For instance (Fig. 10),
selecting jt(s) := exp(�st), exp(�ist) or j(s) := s�k/2,s�1/2, we
get the heat diffusion, wave, or poly-harmonic, commute-time dis-
tances, respectively. Mexican hat wavelets [Hou and Qin 2012]
are generated by the filter j(s) := s1/2 exp(�s2) and in [Bron-
stein and Bronstein 2011b; Aubry et al. 2011] the filter function
j(s) := exp(is), s 2 [0,2p], defines the wave kernel signature. The
spectral distances associated with this periodic filter identify local
shape features by separating the contribution of different frequen-
cies and of the corresponding eigenfunctions.

Similarly to random walks [Ramani and Sinha 2013], we introduce
multi-scale kernels by integrating the moment of order k of the dif-
ferential operator Da exp(�tDa ). In this case, the filter function is
j(s) = tksa exp(�tsa ), where k scales the rate of diffusion and a
controls the decay of the Laplacian eigenvalues to zero. The selec-
tion of the parameters a , k makes the multi-scale kernels more ro-
bust to geometric and topological noise; the integral over time also
avoids the selection of the heat diffusion rate. The filter functions
jt(s) := [cos�1/2(

p
st),s�1/4 sin1/2(

p
st)] and j(s, t) = exp(srt)

are associated with the diffusion equations (∂ 2
t +D)F(·, t) = 0 and

(∂t +Dr)F(·, t) = 0, respectively. Finally, the filter function can be
learned from a set of retrieval examples [Aflalo et al. 2011; Boscaini
et al. 2015b].

6.2 Main examples of spectral distances

As special cases, we consider the diffusion (Sect. 6.2.1), commute-
time and biharmonic distances (Sect. 6.2.2), and the approximation
of the geodesic and transportation distances (Sect. 6.2.3).

6.2.1 Diffusion distances

The heat kernel induces the diffusion distances, whose spectral
representation is d2

t (p,q) = Â+•
n=0 exp(�lnt)|fn(p)�fn(q)|2. Re-

calling that the heat kernel is self-adjoint with respect to the
scalar product induced by the mass matrix B, we define the dif-
fusive scalar product hf,git := hKt f,giB and express the discrete



Figure 13: `• error (y-axis) for the diffusion distance approximated with k (x-axis) Laplacian eigenpairs. For the Padé-Chebyshev method
(r = 5) and all the scales, the `• error with respect to the ground-truth is lower than 8.9⇥10�6.

Figure 14: `• error (y-axis) between the ground-truth diffusion distances on the cylinder, with a different sampling (x-axis). For different
scales, the accuracy of the Padé-Chebyshev method (r = 5, orange) remains almost unchanged and higher than the truncated approximation
with 100 and 200 eigenpairs (red, blue), the Euler backward (green) and power (black) methods.

diffusion distances as dt(pi,p j) = kdpi �dp jkt = kKt(ei � e j)kB,
where kfk2

t = f>XDtX>Bf = Ân
i=1 exp(�lit)|hf,xiiB|2 is the diffu-

sion norm.

Through the heat kernel, a shape is associated with a diffusion
metric that measures the rate of connectivity among its points
with paths of length t and characterizes the local/global geo-
metric behavior with small/large values of t. This property has
been used to define a multi-scale and isometry-invariant signa-
tures [Bronstein et al. 2010a; Bronstein and Kokkinos 2010; Bron-
stein et al. 2011; Coifman and Lafon 2006; Dey et al. 2010b;
Gebal et al. 2009; Lafon et al. 2006; Mèmoli and Sapiro 2005;
Memoli 2009; Memoli 2011; Ovsjanikov et al. 2010; Raviv et al.
2010; Rustamov 2007; Mahmoudi and Sapiro 2009; Sun et al.
2009] and to rewrite the shape similarity problem as the com-
parison of two metric spaces. Main examples include the heat
kernel signature HKS(p) := Â+•

n=0 exp(�lnt)|fn(p)|2 and descrip-

tor HKD(p) := (l�1/2
n fn(p))+•

n=0, and the wave kernel signature
WKS(p) := Â+•

n=0 exp(�ilnt)|fn(p)|2. Furthermore, the heat diffu-
sion distance and kernel have been successfully applied to shape
segmentation [de Goes et al. 2008]; the computation of the gradient
of discrete functions [Luo et al. 2009]; and the multi-scale approx-
imation of functions [Patanè and Falcidieno 2010]. The diffusion
distance and kernel also play a central role in several applications,
such as dimensionality reduction with spectral embeddings [Belkin
and Niyogi 2003; Xiao et al. 2010]; data visualization [Belkin and
Niyogi 2003; Hein et al. 2005; Roweis and Saul 2000; Tenenbaum
et al. 2000], representation [Chapelle et al. 2003; Smola and Kon-
dor 2003; Zhu et al. 2003], and classification [Ng et al. 2001; Shi

and Malik 2000; Spielman and Teng 2007].

6.2.2 Commute-time and biharmonic distances

Integrating the diffusion distances with respect to t, we get the
commute-time distance

d2(p,q) =
1
2

Z +•

0
d2

t (p,q)dt =
+•
Â
n=0

l�1
n |fn(p)�fn(q)|2,

which is induced by the filter j(s) := s1/2 and is scale-invariant.
We notice that this series can also be unbounded. While the dif-
fusion distance estimates the connection of two points with respect
to any random walk of length t, the commute-time distance mea-
sures this connection with respect to arbitrary random walks. The
biharmonic distances [Ovsjanikov et al. 2012; Lipman et al. 2010;
Rustamov 2011b] are induced by j(s) := s and provide a trade-off
between a nearly-geodesic behavior for small distances and global
shape-awareness for large distances, thus guaranteeing an intrinsic
multi-scale characterization of the input shape. In Fig. 11, the ap-
proximation of the biharmonic kernel and distance with a subset
of the Laplacian spectrum presents local artifacts, which are rep-
resented by isolated level sets and are reduced by increasing the
number of eigenpairs without disappearing. In Fig. 12, the smooth
and uniform distribution of the level sets of the biharmonic dis-
tance around the anchor point (black dot) confirms the stability of
the spectrum-free approximation with respect to surface sampling,
noise, and missing parts.



(a) t = 10�1 (b) t = 10�2 (c) t = 10�3

(d) t = 10�4 (e) t = 10�1 (f) t = 10�2

Figure 15: (a-d) Robustness of the Padé-Chebyshev approximation of the diffusion distances and (e,f) sensitiveness of truncated spectral ap-
proximation to the Gibbs phenomenon. At all scales (a-d), the distance values (red curve) computed with the Padé-Chebyshev approximation
are positive; at large scales (e,f), the truncated spectral approximation is affected by the Gibbs phenomenon, as represented by the part of the
plot below the zero line (black curve).

6.2.3 Approximating geodesics and transportation dis-
tances with the heat kernel

According to [Varadhan 1967], the geodesic distance can be ap-
proximated as dG(p,q) =� limt!0(4t logKt(p,q)), where Kt(p,q)
is computed with the Padé-Chebyshev method. In fact, the trun-
cated spectral approximation generally does not provide a value
of Kt(p,q), t ! 0, enough accurate to apply the Varadhan for-
mula. Alternatively [Crane et al. 2013b], the geodesic distance
dG(p,q) from the heat kernel values Kt(p,q) as the scale tends
to zero. More precisely, the geodesic distance dG on N is ap-
proximated by computing the solution F(·, t) to the heat equation
(∂t +D)F(·, t) = 0 on N , as t ! 0+, normalizing the correspond-
ing gradient X = —F(·, t)/k—F(·, t)k2, and solving the equation
DdG = div(X). This approximation is computationally efficient, ca-
pable of identifying different types of features by selecting differ-
ent diffusion models, and robust to noise. The main difficulty is
the tuning of the time scale with respect to the shape features; in
fact, the selection of a large scale is generally associated with an
over-smoothing of the geodesic values and local details.

In [Solomon et al. 2015], the optimal transportation distances have
been approximated using the iterative Sinkhorn’s method [Sinkhorn
1964] and the entropic regularization, thus reducing their computa-
tion to the solution of two sparse matrix equations that involve the
heat kernel matrix. Instead of approximating the heat kernel with an
implicit Euler integration [Desbrun et al. 1999], we can apply the
Padé-Chebyshev approximation (Sect. 5.5.3) in order to improve
the approximation accuracy at small scales and without modifying
the overall approach.

6.3 Discrete spectral distances

Inserting the generalized eigensystem LX = BXL, with orthonor-
mal eigenvectors X>BX = I, in Eq. (3), its discretization is
K = Xj(L)X>B, j(L) := diag(j(li))n

i=1, and the corresponding
discrete spectral distances are

d2(pi,p j) = kK(ei � e j)k2
B =

n

Â
l=1

j2(li)|hxl ,ei � e jiB|2. (5)

The spectral representation of the kernel provides its link between
the Laplacian matrix; i.e., L̃ and K have the same eigenvectors and
(j(li))n

i=1 are the (filtered) Laplacian eigenvalues of K.

In previous work, the spectral distances have been discretized as
d(pi,p j) = kK?(ei � e j)k2 and with respect to the Euclidean scalar
product, where K? := Xj(L)X> is the corresponding kernel. This
last discretization does not take into account the intrinsic B-scalar
product, thus disregarding the geometry of the input data and the
underlying generalized eigenproblem. Considering the linear FEM
mass matrix B and noting that B(i, j) = hdpi ,dp j i2, where dp is the
function that takes value 1 at p and 0 otherwise, the B-scalar prod-
uct is the counterpart of the L2(N ) scalar product on the space of
discrete functions on M . The orthogonality of the Laplacian eigen-
vectors with respect to the B-scalar product is crucial to encode the
geometry of the surface underlying M in the spectral distances and
makes its evaluation robust to surface sampling.

6.4 Computation of the spectral distances

Recalling that the computation of the Laplacian eigenpairs is nu-
merically unstable in case of repeated eigenvalues (Sect. 4.3), the
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Figure 16: Trade-off between accuracy (y-axis) and time (x-axis)
for the Padé-Chebyshev (r = 5,7) and truncated approximations
(k = 50 eigenpairs) on the (a) sphere and (b) cylinder.

filter function should be chosen in such a way that the filtered Lapla-
cian matrix does not have additional (if any) repeated eigenvalues.
This condition is generally satisfied by choosing an injective filter.
The selection of periodic filters, the expensive cost of the compu-
tation of the Laplacian spectrum, and the sensitiveness of multiple
Laplacian eigenvalues to surface discretization are the main motiva-
tions for the definition of alternative approaches for the evaluation
of the spectral distances and kernels. Among them, we discuss the
truncated (Sect. 6.4.1) and spectrum-free (Sect. 6.4.2) approxima-
tions.

6.4.1 Truncated approximation

The computational limits for the evaluation of the whole Laplacian
spectrum and the decay of the coefficients in Eq. (4) are the main
reasons behind the approximation of the solution to the spectral dis-
tances as a truncated sum; i.e.,

⇢
Fkf = Âk

i=1 j(li)hf,xiiBxi
d2(pi,p j) = Âk

l=1 j2(ll)|x>l Bei �x>l Be j|2,

where k is the number of selected eigenpairs. Even though the first k
Laplacian eigenpairs are computed in super-linear time [Vallet and
Lèvy 2008], the evaluation of the whole Laplacian spectrum is un-
feasible for storage and computational cost, which are quadratic in

Figure 17: Timings (in seconds) for the evaluation of the heat ker-
nel on a domain with n points, approximated with k = 100, 500
eigenpairs (Eigs) and the Padé-Chebyshev approximation (r = 7).

the number of surface samples. Furthermore, the selection of filters
that are periodic or do not decrease to zero motivates the need of
defining a spectrum-free computation of the corresponding kernels
and distances, which cannot be accurately approximated with the
contribution of only a subpart of the Laplacian spectrum. The num-
ber of selected eigenpairs is heuristically adapted to the decay of the
filter function and the approximation accuracy cannot be estimated
without computing the whole spectrum.

6.4.2 Spectrum-free approximation

We now introduce the spectrum-free evaluation of the spectral dis-
tances, which is based on a polynomial or rational approximation
of the filter.

Arbitrary filter: polynomial approximation For an arbitrary
filter j , the matrix j(A) is approximated by selecting a new func-
tion g such that the matrix Ã = g(A) approximates A and can be
easily calculated. One of the main approaches for the approxima-
tion of a matrix function is through the truncated Taylor approxima-
tion [Golub and VanLoan 1989]. More precisely, given the power
series representation j(s) = Â+•

n=0 ansn defined on an open disk
containing the spectrum of A, we have that j(A) = Â+•

n=0 anAn.
In this case, it is enough to consider the contribution of the first k
terms in the sum and to compute the powers (Ai)k

i=1, through a
binary powering [Van Loan 1979].

Let [0,l ] be an interval that contains the spectrum of L̃,
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Figure 18: Robustness of the computation of the linear FEM heat
kernel from a seed point placed on the spike of the tail. The trans-
formation strength increases from left to right.

where l is the maximum eigenvalue, which is computed by the
Arnoldi method [Golub and VanLoan 1989], or is set equal to
the upper bound [Lehoucq and Sorensen 1996; Sorensen 1992]
ln  min{maxi{Â j L̃(i, j)},max j{Âi L̃(i, j)}}. Applying the Tay-
lor approximation j(s)⇡ pr(s) := Âr

n=0 ansn to the Laplacian ma-
trix in [0,l ], Kei is evaluated as (Algorithm 2)

Kei ⇡
r

Â
n=0

an(B�1L)nei = a0ei +
r

Â
n=1

angn, (6)

where gn satisfies the linear system Bgn+1 = Lgn, Bg1 = Lei.

From the upper bound [Patanè 2014]
�����j(L̃)�

r

Â
n=0

anL̃n

�����
2

 n
(r+1)!


lmax(L)
lmin(B)

�r+1
kj(r+1)(L̃)k2,

it follows that the approximation accuracy is mainly controlled by
the degree of the Taylor approximation and the variation of the
ratio between the maximum eigenvalue of L and the minimum
eigenvalue of B. If necessary, a higher approximation accuracy is
achieved by slightly increasing the degree r. Finally, this computa-
tion of both the spectral kernel and distance is independent of the
discretization of the input surface as a polygonal mesh or a point
cloud. In case of a complex kernel, it is enough to apply the pre-
vious discussion to its real and imagery parts; e.g., for the wave
kernel we consider the series sin(L̃) = Â+•

n=0(�1)nL̃2n+1/(2n+1)!
and cos(L̃) = Â+•

n=0(�1)nL̃2n/(2n)!.

Arbitrary filter: Padé-Chebyshev approximation For an
arbitrary filter, we consider the rational Padé-Chebyshev approxi-
mation pr(s) =

ar(s)
br(s)

of j [Golub and VanLoan 1989] (Ch. 11) with
respect to the L• norm. Here, ar(·) and br(·) are polynomials of
degree equal to or lower than r. Let pr(s) = Âr

i=1 ai(1+bis)�1

be the partial form of the Padé-Chebyshev approximation, where

(a) t = 0.1 (b) t = 1

(c) t = 0.1 (d) t = 1

Figure 19: Level sets of the linear FEM diffusion distance, com-
puted using the Padé-Chebyshev approximation (r := 7), from a
source point (black dot), with different values of t, on a (a,b) smooth
and (c,d) noisy surface.

(ai)r
i=1 are the weights and (bi)r

i=1 are the nodes of the r-
point Gauss-Legendre quadrature rule [Golub and VanLoan 1989]
(Ch. 11). The weights and nodes are precomputed for any degree
of the rational polynomial [Carpenter et al. 1984]. Applying this
approximation to the spectral kernel, we get that

u = Kf ⇡ pr(L̃)f =
r

Â
i=1

ai
�
I+biL̃

��1 f =
r

Â
i=1

aigi,

where gi solves the symmetric and sparse linear system

(B+biL)gi = Bf, i = 1, . . . ,r. (7)

The Padé-Chebyshev approximation generally provides an accu-
racy higher than the polynomial approximation, as a matter of its
uniform convergence to the filter.

Properties According to [Moler and Van Loan 2003], the
approximation of the matrix j(L̃) might be numerically unstable
if kL̃k2 is large. From the bound kB�1Lk2  l�1

min(B)lmax(L),
a well-conditioned mass matrix B guarantees that kB�1Lk2
is bounded. Recalling that X>(B+biL)X = (I+biL),
{1+bil j}n

j=1 are the eigenvalues of (B+biL) and its con-
ditioning number is bounded by the constant (1+bmaxln),
bmax := maxi=1,...,n |bi|. Indeed, the coefficient matrices in Eq.
(6) are well-conditioned and specialized pre-conditioners [Kr-
ishnan et al. 2013] can be applied to further attenuate numerical
instabilities.

Approximating an arbitrary filter function with a rational or a poly-
nomial function of degree r, the evaluation of the corresponding
spectral distance between two points is reduced to solve r sparse,
symmetric, linear systems (c.f., Eq. (6)), whose coefficient matri-
ces have the same structure and sparsity of the connectivity matrix
of the input triangle mesh or of the k-nearest neighbor graph for
a point set. Applying iterative solvers, such as the Jacobi, Gauss-
Seidel, minimum residual methods [Golub and VanLoan 1989], and
without extracting the Laplacian spectrum, the computational cost
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Figure 20: Robustness of the Padé-Chebyshev approximation
(r = 7) of the (a,c) diffusion kernel Ktei and (b,d) distance at pi
(black dot) on a smooth and noisy triangulated surface.

is (Ort(n)), where t(n) is the cost for the solution of a sparse linear
system, which varies from O(n) to O(n2), according to the sparsity
of the coefficient matrix, and it is O(n logn) in the average case.

The spectrum-free computation of the one-to-all distances
{d(pi,p j)}n

j=1 takes O(rnt(n)) time; in fact, we solve the sparse
linear system (6) with n different right-hand vectors (ei � e j),
j = 1, . . . ,n. Computing a fixed number k of eigenpairs in O(kn)
time, the truncated spectral approximation of the one-to-all distance
is evaluated in constant time for any filter. Indeed, the spectrum-
free approach is competitive with respect to the truncated spectral
approximation with k(n)� rt(n) Laplacian eigenpairs. In the av-
erage case, t(n)⇡ n logn and k(n)� kn, kn = r logn. For instance,
for a surface with n = 104,105,106 points and a degree r = 5, the
number of eigenpairs is kn = 46,58,69; in particular, this growth
of kn with respect to n is slow, as a matter of the logarithm in kn.

6.5 Comparison and discussion

Fig. 13 reports the `• discrepancy (y-axis) between the diffusion
distance on the sphere/cylinder and its approximation computed
with the Padé-Chebyshev method and the truncated spectral ap-
proximation. In this case, the analytical expression of the Lapla-
cian eigenfunctions on the sphere and cylinder has been used to
compute the ground-truth distances [Patané 2016]. For small scales
(e.g., t = 10�2, 10�3), the approximation error remains higher
than 10�2, with k  280 eigenpairs; in fact, local shape features
encoded by the heat kernel are recovered for a small t using the
eigenvectors associated with high frequencies, thus requiring the
computation of a large part of the Laplacian spectrum. For large
scales (e.g., t = 1, 10�1), increasing k strongly reduces the approx-
imation error until it becomes almost constant and close to zero. In
this case, the behavior of the heat kernel is mainly influenced by the
Laplacian eigenvectors related to the smaller eigenvalues. Indeed,
the truncated spectral representation generally requires a high num-
ber of eigenpairs and does not achieve the approximation accuracy
of our approach, which remains lower than 8.9⇥10�6 for all the
scales. According to [Vaxman et al. 2010], there are no theoret-

Algorithm 2: Computation of the spectral distances.

Require: A surface or volume M , a filter function j : R! R.
Ensure: The spectral distance d(pi,p j) in Eq. (5), pi,p j 2 M .
1: Compute (L,B), which define the Laplacian L̃ := B�1L.
2: Define the vector f = ei � e j .
3: CASE I - Arbitrary filter: polynomial approximation
4: Compute the polynomial approx. pr(s) = Âr

i=0 aisi of j .
5: Compute g1: Bg1 = Lf.
6: for i = 1, . . . ,r�1 do
7: Compute gi+1: Bgi+1 = Lgi

8: end for
9: Compute u = Kf ⇡ pr(L̃) = a0f+Âr

i=1 aigi (c.f., Eq. (6)).
10: Compute the distance d(pi,p j) = kukB.
11: CASE II - Arbitrary filter: Padé-Chebyshev approximation
12: Compute the P.C. approx. pr(s) = Âr

i=1 ai(1+bis)�1 of j .
13: for i = 1, . . . ,r do
14: Compute gi: (B+biL)gi = Bf (c.f., Eq. (7))
15: end for
16: Compute u = Kf ⇡ pr(L̃)f = Âr

i=1 aigi.
17: Compute the distance d(pi,p j) = kukB. =0

ical guarantees on the approximation accuracy of the heat kernel
provided by multi-resolution prolongation operators. Furthermore,
a low-resolution sampling of the input surface might affect the re-
sulting accuracy.

For all the scales (Fig. 14), the accuracy of the Padé-Chebyshev
method is higher than the truncated approximation with k eigen-
pairs, k = 1, . . . ,103, the Euler backward method, and the power
method. Reducing the scale, the accuracy of the Padé-Chebyshev
remains almost unchanged while the other methods are affected
by a larger discrepancy and tend to have an analogous behavior
(t = 10�4). Finally, the Euler backward method tends to over-
smooth the solution, which converges to a constant as k !+•, and
the selection of the power m is guided by heuristics.

The truncated spectra1 approximation of the diffusion kernel is gen-
erally affected by the Gibbs phenomenon; i.e., small negative dis-
tance values. This phenomenon is more evident at small cases,
which induce diffusion distances that decrease fast to zero and that
are largely affected by small negative values. In fact, at small scales
the diffusion distances decrease fast to zero and the negative values
are no more compensated by the Laplacian eigenvectors related to
smaller eigenvalues, as they are not included in the approximation
(Fig. 15(e,f)). For the Padé-Chebyshev approximation (Fig. 15(a-
d)), the distance values are positive at all the scales; in fact, we
approximate the filter function without selecting a sub-part of the
Laplacian spectrum.

Results in Figs. 16, 17 confirm that the diffusion distances at small
scales generally require a number of eigenpairs that is much higher
than the estimated value kn. All tests have been performed on
a 2.7 GHz Intel Core i7 Processor, with 8 GB memory. This case
makes our computation of the one-to-all distance competitive with
respect to its truncated approximation and useful to evaluate the
distances for slowly-increasing (e.g., diffusion distances at small
scales) or periodic filters or among seed points, as if happens for
the evaluation of shape descriptors [Osada et al. 2002] and bags-
of-features [Bronstein and Bronstein 2011b; Bronstein et al. 2011].
Here, the number of seeds is much lower than the number of sam-
ples and the higher accuracy of our computation improves the dis-
crimination capabilities of descriptors based on spectral distances.

In our experiments, the analogous behavior of the level-sets of the
heat kernel and diffusion distance confirm the robustness of the
Padé-Chebyshev of the approximation with respect to sampling,
discrretization (Figs. 18, 19) and noise (Figs. 20, 21). A higher



(a) n = 5K, n = 20K

(b) n = 5K, t = 10�1 t = 10�2

(c) n = 20K, t = 10�1 t = 10�2

Figure 21: (b,c) Robustness of the Padé-Chebyshev approximation
(r = 5) of the heat kernel at different scales (t = 10�1, 10�2) with
respect to (a) surface sampling (n = 5K, 20K).

resolution of M improves the quality of the level-sets, which are
always uniformly distributed and an increase of the noise magni-
tude does not affect the shape and distribution of the level sets.

Fixing the number of Laplacian eigenpairs makes the truncated
spectral approximation of the one-to-all distances faster than ours
but generally provides a lower approximation accuracy. Slowly-
increasing filters and small scales for the diffusion distances also
require the computation of a large number of Laplacian eigenpairs,
thus reducing the gap between the computational cost of the pro-
posed approximation of the one-to-all distances and previous work.
An analogous discussion applies to prolongation operators, which
compute the truncated spectral approximation on a lower resolution
of the input shape. Furthermore, previous work has not addressed
methods for the selection of the proper number of eigenpairs with
respect to the target approximation accuracy, which cannot be esti-
mated without computing the whole Laplacian spectrum. Finally,
Figs. 22, 23 show the robustness of the spectrum-free computation
with respect to a different shape discretization, non-manifold and
bordered surfaces, topological noise. At large scales only (e.g.,
t = 1), the shape of the level sets of the heat kernel changes in a
neighbor of the topological cut.

7 Applications

We now show how the Laplacian spectral properties and kernels
have been used for smoothing in geometry processing (Sect. 7.1)
and the definition of geometric basis functions (Sect. 7.2).

7.1 Smoothing

In real applications, the noisy component of the input data is due
to a low quality of the discrete representations, unstable computa-
tions, and numerical approximations. Smoothing typically works
in the function space and applies isotropic Laplacian filters [Dong
et al. 2006; Ni et al. 2004; Taubin 1995] or bilateral smoothing op-
erators to the function itself [Liu and Zhang 2007]. The isotropy of
the Laplacian matrix indiscriminately smooths noise and topologi-
cal features [Dong et al. 2006; Ni et al. 2004; Taubin 1995] without
constraints on their relocations or cancellations. Constrained least-
squares techniques [Sorkine et al. 2005] have been efficiently used
to define compression schemes based on the selection of a set of an-
chors. While in [Sorkine et al. 2005] the choice of the constrained
vertices is guided by the final approximation accuracy of the recon-
structed surface, in [Patanè and Falcidieno 2009] the emphasis is
on the preservation of the differential properties of f through the
simplification of its critical points.

Unconstrained Laplacian smoothing According to [Patanè
and Falcidieno 2009], the smooth approximation f̃ of a noisy scalar
function f : M ! R can be computed as the compromise between
approximation accuracy and smoothness of the solution, we min-
imize the energy F (f̃) := ekf̃� fk2

B +kLf̃k2
2, whose normal equa-

tion is (L>L+ eB)f̃ = eBf. Since the coefficient matrix is sparse
and positive definite, f̃ is uniquely defined and it is efficiently
computed through direct or iterative solvers of sparse linear sys-
tems [Golub and VanLoan 1989]. Finally, the spectral represen-
tation is f̃ = Ân

i=1(l 2
i + e)�1hf,xiiBxi, where the smoothing term

(l 2
i + e)�1 filters out the contributions to the solution correspond-

ing to the high eigenvalues (Fig. 24).

Laplacian smoothing with interpolating constraints Ac-
cording to [Patanè et al. 2007], we can include a set of constraints
on the topological features of f to be preserved (Fig. 25). In this
case, we define the smooth scalar function f̃ as the solution of the
constrained minimization problem minf̃2Rn kLf̃k2, f̃ (pi) := f (pi),
i 2 I . This problem is equivalent to minimizing the least-squares
error kL̃x�bk2, x 2 Rn�k. Here, L̃ is the (n� k)⇥ (n� k) matrix
achieved by removing the ith-row and ith-column of L, i 2 I , and
the entries of the constant term b 2 Rn�k are Â j2N(i)\I li j f (p j),
i 2 I C.

Smoothing medical data In medical applications, the heat
kernel is central in diffusion filtering and smoothing of images [Al-
varez et al. 1992; F. Cattè and Coll 1992; Perona and Malik
1990; Spira et al. 2007; Tasdizen et al. 2002; Witkin 1983], 3D
shapes [Bajaj and Xu 2002; Guskov et al. 1999], and anatomical
surfaces [Chung et al. 2005; Kim et al. 2012; Wang et al. 2013;
Patanè 2015]. Fig. 26 compares the diffusion smoothing of a noisy
data set computed with the Padé-Chebyshev approximation of de-
gree r = 7 and the truncated approximation with k Laplacian eigen-
paris. A low number of eigenpairs does not preserve shape details;
increasing k reconstructs the surface noise. The `• error between
(a) and the smooth approximation of (b) is lower than 1% for (c)
the Padé-Chebyshev method and (d) varies from 12% (k = 100) up
to 13% (k = 1K) for the truncated spectral approximation.



j(s) = s3

(a) e• = 1.2⇥10�5 (b) e• = 9.1⇥10�4

j(s) = sexp(s)

(c) e• = 2.3⇥10�5 (d) e• = 4.2⇥10�4
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Figure 22: Distances computed with the Padé-Chebyshev method (r = 5) on (a,c,e) regularly-sampled and (b,d,f) irregularly-sampled (left)
meshes and (right) point sets with holes. To improve the visualization, points are represented as spheres.

7.2 Laplacian and diffusion basis functions

Even though the Laplacian eigenvectors are intrinsic to the input
surface, they can be computed only for a small set of eigenvalues
and do not provide a flexible alignment of the function behavior
to specific shape features. The geometry-aware functions [Sorkine
et al. 2005] provide a computationally efficient way to encode the
local geometric information of M ; and a similar approach can be
applied to define more general classes of basis functions on a given
shape. Applying the heat kernel matrix, we can define the diffu-
sion basis B := {Ktei}n

i=1, whose elements have a smooth behav-
ior on M and are intrinsically defined by M (Fig. 18). To define
a set of shape-driven canonical basis functions, as feature points
{pi}i2A of a 3D shape we select the maxima and minima of the
Laplacian eigenfunctions related to the smallest eigenvalues [Rug-
geri et al. 2010] or of the auto-diffusion functions [Gebal et al.
2009]. Finally, the definition of different basis function is also fun-
damental to define functions between shapes [Gal and Cohen-Or
2006; Gelfand et al. 2005; Hamza and Krim 2003; Li and Guskov
2005; Mèmoli and Sapiro 2005; Osada et al. 2002; Ovsjanikov et al.
2012; Ruggeri et al. 2010].

8 Conclusions

Our survey provides a common background on the definition and
numerical computation of Laplacian spectral kernels and distances
for geometry processing and shape analysis, as a generalization of
the well-known biharmonic, diffusion, and wave distances. To sup-
port the reader in the selection of the most appropriate with respect
to shape representation, computational resources, and target appli-
cation, all the reviewed numerical schemes have been discussed
and compared in terms of robustness, approximation accuracy, and
computational cost.

From the numerical point of view, the evaluation of full shape de-
scriptors (e.g., heat kernel values among all the input points) is par-
tially limited in case of densely sampled shapes, due to the expen-
sive computational time and storage overhead. Indeed, the appro-
priate selection of seed points on the input domain and the conver-
sion of the spectral descriptor to a sparse approximation are still
crucial steps for the evaluation of full shape descriptors. Further-
more, the robustness of the spectrum-free computation to sampling
and missing parts suggests the use of the spectral distances and de-
scriptor for partial shape matching.



(a) t = 0.1

(b) t = 0.001 t = 0.05 t = 0.1

(c) t = 0.001 t = 0.05 t = 0.1

Figure 23: Robustness of the Padé-Chebyshev approximation of
the linear FEM (a) diffusion distance on partially-sampled surfaces
and (b,c) heat kernel on smooth and topologically noisy surfaces
(cut on the kitten tail), respectively.

From the point of view of the definition of the spectral kernels and
distances, we have discussed the general properties of the filter that
guarantee their well-posedness, intrinsic and invariance properties.
A deeper analysis of the filter properties with respect to the induced
spectral distances would be beneficial to improve current results on
surface watermarking and shape comparison. Finally, learning the
filter from the geometric properties of a given class of data is an effi-
cient, but partially unexplored, way to address shape segmentation,
comparison, and more generally manifold learning.
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VALLET, B., AND LÈVY, B. 2008. Spectral geometry process-
ing with manifold harmonics. Computer Graphics Forum 27, 2,
251–260.



VAN LOAN, C. 1979. A note on the evaluation of matrix polyno-
mials. Automatic Control, IEEE Trans. on 24, 2 (Apr), 320–321.

VARADHAN, S. R. S. 1967. On the behavior of the fundamental
solution of the heat equation with variable coefficients. Commu-
nications on Pure and Applied Mathematics 20, 2, 431–455.

VAXMAN, A., BEN-CHEN, M., AND GOTSMAN, C. 2010. A
multi-resolution approach to heat kernels on discrete surfaces.
ACM Trans. on Graphics 29, 4, 1–10.

WANG, G., ZHANG, X., SU, Q., CHEN, J., WANG, L., MA,
Y., LIU, Q., XU, L., SHI, J., AND WANG, Y. 2013. A heat
kernel based cortical thickness estimation algorithm. In MBIA,
vol. 8159 of Lecture Notes in Computer Science, 233–245.

WARDETZKY, M., MATHUR, S., KÄLBERER, F., AND GRIN-
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Mo<va<ons
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approaches

Func<onal	
approaches

Descriptors Kernels	&	Distances
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Mo<va<ons

Func<onal	
approaches

Laplacian	spectral	kernels	&	distances

Laplacian	spectral	
approaches

(�,')

Main (target) properties
• Intrinsic & multi-scale definition 
• Invariance to uniform scaling/isometries 
• Generalization to n-D data
• Easy computation
• Approximation of geodesic & optimal 

transportation distances

Spectral kern./dist.
• Commute-time
• Biharmonic
• Diffusion
• Wave kernel
• …

Remeshing/skeletoniza@on/segmenta@on/etc

Applica<ons
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Goals	&	Contribu<ons

• Review	of	previous	work	on	the	defini@on,	discre@za@on,	
and	computa@on	of	Laplacian	spectral	kernels	and	distances	
(eg.	commute	@me,	biharmonic,	wave	kernel	distances)	by		
– filtering	the	Laplacian	spectrum	
– generalizing	results	on	the	heat	diffusion	kernels	and	
distances.

Bi-harmonic dist. Diffusion dist. Mexican hat dist.
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Goals	&	Contribu<ons

• Our	review	will	be	“independent”	of		
– data	dimensionality	(surface,	volume,	nD	data)	
– discre@za@on	of	the	input	domain	(mesh,	point	set)	and	
the	Laplace-Beltrami	operator.

5

Goals	&	Contribu<ons

• Analysis	of	preview	work	on	the	computa@on	of	the	
Laplacian	spectral	kernels	and	distances	in	terms	of	
– robustness	with	respect	to	the	discre@za@on	of	the	
input	domain:	connec@vity,	sampling,	and	smoothness	
(eg.	geometric/topological	noise)
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Goals	&	Contribu<ons

• Analysis	of	preview	work	on	the	computa@on	of	the	
Laplacian	spectral	kernels	and	distances	in	terms	of	
– numerical	proper@es	(eg.,	sparsity,	condi@oning	
number)	of	the	Laplacian	matrix	and	filter	behavior
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Goals	&	Contribu<ons

• Analysis	of	preview	work	on	the	computa@on	of	the	
Laplacian	spectral	kernels	and	distances	in	terms	of	
– numerical	accuracy/stability:	convergence,	Gibbs	phen.	
– computa@onal	cost	&	storage	overhead	
– selec@on	of	parameters	&	heuris@cs.
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Goals	&	Contribu<ons
• Focus	&	Novelty:	unified	review	of	the	defini@on,	discre@za@on,	and	

computa@on	of	Laplacian	spectral	kernels/distances,	independent	of	the	
data	dimensionality	and	discre@za@on	of	both	the	input	domain	and	the	
Laplace-Beltrami	operator.	

• Previous	STARs	have	addressed	
– the	comparison	of	different	discrete	Laplacians[Zhang07]	
–Laplacian	spectral	smoothing[Taubin99]	

–surface	coding	&	spectral	par@@oning[Karni00]	
–shape	deforma@on	based	on	differen@al	coordinates[Sorkine06]	
–applica@ons	to	shape	modeling	&	geometry	processing[Lèvy06]	

–diffusion	shape	analysis[Bronstein12]		&	comparison[Biaso\15]	
–…
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Outline
• Laplace-Beltrami	operator	
–Laplacian	matrix	&	eigenproblem	
–Numerical	methods	

• Heat	equa<on	and	diffusion	distances	
–Heat	diffusion	equa@on		
–Diffusion	kernel	and	distances	
–Numerical	methods	&	Spectrum-free	computa@on	

• Laplacian	spectral	distances	and	kernels	
–Con@nuous	&	discrete	cases	
–Computa@on	of	spectral	distances	

• Conclusions

10

Discrete	Laplacians

11

Laplace-Beltrami	operator

�f = 0

�f = �f

� := div(grad) �D := div(Dgrad)
• Con@nuous	case		

• Harmonic	equa@on	

• Laplacian	eigenvalue	problem		

• Heat	diffusion	equa@on

(@t +�)F (·, t) = 0

12



Discrete	Laplacians
• Aim:	review	of	previous	work	on	the	discre@za@on	of	the	

Laplace-Beltrami	operator	through	a	unified	representa<on	
of	the	discrete	Laplacians	that	is	independent	of	the	
– “dimensionality”	of	the	input	domain:	surfaces,	volumes,	
nD	data	

– discre<za<on	of	the	input	domain:	graphs,	triangle/
polygonal/tetrahedral	meshes,	point	sets	

– Laplacian	weights,	as	entries	of	the	Laplacian	matrix.

13

• We	represent	the	Laplacian	matrix	for	graphs,	meshes,	and	point	
sets	in	a	“unified”	way	as	

• Main	proper<es	
– Self-adjointness	with	respect	to	the	
B-scalar	product:	
– Posi@ve	semi-definiteness:		
–Null	eigenvalue:

Discrete	Laplacians

hL̃f , fiB = f>Lf � 0

L̃1 = 0

L̃ = B�1L

B-scalar	product	<f,g>B:=fTBg	
on	the	space	of	scalar	func@ons	
defined	on	the	input	domain

L	sparse,	symm.,	posi@ve	semi-definite,	L1=0	
B	sparse,	symm.,	posi@ve	definite

hL̃f ,giB = hf , L̃giB

14

Discrete	Laplacians

L̃ = B�1L

S<ffness	matrix

Mass	matrix	

L(i, j) :=

8
<

:

w(i, j) := � cot↵ij+cot �ij

2

j 2 N(i)
�
P

k2N(i) w(i, j) i = j
0 else

• Linear	FEM	Laplacian	matrix[Reuter06]	on	triangle	meshes	

• Voronoi-cotg	on	triangle[Desbrun99,Pinkall99]	&	polygonal	
meshes[Alexa11,Herholz11]	

• Anisotropic	Voronoi-cotg	weights[Andreux14,Shi08,Kim13]
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Discrete	Laplacians

L̃ = B�1L

B(i, i) = vi
Area	of	the	approximated	
Voronoi	cell

L(i, j) =

(
1

4⇡t2 exp

⇣
�kpi�pjk2

2
4t

⌘
i 6= j

�
P

k 6=i L(i, k) i = j

• Laplacian	matrix	on	point	sets[Belkin03-06-08,Liu12]
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Discrete	Laplacians

L̃ = B�1L
i

p
j

q

↵k

B	encodes	tetrahedral	volumes

L(i, j) =

⇢ 1
6

Pn
k=1 lk cot↵k j 2 N(i)

�
P

k 6=i L(i, k) i = j
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Polyg-mesh

Points

Points

T-mesh

T-mesh

• B	area-driven	matrix	
– Linear	FEM	weights	

• [Reuter2006,Vallet2008]	

– Voronoi-cotg	weights		
• [Desbrun1999]	

– Mean-value	weights		
• [Floater2003]	

– Polygonal	weights		
• [Alexa2011]	

– Voronoi-exp	weights		
• [Liu2012]	

• B=I	(Euclidean	product)	
– Cotg	weights		

• [Pinkall1999]	

– Exp	weights		
• [Belkin2003-06-08]

Discrete	Laplacians
• B	volume-driven	matrix

– Volumetric	cotg-weights	
• [Liao09,Tong03]

Unified	representa<on	of	the	
Laplacian	matrix	on	surfaces,	
volumes,	and	n-dimensional	data

L̃ = B�1L

Tet-mesh
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Laplacian	Eigenfunc<ons

19

• The	generalized	Laplacian	eigensystem	of	(L,B)	

defines	a	set	of	n	linearly	independent	func@ons	that	

– can	be	used	for	the	solu@on	to	discrete	differen@al	equa@ons	
involving	the	Laplacian	matrix	(eg.,	heat	equa@on)	

– have	a	different	behavior:	eigenfunc@ons	associated	with	small/large	
eigenvalues	have	a	smooth/irregular	behavior.

Laplacian	eigenfunc<ons

L̃ = B�1L

Lxi = �iBxi hxi,xjiB = �ij �i  �i+1

x2 x5 x10

20



Laplacian	spectrum	-	Computa<on
• 	The	computa<on	of	the	Laplacian	spectrum	involves	

– a	high	computa@on	@me	-	O(n2)	&	storage	overhead	-	O(n2)	

– the	selec@on	of	a	number	k	of	eigenpairs	-	k<<n:	O(kn)	comput.	&	
storage	cost	

• Previous	work[Golub99]:	algebraic	mul@-grid	methods[Fal06];	Arnoldi	
itera@ons[Lehoucq96,Sorensen92];	Nystrom	method[Fowlkes04];	itera@ve	
solvers[Vallet2008]	

– exploit	the	sparsity	of	the	Laplacian	matrix	

– compute	a	sub-part	of	the	Laplacian	spectrum	by	

• reducing	the	high-dimensional	eigenproblem	to	a	lower	
dimension	(coarsening)	
• evalua@ng	the	solu@on	in	a	low-dimensional	space	

• mapping	the	solu@on	back	to	the	ini@al	dimension	(refinement)

21

Laplacian	spectrum	-	Computa<on
• High	computa@onal	and	storage	costs	are	addressed	by	compu@ng	a	sub-part	

of	the	Laplacian	spectrum[Golub89]	

– shi0	method	computes	spectral	bands	centered	around	a	given	eigenvalue	
– inverse	method	computes	k	smaller/larger	eigenvalues	
– power	method	improves	the	convergence	speed	of	the	computa@on,	by	

considering	a	power	of	the	input	matrix	
– “combined	methods”	compute	specific	set	of	eigenvalues.	

• Numerically	unstable	computa<ons	of	the	Laplacian	eigenpairs		

– are	due	to		
• mul<ple	eigenvalues,	associated	with	high	dimensional	eigenspaces		

• switched	and/or	numerically	close	eigenvalues	with	respect	to	the	
approxima@on	accuracy	of	the	solver	of	the	Laplacian	eigenproblem	

– are	independent	of	the	quality	of	the	discre@za@on	of	the	input	domain.

22

• Perturb	the	input	Laplacian	matrix																			and	compute	the	
eigenvalue	of	the	new	problem	

whose	ini@al	condi@ons	are	the	eigenpairs	of	(L,B).	

• The	size	of	the	deriva@ve													indicates	the	varia@on	that	a	
Laplacian	eigenvalue	undergoes	when	the	Laplacian	matrix	is	
perturbed.	

• For	a	single	eigenvalue,	the	upper	bound		

shows	that	its	computa<on	is	stable.

(�(✏),x(✏)) : (L̃+ ✏E)x(✏) = �(✏)x(✏), �(0) = �, x(0) = x

Laplacian	spectrum	-	Stability

L̃+ ✏E

|�0(0)|  kExkB  kEkB

�0(0)
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• Considering	an	eigenvalue	of	mul<plicity	m,	m>1,	and	the	
approxima@on	

a	perturba@on	of	order	10-m	induces	a	change	of	order	0.1.	

• For	the	perturba@on	of	Laplacian	eigenvectors[Golub89],	

close	eigenvalues	generally	induce	numerical	instabili8es.

Laplacian	spectrum	-	Stability

kxi � xjk2  ✏
X

j 6=i

����
x

>
i Exj

�i � �j

����+O(✏2)

�(�) ⇡ �m +O(�1/m)
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• Spectral	graph	theory	&	Machine	Learning	
– Graph	par@@oning[Chung97,Fiedler93,Mohar93,Koren03]	
– Reduc@on	of	the	bandwidth	of	sparse	matrices[Golub89,Alpert99,Diaz02]	
– Dimensionality	reduc@on	with	spectral	embeddings[Belkin03,Xiao10]	

• Shape	analysis	
– Shape	segmenta@on[Liu07,Zhang05]	
– Shape	correspondence[Jain07,Jain&ZhangK07]	
– Shape	comparison[Marini11,Reuter05-06-07,Rustamov07,Wardetzky07,Jain06-07]	
– Spectral	kernels	and	distances		

• bi-harmonic	kernels/distances[Lipman10,Rustamov11]	
• diffusion	kernels/
distances[Bronstein10-11,Coifman06,Gebal09,Lafon06,Luo09,Hammond11,Patanè10]		

• wave	kernels/distances[Bronstein11,Aubry11]

Applica<ons

25

Applica<ons
• Geometry	processing			

– Data	reduc@on[Belkin03-08]	&	compression[Karni00]	

–Discrete	differen@al	forms[Desbrun99-05,Gu03]		

–Design	of	low-pass	filters	&	Implicit	mesh	
fairing[Taubin95,Desbrun99,Kim05,Pinkall93,Zhang03]	

–Mesh	watermarking	&	Geometry	compression[Obuchi01-02,Karni00]	

–Approxima@on	and	smoothing	of	scalar	func@ons[Patanè13]	

–Surface	deforma@on[Levy06,Sorkine04,Vallet08,Zhang07]	

–Local/global	parameteriza@on[Floater,Patanè04-07,Zhang05]		

–Surface	quadrangula@on[Dong05]
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Heat	Equa<on	&	Kernel

27

Heat	diffusion	equa<on

Volume3D	Shape
⇢

(@t +�)F (·, t) = 0
F (·, 0) = f

28



• The	solu@on	to	the	heat	equa@on	can	be	expressed	in	
terms	of		
– the	Laplacian	spectrum	

– the	ac@on	of	the	diffusion	operator	

Heat	diffusion	equa<on

(�n,�n)
+1
n=0

F (p, t) = hKt(p, ·), fi2, Kt(p,q) =
+1X

n=0

exp(��nt)�n(p)�n(q)

diffusion	kernel

F (·, t) = exp(�t�)f =

+1X

n=0

exp(��nt)hf,�ni2�n

�t := exp(�t�)

29

• The	solu@on	to	the	discrete	heat	equa@on	is		

• Considering	the	spectral	factoriza@on	of	the	Laplacian	matrix	
(B	area/volume-driven	matrix)		

the	resul@ng	discrete	heat	kernel	Kt	admits	the	spectral	
representa<on

Discrete	heat	kernel

� := diag(�i)ni=1 Lapl. eig. val.
X := [x1, . . . ,xn] Lapl. eig. vec.L̃ = X�X>B

Kt = X�tX
>B �t := diag(exp(��it))

n
i=1

F(t) = Ktf , Kt ⌘ exp(�t˜L)

discrete	heat	kernel	

30

Spectrum-free

Previous	work
• Previous	work	for	the	computa@on	of	the	heat	kernel	and	the	

corresponding	diffusion	distances	can	be	classified	as	

– geometry-driven	approach	
• mul@-resolu@on	prolonga@on	operator	

– numerical	approaches	
• truncated	spectral	approxima@on	
• Euler	backward	method	
• power	method	

– numerical	approaches	-	higher	precision	
• Padè-Chebyshev	approxima@on		
• polynomial	approxima@on	
• Krylov	subspace	projec@on
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• Truncated	spectral	approxima<on	of	the	heat	kernel	considers	the	
contribu@on	of	the	Laplacian	eigenvectors	related	to	the		k	smaller	
eigenvalues	

• Main	mo<va<ons	
–exponen@al	decay	of	the	filter	as	the	eigenvalues/@me	increase	
–the	computa@on	of	the	whole	spectrum	is	not	feasible	for	a	large	n	
–numerical	instabili@es	due	to	close/mul@ple	eigenvalues,	associated	
with“high”	dimensional	eigenspaces	(eg.,	symmetric	shapes)	

• Remark:	for	small	scales,	we	must	compute	a	large	number	of	
eigenpairs	to	achieve	a	good	approxima@on	accuracy	

Previous	work

k

F(t) =
nX

i=1

exp(��it)hf ,xiiBxi
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Previous	work

• Truncated	spectral	approxima@on	(k=200)

t = 10�4 t = 10�3 t = 10�2 t = 10�1
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Previous	work

• Approximate	the	heat	kernel	with	mul<-resolu<on	
prolonga<on	operators[Vaxman10]		
– using	k	eigenpairs	on	a	specific	level	of	a	mul@-resolu@ve	shape	
representa@on		

– selec@ng	k	according	to	@me	and	the	shape	resolu@on	in	the	
hierarchy	

– prolonga@ng	the	heat	kernel	from	a	given	resolu@on	to	the	
input	shape
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Previous	work

(tL̃+ I)Fk+1(t) = Fk(t), F0 = f

Kt ⇡t!0

⇣
I� tL̃

⌘
Kt =

⇣
K t

m

⌘m
, any t

Kt ⇥Ks = Kt+s

Group	property

• Euler	backward	method[Desbrun99]	discre@zes	the	temporal	
deriva@ve	and	applies	the	itera@ve	scheme		

– How	to	select	k	in	order	to	avoid	an	over-smoothing	of	f?	

• Power	method[Golub89]	applies	the	1st	order	Taylor	
approxima@on	of	the	exponen@al	func@on	at	small	scales		

– How	to	select	m	such	that	t/m—>0?
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Previous	work
• Limita<ons	

– Need	to	select/adapt	parameters	(eg.,	number	of	eigenpairs,	itera@ons,	
resolu@on	in	the	hierarchy)	to	shape/volume	details	and	selected	scales	

– No	a-priori	es@ma@on	of	the	approxima@on	accuracy	with	respect	to	
the	selec@on	of	k	Laplacian	eigenpairs	

• Goals:	review	of	numerical	approaches	with	a	higher	approxima<on	
accuracy	achieved	by	applying	a	polynomial	approxima@on	to	the	
exponen@al	filter	
– No	computa@on	of	the	Laplacian	spectrum	
– High	approxima@on	accuracy,	adjusted	through	the	selec@on	of	the	

polynomial	degree	
– No	selec@on	of	input	parameters
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Volume

Previous	work

3D	Shape

⇢
(@t +�)F (·, t) = 0
F (·, 0) = f

F (·, t) = exp(�t�)f

F (p, t) = hKt(p, ·), fi2
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Chebyshev	approxima<on

coeff. poles

exp(x) ⇡ ↵0 �
rX

i=1

↵i(x+ ✓i)
�1

• Idea	-	1D	case[Golub89]	
– Compute	the	best	(r,r)-degree	ra@onal	approxima@on	
crr(x)	of	ex	with	respect	to	the	l∞-norm	

– l∞	error	between	ex	and	its	ra@onal	approxima@on	is	
lower	than	σrr≈10-r	(unif.	ra8onal	Cheb.	constant)

38

Chebyshev	approxima<on

F (·, t) = exp(�t�)f

⇡ ↵0f �
rX

i=1

↵i (t�+ ✓iid)
�1 f

= ↵0f +

rX

i=1

↵igi, (t�+ ✓iid) gi = �f

Change	of	
basis	func<ons

• Apply	the	(r,r)-degree	Padè-Chebyshev	ra@onal	
approxima@on	to	the	exponen@al	representa@on	of	the	
solu@on	to	the	heat	equa@on[Hammond11,Patane14]	

• Convert	the	diffusion	problem	to	a	set	of	r	differen@al	
equa@ons	that	involve	only	the	Laplace-Beltrami	
operator
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Chebyshev	approxima<on

• The	solu@on	is	approximated	in	a	low	dimensional	space	
generated	by	(r+1)	func@ons,	which	are	induced	by	the	input	
domain,	the	ini@al	condi@on	f,	and	the	selected	scale	t.	

• Convergence.	The	resul@ng	Padè-Chebyshev	approxima@on	
converges	to	the	solu@on	as	the	polynomial	degree	increases

(�n,�n)
+1
n=0

��n = �n�n
F (·, t) =

+1X

n=0

exp(��nt)hf,�ni2�n

kFr(·, t)� F (·, t)k2  kcrr(·, t)� exp(·, t)k1kfk2
 �rrkfk2
 10

�rkfk2 ! 0, r ! +1
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• Applying	the	Chebyshev	approxima@on	to																																				,	we	get	the	
spectrum-free	computa<on	of	the	solu@on	to	the	heat	equa@on	

that	requires	the	solu@on	to	r	sparse,	symmetric	linear	systems	

• No	input	parameters	(degree	r	is	fixed)	
• Numerical	solver	

– apply	an	itera@ve	solver	for	linear	systems	(e.g.,	minres):		
O(rn)-O(rnlog(n),	according	to	the	sparsity	of	(L,B)	

– pre-factorize	the	matrix	B	(if	not	diagonal);	only	for	several	values	of	t	or	
several	ini@al	condi@ons	F(.,0)=f	(eg.,	diffusion	distances)

Chebyshev	approxima<on

Ktf ⇡ ↵0f +
rX

i=1

↵igi

(tL+ ✓iB)gi = �Bf , i = 1, . . . , r

Kt = exp(�t˜L)
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Chebyshev	approxima<on

0 t

	seed	point
P.C. approx., r = 7
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Polynomial	approxima<on

• Ra<onal	polynomial	approxima<on[Pusa11]	of	the	exponen@al	
filter	based	on	quadrature	formulas	derived	from	complex	
contour	integrals.	

• Polynomial	approxima<on[Golub89]		
– applies	the	Taylor	power	series	to	the	exponen@al	matrix	(first	
r	terms)	

– has	an	accuracy	lower	than	the	Padè-Chebyshev	method	
(point-wise	instead	of	uniform	convergence)	

– generalizes	the	1st	order	Taylor	approxima@on	applied	by	the	
power	method

exp(�t˜L) =
+1X

n=0

(�t˜L)n

n!
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• The	discrete	spectral	kernel	is	approximated	as	

• If	B	is	not	diagonal	(eg.,	linear/cubic	FEM	weights),	then	
each	vector	gi	is	computed	through	the	recursive	rela@on	

and	we	solve	r	sparse	and	symmetric	linear	systems.

Polynomial	approxima<on

gi := L̃if = (B�1L)if

⇢
Bg1 = Lf
Bgi = Lgi�1

i = 2, . . . , r

Ktf ⇡
nX

i=0

↵iL̃
if

= ↵0f +
rX

i=1

↵igi, gi := L̃if = (B�1L)if

44



• For	any	polynomial	pr(.)	of	degree	at	most	r,	we	have	that	

• The	Lanczos	method	creates	an	orthonormal	basis	of	the	Krylov	
subspace	F	such	that[Golub1989,Saad92]	

• No	need	to	compute	the	best	polynomial:	existence	is	sufficient.	
• The	vectors												are	computed	as	previously	described.

Polynomial	approxima<on

F	Krylov	subspace
Ktf ⇡ pr(L̃)f =

rX

i=0

↵iL̃
if 2 F := span{f , L̃f , . . . , L̃rf}

span{v0, . . . ,vs} ⌘ span{f , L̃f , . . . , L̃rf}, s  r

L̃if
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Numerical	stability
• The	Cheb./polyn.	approx.	of	exp(-tC)	is	unstable	if	||tC||2	is	too	large.	
• From	the	upper	bound	

a	well-condi@oned	matrix	B	guarantees	that	||tB-1L||2	is	low.	

• If	the	Laplacian	matrix	is	ill-condi@oned,	then	we	can	apply	specialized	
Laplacian	pre-condi@oners[Krishnan13].

ktB�1Lk
2

 t�
max

(L)��1

min

(B)

2(tL+ ✓iB)
i = 1, . . . , r
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Numerical	stability	-	Gibbs	phen.
Padè-Chebyshev	approx.	r:=7

Trunc.	spectral	approx.	(k=500)

p

t = 10�1

t = 10�1

t = 10�2 t = 10�3

t = 10�2

t = 10�4

f(·) := Kt(p, ·) � 0

47

Robustness
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Robustness
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Robustness
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Robustness

SHREC’10: Robust shape 
retrieval - [Bronstein10]
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Robustness

SHREC’16: Matching of Deformable 
Shapes with Topological Noise - 
[Lahner16]
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Heat	kernel	-	Volumes
• Approxima@ons	of	the	heat	kernel	on	3D	shapes	can	be	applied	to	volumes	

– truncated	spectral	approxima@on		

–power	method[Golub89]	&	Euler	backward[Clarenz00,Desbrun99]	
–prolonga@on	operators:	mul@resolu@on	schemes[Vaxman10],	barycentric	
coordinates	(eg.,	volumetric	Laplacian[Rustamov11]	and	harmonic[Li10,Mar@n08]	

func@ons)	

–spectrum-free	computa@on	applied	to	the	volumetric	Laplacian	matrix	
–volumetric	heat	kernel	

• FEM	discre<za<ons	of	the	heat	equa@on	on	volumes	
– tesselate	the	volume	with	a	voxel	grid[Reuter09]	
–discre@ze	the	Laplace-Beltrame	operator	through	

• a	6-neighborhood	stencil[Litman11,Raviv10],	or		
• a	geometry-driven	approxima@on	field[Liao09,Tong03]

Kt(p,q) = (4⇡t)�d/2
exp(�kp� qk22)/(4t)
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Heat	kernel	-	Volumes

t = 0.1

t = 1

P.C. approx., r = 7

	seed	point
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Applica<ons	
• Applica@ons	of	the	heat	diffusion	kernel	and	distance	include	

–mul<-scale	representa<ons	of	func@ons	[Rosenberg97,Patanè10-13]	
– shape	comparison	with	heat	kernel	shape	signatures	
[Bronstein11,Gebal09,Memoli09,Ovsjanikov10,Sun09]	
• intrinsic	to	the	input	shape	
• isometry-invariant	
• mul@-scale	(local	vs.	global	details)	

–diffusion	distances	&	descriptors	
[Aubry11,Belkin03,Coifman06,Gine06,Litman14,Singer06,Smola03]	
• data	matching	[Lafon06]		
• gradient	[Wang09],	cri@cal	points	computa@on	[Luo09]	
• data	representa@on	and	classifica@on	[Smola03]	

– shape	segmenta<on	[DeGoes08,Gebal08]	
–dimensionality	reduc<on	[Belkin03,Roweis00,Xiaoa10,Tenenbaum00]	
– clustering	[Chapelle03]	
– …
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Op<mal	<me	value

kfk2

⇥
kfk22 � |hf,�0i2|2

⇤1/2

|hf,�0i2|

op<mal	t

✏(t) = (kF (·, t)� fk2, kF (·, t)k2)
Residual	error Energy
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Op<mal	<me	value

Approx.	error:		P.C.	<1%;	trunc.	specr.	meth.	12%	(k=100)-13%	(k=1K)	

Diffusion	smoothing	

57

• Geodesic	distances	can	be	expressed	in	terms	of	the	heat	kernel	as	

–Otherwise[Crane13],	
• Integrate	the	heat	flow																																					(for	a	fixed	t)	
• Evaluate	the	vector	field	
• Solve	the	Poisson	eq.	

• Op<mal	transporta<on	distances	are	approximated	through	the	
solu@on	of	two	sparse	linear	systems	that	involve	the	heat	
kernel[Solomon15]	.	

• In	both	cases,	we	can	apply	the	spectrum-free	approach	to	
guarantee	an	accurate	approxima@on	of	the	heat	kernel.

Distance	approx.	via	heat	kernel

dG(p,q) = � lim

t!0
(4t logKt(p,q)) [Varadhan’s	formula[Varadhan67]]

@tF (·, t) = �F (·, t)

�� = divX

X := �rF (·, t)/krF (·, t)k2
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Heat	Diffusion	Distance
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Heat	diffusion	distance
• Idea:	associate	a	shape	M	with	the	func<onal	space	

– F(M):={f:M—>R,	f	scalar	func@on	on	M}	

• eg.,	Laplacian	eigenproblem,	heat	equa@on,	etc	

and	define	the	metric	space	(M,dM),	equipped	with	diffusion	
distances	derived	from	Kt	on	F(M)	(diffusion	geometry).

Kt(p, ·)

Kt(q, ·)q

dt(p,q) := kKt(p, ·)�Kt(q, ·)k2

Diffusion	distancep

P
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Kt(pi, ·)

Kt(pj , ·)

Kt(pi, ·)

F(P)

k · k2

Kt(pj , ·)

k · kB

Heat	diffusion	distance

dB(pi,pj) : = kKt(pi, ·)�Kt(pj , ·)k2B

=

nX

l=1

exp(�2�lt)|hxl, ei � ejiB|2

d2t (pi,pj) := kKt(pi, ·)�Kt(pj , ·)k2B

pi

pj
P
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Heat	diffusion	distance

• Apply	the	Padè-Chebyshev	of	the	heat	kernel	to	
approximate	diffusion	distances.
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Approxima<on	accuracy

• Padè-Chebyshev	approxima@on	versus	truncated	spectral	
approxima@on	of	the	diffusion	distances	(r=5)

Padè-Chebyshev	approxima<on	error:	for	all	t,	lower	than	8.9*10-6
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Approxima<on	accuracy

Comparison	of	the	accuracy	of	
the	diffusion	distances	at	
different	scales.
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Robustness

65

Robustness
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• Truncated	spectral	approxima<on:	
• Padè-Chebyshev	approxima<on:	
– solu@on	to	the	heat	equa@on	or	evalua@on	of	the	
diffusion	distance	between	2	points	

– one-to-all	distance	(no	pre-factoriza8on):																									
– one-to-all	distance	(pre-factorizaton	of	B):	

• if	B	is	not	diagonal	

Computa<onal	cost

O(rn⌧(n))

⇢ O(⌧(n)) lin. syst. solver
⌧(n) ⇡ n, n log n

O(r⌧(n))

O(kn)

O(n log n+ rn)
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n

Computa<onal	cost

�� Eigs(k = 500)
�� Eigs(k = 100)
�� Cheb.(r = 7)
�� Cheb.(r = 5)

n

Time (sec.)

n

Time (sec.)

Computa@onal	cost	for	
the	evalua@on	of	the	
heat	kernel	

68



G. Patané / STAR - Laplacian Spectral Kernels and Distances

Table 2: Numerical computation of the solution to the heat equation; t(n) is the cost for the solution of a sparse linear system.

Method Numerical scheme Scales Comput. cost References
Linear approximation

Trunc. spec. approx. Fk(t) = Âk
i=1 exp(�lit)hf,xiiBxi Any O(kn) [GV89, VBCG10]

Euler backw. approx. (tL̃+ I)Fk+1(t) = Fk(t) Small O(t(n)) [CDR00, DMSB99, ZH08]
I order Taylor approx. BF(t) = (B� tL)f Small O(t(n)) [CDR00, DMSB99]
Krylov/Schur approx. Projection on Any O(mt(n)), B 6= I [GV89, Saa92, ZH08]

{gi := (B�1L)if}m
i=1 O(n), B = I
Polynomial approximation

Power approx. F(t) = Âm
i=0 gi/i! Any O(mt(n)), B 6= I

gi := L̃if O(n), B = I [GV89]
Rational approximation

Padé-Cheb. approx. F(t) = a0f+Âr
i=1 gi Any O(rt(n)) [CRV84, Sid98, Saa92]

(tL+qiB)gi =�aiBf [Pat13, Pat14, Pat16]
Contour integral approx. F(t) = Âr

i=1 aigi Any O(rt(n)) [Pus11]
(ai)

r
i=1 quadr. coeff.

tion [HO93], the evaluation of the curvature of the graph of the
L-curve or its adaptive pruning [HO93].

5.5. Computation of the discrete heat kernel

For the computation of the solution to the discrete heat equation and
kernel, we consider linear (Sect. 5.5.1), polynomial (Sect. 5.5.2),
and rational (Sect. 5.5.3) approximations. On volumes (Sect. 5.5.4),
we discuss the solution to the heat equation based on the analytic
representation of the heat kernel. With the exception of the trun-
cated spectral method, all the previous approximations are inde-
pendent of the evaluation of the Laplacian spectrum and reduce to
a set of sparse linear systems (Table 2). The polynomial and ratio-
nal approximations generally provide the best compromise between
approximation accuracy and computational cost.

5.5.1. Linear approximation

For the solution to the heat equation, we review the truncated spec-
tral approximation, the Euler backward method, the first order Tay-
lor approximation, the Krylov and Schur methods.

Truncated spectral approximation and power method The
computational bottleneck for the evaluation of the whole Lapla-
cian spectrum imposes on us to consider only a small subset of the
Laplacian spectrum. Since the decay of the filter factor exp(�lit)
increases with li, in the spectral representation of the solution to
the heat equation we consider only the contribution related to the
first k eigenpairs; i.e., Fk(t) = Âk

i=1 exp(�lit)hf,xiiBxi. The trun-
cated approximation is accurate only if the exponential filter decays
fast (e.g., large values of time) and the effect of the selected eigen-
pairs on the approximation accuracy cannot be estimated without
computing the whole spectrum. The multi-resolution prolongation
operators [VBCG10] prolongate the values of the truncated spec-
tral approximation, computed on a low-resolution representation of
the input shape, to the initial resolution through a hierarchy of sim-
plified meshes. In this case, the number of eigenpairs are heuristi-
cally adapted to the surface resolution and its global/local features.

Euler backward method In [CDR00, DMSB99], the solution to
the heat equation is computed through the Euler backward method
(tL̃+ I)Fk+1(t) = Fk(t), F0 = f. The resulting functions are over-
smoothed and converge to a constant function, as k !+1.

First order Taylor approximation Since the derivative of Kt
at t = 0 equals the Laplacian matrix (i.e., (I�Kt)/t ! B�1L,
t ! 0), the heat kernel Kt is approximated by (I� tB�1L) and
F(t) = Kt f solves the sparse linear system B(Kt f) = (B� tL)f.
This last relation gives an approximation of F(t) that is indepen-
dent of the Laplacian spectrum and is valid only for small val-
ues of t. For an arbitrary value of t, the “power” method ap-
plies the identity (Kt/m)

m = Kt , where m is chosen in such a way
that t/m is sufficiently small to guarantee that the approximation
Kt/m ⇡ (I� t/mL̃) is accurate. However, the selection of m and its
effect on the approximation accuracy cannot be estimated a-priori.

Krylov and Schur approximations The Krylov subspace projec-
tion [GV89, Saa92] computes an approximation of exp(�tA)f in
the space generated by the vectors f,Af, . . . ,Am�1f, thus process-
ing a m⇥m matrix instead of a n⇥n matrix, where m is much
lower than n (e.g., m ⇡ 20). This approximation [ZH08] becomes
computationally expensive when the dimension of the Krylov space
increases, still remaining much lower than n (e.g., n ⇡ 5K). In
both cases, the vector L̃if = (B�1L)if must be computed without
inverting the mass matrix; to this end, we notice that the vector
gi := (B�1L)if satisfies the linear system Bgi = Lgi�1, Bg1 = Lf.
Since the coefficient matrix B is sparse, symmetric, and positive
definite, the vectors (gi)

m
i=1 are evaluated in linear time by apply-

ing iterative solvers (e.g., conjugate gradient) or pre-factorizing B.

5.5.2. Polynomial approximations

The exponential of a matrix A is defined as the exponential power
series exp(A) = Â+1

n=0 An/n!, which converges for any square ma-
trix A. Even though the input matrix A is sparse, its exponential
exp(�tA) is always full (t 6= 0) and can be computed or stored

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

Summary
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Laplacian	Spectral		
Kernels	and	Distances
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Distances	on	3D	shapes
• Geometry-driven	approaches:	define	the	distance	on	the	input	shape;	
eg.,	geodesics[Mitchell87,Surazhsky05,Kimmel98,Lipman10]	

• Func<onal	approaches:	define	the	distance	in	the	space	of	func@ons	on	
the	input	surface	

– diffusion	distances[Bronstein10-11,Coifman06,Gebal09,Lafon06,Luo09,Hammond11,Patanè10]		

– commute-@me	&	bi-harmomic	distances[Lipman10,Rustamov11]	

–wave	kernel	distances[Bronstein11,Aubry11]		

– random	walks[Fouss05,Ramani13],	Mexican	hat	wavelets	&	distances[Hou12]	

• Mixed	approaches:	geodesic	distances	&	op@mal	transporta@on	
distances	are	approximated	in	the	geometric	and	func@on	space	

– approxima@on	through	the	heat	kernel[Crane13]	

–mul@-dimensional	scaling[Bronstein06,Panozzo13]
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Spectral	distances
• Aim:	review	of	previous	work	on	the	defini@on	and	

computa@on	of		
– the	commute-@me,	bi-harmonic,	diffusion,	wave	kernel	
distances		

– the	corresponding	embeddings	and	shape	descriptors		
in	a	unified	way	by		
– introducing	the	spectral	distances,	which	are	defined	by	
filtering	the	Laplacian	spectrum	

– interpre@ng	the	main	proper@es	of	the	spectral	distances	in	
terms	of	the	proper@es	of	the	corresponding	filter	func@on
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Spectral	distances

• Idea:	define	spectral	distances[Bronstein11,Patane14-16]	
by	filtering	the	Laplacian	spectrum

q

M

p

{(�n,�n)}+1
n=0 : ��n = �n�n

d2(p,q) =
+1X

n=0

'2(�n)|�n(p)� �n(q)|2

filter	func<on' : R+ ! R
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Spectral	distances
Log-scale

d2(p,q) =
+1X

n=0

'2(�n)|�n(p)� �n(q)|2

'2(s) Distance

– Diffusion	distances[Bronstein10-11,Coifman06,Gebal09,Lafon06,Luo09,Hammond11,Patanè10]		

– Commute-@me	&	bi-harmomic	distances[Lipman10,Rustamov11]	

– Wave	kernel	distances[Bronstein11,Aubry11]		

– Random	walks[Fouss05,Ramani13],	Mexican	hat	wavelets	&	distances[Hou12]

'2
t (s) = exp(�st)'2(s) = s�2 '2

t (s) = s�1
exp(�st)

Bi-harmonic dist. Diffusion dist. Mexican hat dist.
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Spectral	distances
• Commute-<me	distance[Bronstein11]	are	defined	the	integral	of	the	

diffusion	distance	with	respect	to	scale	

• Bi-harmonic	distances[Ovsjanikov12,Lipman10,Rustamov11]	

– for	small	distances,	they	have	a	nearly	geodesic	behavior	
– for	large	distances,	they	encode	global	shape	proper@es

d2(p,q) =
1

2

Z +1

0
d2t (p,q)dt

=
+1X

n=0

��1
n |�n(p)� �n(q)|2

'(s) := s�1/2

'(s) := s�1
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Spectral	distances

Bi-harmonic	distances
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Spectral	distances
• Bi-harmonic	distances:	robustness	to	surface	sampling	and	noise
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Figure 3: Biharmonic distance on a surface at different resolutions, with dif-
ferent Laplacian weights and k eigenpairs.

of the ratio between the maximum eigenvalue of L and the
minimum eigenvalue of B. If necessary, a higher approxima-
tion accuracy is achieved by slightly increasing the degree r.
Finally, the proposed computation of both the spectral ker-
nel and distance is independent of the discretization of the in-
put surface as a polygonal mesh or a point cloud. In case
of a complex kernel, it is enough to apply the previous dis-
cussion to its real and imagery parts; e.g., for the wave ker-
nel we consider the series sin(L̃) = Â+•

n=0(�1)nL̃2n+1/(2n+1)!
and cos(L̃) = Â+•

n=0(�1)nL̃2n/(2n)!.

In previous work, the spectral distances are discretized with re-
spect to the Euclidean scalar product as

d2(pi,p j) =
n

Â
l=1

j(ll)|x>l ei �x>l e j|2

= e>i K?ei �2e>i K?e j + e>j K?e j,

(7)

where K? := Xj(L)X> is the corresponding kernel. Compar-
ing the proposed discretization of the spectral distance with pre-
vious work, we get that (6) is achieved from (7) by replacing
xk(pi) = e>i xk with e>i Bxk. However, Eq. (7) does not take
into account the intrinsic B-scalar product, thus disregarding
the geometry of the input data and the underlying generalized
eigenproblem.

3.3. Spectrum-free computation of the diffusion distances

We now specialize the previous approach to the spectrum-free
computation of the heat diffusion distances. To this end [27],
we recall that the heat diffusion kernel is defined in terms of
the Laplacian eigensystem (X,L) as Kt = Xj(L)X>B, where
j(L) := exp(�tL) is the diagonal matrix achieved by ex-
ponentiating the Lapalcian eigenvalues with respect to time.

(a)
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(b)

(c)

Figure 4: Stability of the biharmonic distance from a source (black) point with
respect to (a) sampling, (b) noise, (c) holes.

Rewriting the Laplacian matrix as L̃ = XLX>B, we get that
L̃n = XLnX>B and

exp(�tL̃) : =
+•

Â
n=0

(�tL̃)n

n!
= X

+•

Â
n=0

(�Lt)n

n!
X>B

= Xexp(�Lt)X>B = Kt ;

i.e., the weighted diffusion kernel Kt is still the exponen-
tial of the Laplacian matrix L̃. Then, we can apply the
rational Padé-Chebyshev approximation, which is based on
the extension of the minmax Padé-Chebyshev theory to ra-
tional fractions [18] (Ch. 11). More precisely, we com-
pute the (r,r)-degree rational function crr(s) that provides the
best approximation of the exponential function with respect
to the L •(R+) norm. Using algebraic rules, this solution is
crr(s) = a0 +Âr

i=1 ai/(s�qi) and the exponential matrix is ap-
proximated by exp(C)⇡ a0I+Âr

i=1 ai(C�qiI)�1. In this rep-
resentation, the poles {qi}r

i=1 and the coefficients {ai}r
i=1 have

been computed for r := 5,7 [16]. Applying the approximation

F(t) = exp(�tL̃)f ⇡�
r

Â
i=1

ai(L̃+qiI)�1f, r = 7, (8)

the vector F(t) = Âr
i=1 gi is computed as the sum of the solu-

tions of r sparse linear systems (tL̃+qiI)gi = aif, i = 1, . . . ,r.
In this way, we avoid the computation of the spectrum of L̃.
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minimum eigenvalue of B. If necessary, a higher approxima-
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i.e., the weighted diffusion kernel Kt is still the exponen-
tial of the Laplacian matrix L̃. Then, we can apply the
rational Padé-Chebyshev approximation, which is based on
the extension of the minmax Padé-Chebyshev theory to ra-
tional fractions [18] (Ch. 11). More precisely, we com-
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tions of r sparse linear systems (tL̃+qiI)gi = aif, i = 1, . . . ,r.
In this way, we avoid the computation of the spectrum of L̃.
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Spectral	distances

• The	filters	are	defined		
– analy<cally	and	analogously	to	Laplacian	signal	

smoothing[Desbrun99,Kim05,Taubin95-96,Zhang03]		

– by	applying	supervised	learning[Aflalo11,Litman14]	on	a	data	set	of	3D	shapes		
• op@mal	spectral	signature[Litman14]:	linear	combina@on	of	B-splines	by	
minimizing	a	task-specific	loss	func@on	

– by	controlling	their	behavior	
• decay	to	zero,	periodicity	
• normaliza@on	with	respect	to	geometric	proper@es	of	the	domain	

in	such	a	way	that	the	corresponding	distances	are	
• mul@-scale	and/or	invariant	to	isometric	transforma@ons	
• smooth	and/or	localized	in	both	@me	and	frequency[Hammond11].
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Spectral	distances

• The	smoothness,	locality,	and	encoding	of	local/global	shape	
proper<es	depend	on	the	convergence	of	the	filtered	
Laplacian	eigenvalues	to	zero	
– increasing	the	filter	decay	to	zero	
• global	shape	proper@es	are	encoded	by	the	spectral	
distances,	by	reducing	the	influence	of	eigenfunc@ons	
associated	with	small	eigenvalues	in	the	spectral	
distances	

– reducing	the	filter	decay	to	zero	
• local	shape	proper@es	are	encoded	by	the	spectral	
distances.

79

• Given	a	strictly	posi@ve,	square-integrable	filter	that	admits	the	
power	series’	representa@on	

we	define	the	spectral	operator	

which	is	well-defined,	linear,	con@nuous,	and		

where								is	the	spectral	kernel.

Spectral	distances

'(s) =
+1X

n=0

↵ns
n

�(f) := '(�)f =
+1X

n=0

'(�n)hf,�ni2�n

K'(p,q) =
+1X

n=0

'(�n)�n(p)�n(q)

K'

�(f) = hK', fi2
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• Analogously	to	the	diffusion	distances,	previous	work	has	
defined	the	equivalent	representa<ons	of	the	spectral	
distances

Spectral	distances

Spectral kernel

Lapl. spectrum

Spectral operator d2(p,q) = k�(�p)� �(�q)k22

=
+1X

n=0

'2(�n)|�n(p)� �n(q)|2

= kK'(p, ·)�K'(q, ·)k22
= k�(p)� �(q)k22 Spectral embed.

� : M ! `2, �(p) = ('(�n)�n(p))
+1
n=0
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• Applying	the	generalized	eigen-decomposi@on	of	the	
Laplacian	matrix,	the	discrete	spectral	kernel	is	

and	the	resul@ng	discrete	spectral	distance	is

Discrete	spectral	distances

K' = '(L̃) = X'(�)X>BL̃ = X�X>B

d2(pi,pj) = kK'(ei � ej)k2B

=
nX

l=1

'2(�l)|hxl, ei � ejiB|2

[spectrum-free	approx.]

[truncated	spectral	approx.]
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Discrete	spectral	distances

• We	generalize	previous	work	on	the	computa@on	of	the	
diffusion	kernels/distances	to	the	case	of	spectral	distances	
– spectrum-free	approxima<on:	considers	the	representa@on	
of	the	distance	in	terms	of	the	spectral	kernel	and	apply	the		
• polynomial	approxima@on	of	the	filter	
• Padè-Chebyshev	approxima@on	of	the	filter	
• Krylov	sub-space	projec@on	

– truncated	spectral	approxima<on:	applies	the	
representa@on	of	the	distances	in	terms	of	the	Laplacian	
spectrum
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• Recalling	that		
– the	spectral	distances	are	defined	in	terms	of	the	
spectral	kernel	as		

– the	spectral	kernel	is	achieved	by	applying	filtering	the	
Laplacian	matrix	as	

we	compute	and	apply	the	best	r-degree	polynomial	
approxima<on	of	the	selected	filter	to	the	Laplacian	matrix

Spectrum-free	computa<on

Filter	map

K' = '(L̃) ⇡ pr(L̃)
r-degree	Taylor		
polynomial

pr(s) :=
rX

i=0

↵is
i

d(pi,pj) = kK'(ei � ej)kB

K' = '(L̃)

84



Spectrum-free	computa<on
'(s) = s1/2

'(s) = (s log(1 + s))1/2

'(s) = s

'(s) = s3/2
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Spectrum-free	computa<on8 G. Patané / Laplacian Spectral Distances and Kernels

j(s) = s�3

(a) e1 = 1.2⇥10�5 (b) e1 = 9.1⇥10�4

j(s) = s�1 exp(�s)

(c) e1 = 2.3⇥10�5 (d) e1 = 4.2⇥10�4

j(s) = s�1 exp(�s)

(e) e1 = 1.2⇥10�5 (f) e1 = 2.1⇥10�4

Figure 9: Distances computed with the Padé-Chebyshev method (r = 5) on (a,c,e) regularly-sampled and (b,d,f) irregularly-
sampled (left) meshes and (right) point sets with holes. To improve the visualization, points are represented as spheres.

lm,n := p2(m2/a2 +n2/b2). For the sphere, the spherical
harmonics are fm,n(q,r) = N exp(imr)pm

l (cosq), where N
is a normalization constant and pm

l (·) is an associated
Legendre function. Since we have an infinite number
of eigenpairs, we select k such that the spectral dis-
tance dk(p,q) := Âk

n=0
|fn(p)�fn(q)|2

r2(ln)
becomes stationary;

i.e., |dk+1(p,q)�dk(p,q)|< e, where e is equal to the 1%.

Fig. 3 reports the `1 error (y-axis) between the ground-
truth distances induced by four filters and their approxima-
tion with the truncated spectral method with k Laplacian
eigenpairs (x-axis) and our approach. For filters with a fast
growth (e.g., r1 = s2 exp(st), r2 = sexp(st)), the truncated
spectral approximation provides a good accuracy (i.e., lower
than 10�5, with k � 85 for the cylinder, and k � 137 for the
sphere). Slowly increasing filters generally require a large
number of eigenpairs (i.e., k � 300 for the cylinder, k � 1K
for the sphere) to achieve an accuracy lower than 10�1.

Fig. 4 reports the `1 discrepancy (y-axis) between the
diffusion distance on the sphere/cylinder and its approxi-
mation computed with the Padé-Chebyshev method and the
truncated spectral approximation. In this case, the analyti-
cal expression of the Laplacian eigenfunctions on the sphere
and cylinder has been used to compute the ground-truth dis-
tances. For small scales (e.g., t = 10�2, 10�3), the approxi-
mation error remains higher than 10�2, with k  280 eigen-
pairs; in fact, local shape features encoded by the heat ker-
nel are recovered for a small t using the eigenvectors as-
sociated with high frequencies, thus requiring the compu-
tation of a large part of the Laplacian spectrum. For large
scales (e.g., t = 1, 10�1), increasing k strongly reduces the
approximation error until it becomes almost constant and
close to zero. In this case, the behavior of the heat kernel
is mainly influenced by the Laplacian eigenvectors related
to the smaller eigenvalues. Indeed, the truncated spectral
representation generally requires a high number of eigen-

submitted to COMPUTER GRAPHICS Forum (4/2016).
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• The	spectral	distances	can	be	approximated	by	considering	the	
contribu@on	of	the	Laplacian	eigenvectors	related	to	the	
smaller	eigenvalues	

– accurate	approxima@on	for	filters	with	a	fast	decay	
(periodic	filter:	eg.,	wave	kernel?)	

– the	number	of	selected	eigenpairs	must	be	adapted	to	local	
shape	details,	target	approxima@on	accuracy,	parameters	
(eg.,	@me	for	wave	kernel	distances):	not	a	trivial	task

Truncated	spectral	approxima<on

d2(pi,pj) ⇡
kX

l=1

'2(�l) |hxl, ei � ejiB|2
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Approxima<on	accuracy

'1(s) := s�1
exp(�ts)

'2(s) := s�1/2
exp(�ts)

'3(s) := s�1

'4(s) := s�1/2

Approxima<on	of	spectral	distances	

– Truncated	spectral	approxima<on:	l∞	error	
between	the	ground-truth	spectral	distances	
induced	by	different	filters	and	their	
approxima@on	with	k	Laplacian	eigenpairs	

– Spectrum-free	approxima<on:	r:=8	degree	
polynomial	and	l∞	error	lower	than	10-4
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• Truncated	spectral	approxima<on	
– computes	k	Laplacian	eigenpairs	in	O(kn)	@me	

– uses	the	Laplacian	eigenpairs	to	quickly	evaluate	distances	
induced	by	different	filters	on	the	same	surface	

– generally	has	an	accuracy	lower	than	the	spectrum-free	
approach.	

• Spectrum-free	approxima<on	
– Distance	evalua<on	between	two	points	is	reduced	to	solve	r	

sparse,	symmetric,	linear	systems:		
– Evalua<on	of	the	one-to-all	distance	

• no	factoriza@on	of	B:	
• with	factoriza@on	B:

Discrete	spectral	distances

O(r⌧(n))

O(rn⌧(n))

O(n log n+ rn)
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Conclusions

• Review	of	previous	work	on		

– the	Laplacian	spectral	kernels	and	distances,	defined	by	filtering	the	
Laplacian	spectrum	and	as	a	generaliza@on	of	the	commute-@me,	bi-
harmonic,	diffusion,	and	wave	kernel	and	distances		

– their	discre<za<on	according	to	a	unified	representa@on	of	the	Laplace-
Beltrami	operator,	which	is	“independent”	of	
• the	data	dimensionality	(surface,	volume,	nD	data)	and	discre@za@on	
(mesh,	point	set)	of	the	input	domain	

• the	selected	Laplacian	weights	

– the	computa<onal	aspects	behind	their	evalua<on		
• approxima@on	accuracy	&	stability	
• computa@onal	cost	&	storage	overhead		
• 	use	of	input	parameters	&	heuris@cs	

– their	main	applica<ons	to	geometry	processing	and	shape	analysis
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