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Abstract

Limitations in the resolution of acquired images, which are due to sensor manufacturing and acquisition conditions, are
reduced with the help of algorithms that enhance the spatial resolution by assigning pixel values that are interpolated
or approximated from known pixels. We propose a variant of the moving least-squares approximation for image up-
sampling, with a specific focus on biomedical MR images. For each evaluation point, we locally compute the best
approximation by minimizing a weighted least-squares error between the input data and their approximation with
an implicit function. The proposed approach provides a continuous approximation, an accuracy and extrapolation
capabilities higher than previous work, and a lower computational cost. As main application, we consider the up-
sampling of low field MR images, where the volumetric and meshless properties of the approximation allow us to
easily process images with anisotropic voxel size by rescaling the image and inter-slices resolution. Finally, we
include the resolution rescaling into a pipeline that performs a morphological characterization of 3D anatomical
districts, which has been developed with a focus on rheumatoid arthritis evolution and provides a more accurate
segmentation as an input to quantitative analysis.

Keywords: Biomedical informatics and mathematics, computer-aided diagnosis, image segmentation and feature
extraction, image up-sampling and enhancement, quantitative analysis, moving least-squares approximation.

1. Introduction

Imaging hardware, acquisition methodologies and time,
overlap of different tissues, physiological and patholog-
ical phenomena generally limit the image resolution. To
partially overcome these drawbacks, a relatively small
number of 2D slices is acquired at the cost of a larger
slice thickness and space between slices; as a result, the
resolution in the slice direction is lower than the resolu-
tion in the acquisition plane. Furthermore, noise, non-
uniform intensity, and partial volume averaging gener-
ally affect anisotropic MR images, make their analysis
error-prone, and generate blurring effects or “distorted”
reconstructions of the underlying geometries. For in-
stance, a single tissue might have a non-uniform inten-
sity over the acquired images, due to a different homo-
geneity of the tissue itself, or some pixels might show an
average intensity in those regions where different tissues
overlap. All these elements are further complicated by
the tissue variability among individuals and their mor-
phological complexity.

In this context, image up-sampling tackles the problem
of increasing the resolution of an image, or more gen-
erally a set of images composing a volumetric data set,
by preserving its main features (e.g., sharp edges, tex-
tures) and removing artifacts (e.g., blurring, pixel block-
ing). In medical applications, image up-sampling is cru-
cial for segmentation and analysis, where algorithms are
typically limited by the data resolution, anisotropy, and
blurring. In all these cases, the higher the image resolu-
tion is, the more accurate the analysis is (e.g., segmen-
tation, quantitative and morphological analysis). Main
features of image up-sampling are processing speed for
prompt user interaction, sharpness on the whole image,
preservation of image textures, low influence of param-
eters in the results, and low memory consumption. Vi-
sual properties to be preserved are the image contrast,
the absence of blocky regions, and the contour sharp-
ness.

The quantitative analysis of low resolution images is
generally affected by their transformation to a differ-
ent space or representation (e.g., through image regis-
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tration, interpolation, segmentation, iso-surface extrac-
tion) and heavily depends on the voxel size. This situ-
ation typically happens for the segmentation of small
bones and tissues in musculo-skeletal districts. To
overcome these limitations, the up-sampling of low-
resolution MR images guarantees a more accurate seg-
mentation and quantitative analysis of morphological
parameters [32], reduce the effect of volume variability,
and improve the consistency of the results for follow-up
data, thanks to a precise identification of region bound-
aries. These aspects are particularly relevant for the
wrist sector, given the small dimension of the segmented
components in comparison to the pixel dimension. Fur-
thermore, for muscle-skeletal pathologies of joints a
more accurate detection and quantification of local ero-
sions provide a better analysis than the global volume
obtained by the original images [51], which could mask
the effect of a mild erosion in the early stages of the
disease.

Overview and contribution. Previous work (Sect. 2) on
image up-sampling satisfies only a few of the afore-
mentioned properties, thus introducing artifacts in the
up-sampled image. In this context, we propose a lo-
cal variant of the moving least-squares (MLS) approx-
imation (Sect. 3). Given a function f : P! R, on a
set P := {xi}ni=1 of points in Rd , we tackle the problem
of computing a smooth function F : Rd ! R, which is
a linear combination of radial basis functions (RBFs),
locally approximates the f -values, and minimizes a
weighted least-squares error. For instance, for a 3D im-
age {xi}ni=1 are the coordinates of the voxels, f (xi) is the
corresponding pixel intensity, and n is the total num-
ber of voxels in the image space. The idea behind the
evaluation of F(x) is to compute the function F(·) in a
neighbor Nx of x by imposing the f -values at Nx, in-
stead of P, as approximation constraints. In fact, the
behavior of any continuous approximation of f at x is
controlled by the f -values in Nx.

While previous work [31, 52] considers a polynomial
approximation, in our approach F(·) is a linear combi-
nation of RBFs centered at the points of P, whose co-
efficients solve a small and well-conditioned linear sys-
tem. Replacing the polynomial with a radial basis pro-
vides an accuracy and extrapolation capabilities higher
than previous work and allows us to apply interpolating
constraints for feature preservation or least-squares con-
ditions for noise removal. In fact, the number of local
interpolating constraints is equal to the number of RBFs
and no more related to a given degree of the approxi-
mating polynomial. In contrast, imposing interpolating

constraints in the MLS approximation with a polyno-
mial basis is rather difficult, as the degree of the fitting
polynomial determines the number of interpolating con-
ditions and not viceversa. For instance, the interpolation
with a polynomial in x, y, and z of degree two or three re-
quires ten or nineteen interpolating constraints, respec-
tively. However, we might choose a different number of
points in different neighbors, according to the variation
of the f -values (e.g., pixel intensities).

Instead of applying a MLS approximation to single im-
ages, or a shape-based interpolation [40], or comput-
ing different slice orientations [82, 39, 66], the pro-
posed approach works both in the image plane and inter
slices, by taking advantage of the volumetric and mesh-
less properties of the RBFs. In this way, we define
a fully volumetric approximation of anisotropic data,
enforce the consistency of the approximation through
a larger number of interpolating or least-squares con-
straints across consecutive slices, and accurately pre-
serve feature lines, as a matter of the interpolation con-
straints.

Global approximation methods [26, 61, 83, 78] solve
one large linear system for the whole data and a low
amount of calculation is needed to evaluate the approx-
imating function at any spatial location. The alloca-
tion of the coefficient matrix and the numerical solver
of the linear system (e.g., O(n3) or O(n logn) time for
globally- or locally-supported RBFs) are the main com-
putational bottlenecks. Our approximation solves a k⇥ k
(e.g., 20  k  30) linear system for each sample point
in O(k3) time. Indeed, the computational cost of the
MLS scheme with RBFs is generally lower than the
global approximation with RBFs, reduces the memory
storage, and has the same order of complexity of the
polynomial MLS scheme.

Our experiments show a good performance of the lo-
cal approximation induced by the Hardy’s and Gaus-
sian kernels. Thin-plate kernel approximation provides
a lower approximation accuracy and feature preserva-
tion with respect to the Hardy’s and Gaussian kernels,
due to the ill-conditioning of the coefficient matrix in
case of large up-sampling factors and higher smooth-
ing effects. We also compare our approximation scheme
with linear [80], spline [72, 79], local interpolation [59],
feature-based [44], sparse [56], and total variation [74]
methods. Statistics confirm that the meshless approx-
imation outperforms the linear and polynomial meth-
ods, which can generate undesired effects, such as alias-
ing. The non-local up-sampling [59] exhibits a slightly
better accuracy than the meshless approximation with
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RBFs; however, it requires a de-noising step, several
iterations to optimize the image quality, and a higher
computational cost. Finally, the proposed approach pro-
vides results comparable with the feature-based, sparse,
total variation methods and supports the rescaling of
the resolution of anisotropic images both on the image
plane and inter-slices.

The meshless up-sampling of low-resolution MR im-
ages guarantees a more accurate segmentation and
quantitative analysis of morphological parameters for
the hand-wrist anatomical district and a proper segmen-
tation of the cartilage, which is not easy to achieve with
low-field images [32]. To discuss these properties, we
present a pipeline for the local characterization of the
morphology of the bones of the wrist joint from sin-
gle and follow-up images (Sect. 4). Local shape vari-
ations and distances among adjacent bones (i.e., intra-
bones’ space) are extracted from up-sampled MR im-
ages to detect cartilage destruction or joint space nar-
rowing, which occur at an early stage of erosion and
are followed by a substantial and massive erosion. The
input to our process is a set of low-resolution images
of complete joints, which are (eventually) up-sampled
with the proposed approach, segmented with a geodesic
active contour method [15], and associated with a se-
mantic label.

For the analysis of a single exam (e.g., bone or com-
plete joint), intra-bones’ distances are computed as their
Hausdorff distance [20] on the basis of anatomical at-
lases. For the analysis of series of exams, we perform
a shape registration of segmented follow-up data and a
local distance evaluation to identify shape changes and
eroded regions. For the detection and quantification of
local morphological variations (e.g., erosion) of bones
with respect to its baseline, we evaluate the Hausdorff
distance between the co-registered shapes. The dis-
tances between adjacent structures are mapped on the
bones and their temporal variation is useful to charac-
terize different diseases, such as cartilage destruction or
other pathologies involving a geometrical modification
of the joint structures. Then, the volume of each eroded
part is computed and the resulting quantitative informa-
tion is annotated in the segmentation.

The proposed local and more accurate erosion detec-
tion and quantification provide a better analysis than
the global volume obtained by the original images [51],
whose variability could mask the effect of a mild ero-
sion, typical of the early stages of the disease. In
fact [51], in the early stages the eroded volume can be
of 10�20% of the global volume; i.e., the same order of

magnitude of the global volume uncertainty associated
with low-resolution MR images. Furthermore, the small
size and complex geometry of the carpal bones, whose
segmentation heavily depends on the voxel size with re-
spect to the image resolution, is an additional factor of
uncertainty in both the segmentation and the morpho-
logical analysis.

Through image up-sampling, we reduce the volume
variability and improve the consistency of the results
for follow-up data. In fact, the segmentation algorithm
works better on higher resolution images because it pen-
etrates higher frequency features more easily and can
reach the segmented object boundaries more closely.
Main improvements after up-sampling include (i) a
higher precision in the identification of the seed voxel
used by the segmentation with geodesic active contours;
(ii) a higher precision of the segmented contours and
less smoothed bones; and (iii) a lower number of seg-
mentation errors (e.g., spurious connected components)
that are typically induced by a wrong selection of the
seed pixels.

Finally (Sect. 5), we discuss the main limitation of the
proposed approach and further applications of the mor-
phological characterization of different anatomical dis-
tricts for the analysis of degenerative pathologies and
the localization of shape variations due to posture.

2. Related work

We briefly review previous work on image up-sampling
(Sect. 2.1) and the morphological analysis of segmented
3D data (Sect. 2.2).

2.1. Image up-sampling

Nearest neighborhood methods [69] consider the near-
est pixel and assign its value to the new point, pre-
serve shapes of the original image, and can be applied
to high magnification factors; however, they produce
blocks of pixels easily detectable by human eyes. Bi-
linear interpolation uses a 2⇥2 neighborhood to com-
pute a linear interpolation on each dimension of the
image space [18], where the approximated value is a
weighted average of the four pixel values around it. Bi-
linear image interpolation provides better results than
nearest neighborhood methods, but it may generate un-
desired effects, such as jagged edges, ringing artifacts,
or blurred images. Bi-cubic methods [3, 22] interpo-
late the input data using a 4⇥ 4 neighborhood, where
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closer pixels correspond to stronger weights. Sharp im-
ages can be obtained in this way and the computational
complexity of bi-cubic methods is relatively low. Main
drawbacks are ringing artifacts, blurred images as for
bi-linear approaches, with no guarantee to always pre-
serve edges.

Iterative non-local up-sampling [59] takes into account
the self-similarity of medical images and assumes that
the intensity value of a low-resolution image pixel is
an average of the intensities of the corresponding high-
resolution image in its proximity with an additive noise
caused by the acquisition process. This technique re-
quires a preliminary de-noising, where the filtered im-
age is used as a reference during the iterative process
and its up-sampled version is used as a solution for the
first iteration. The constraints for patch-based non-local
reconstruction are analogous to previous work [29, 67].
In [58], up-sampled images are generated with the help
of a reference high-resolution image, which is provided
by a high-resolution volume acquired with the same or
another modality. This process requires the registra-
tion and de-noising of the initial low-resolution image
and an iterative method that is constrained to a target
image. Finally, image priors, genetic algorithms, and
dictionary learning can be applied to guide the image
up-sampling [71, 58, 45], segmentation [35], and re-
trieval [76].

Numerical approaches interpolate unknown pixel val-
ues with splines, or related techniques, and gener-
ally provide a high similarity matching with the orig-
inal image and a lower number of undesired effects
with respect to the techniques previously described.
Wavelet-based interpolation [13, 17] works well for
edges and their sharpness, but not for textures in
the input image. Recent approaches for the recon-
struction of super-resolution images apply signal pro-
cessing techniques, such as the Fourier Transform or
Bayesian estimator [43], to a sequence of low resolu-
tion images in order to obtain an improved result [63].
In [75], the total variation regularization has been ap-
plied to MR image super-resolution to integrate local
and global image information. In [45], non-local means
feature-based methods have been specialized to MR im-
age up-sampling by combining structural information
and image contrast with interpolation methods of low-
resolution images.

Moving least-squares [31, 52] and implicit [10] approx-
imations, with globally- [14] and locally-supported [83]
radial basis functions [26, 61] convert heterogeneous
discrete data into a meshless and smooth representation,

for image synthesis [50] and surface reconstruction [34,
73, 78]. In [11], the moving least-squares approxima-
tion with a polynomial kernel is applied to combine low-
resolution images in an up-sampled image. In [47], the
selected kernel is exponential and the coefficients of the
resulting approximation are signal-dependent. In order
to avoid blurred images, which are typically induced by
a polynomial approximation, an edge detection identi-
fies sharp features to be preserved. For instance, the
edge detection is applied locally and before the interpo-
lation [46], or through a sub-pixel edge estimation [2],
statistical approaches [54, 53], or the minimization of
the approximation error [88]. In particular, the edge-
directed interpolation with RBFs [54] adapts the local
approximation to the edge orientation and it is computed
according to a pre-defined set of stencils for faces and
edge points.

Shape-based interpolation [68] with MLS approxi-
mation encodes the intrinsic manifold structure [55]
through the spectral properties of the graph Laplacian
and applies interpolating constraints [33, 40, 41, 42, 66],
slice matching [39], feature constraints [54] and direc-
tional coherence [81, 82]. An interpolation constrained
to the structural information of a high-resolution im-
age with a different contrast [45] has been applied to
brain images. In this case, laminar structures are as-
sumed to be part of the image and are involved in the
definition of a similarity measure. The main difference
with respect to our approach is that a reference high-
resolution image is introduced into the process to repro-
duce similar structures. In [71], the resolution of brain
images is enhanced by extracting higher frequency de-
tails from high-resolution anatomical templates, which
provide anatomical inter-modality priors. This tech-
nique does not apply interpolation constraints and re-
quires a time-consuming registration of the input with
the reference image. In [57], the adaptive method is
based on a least-squares approximation and is steered by
the edges; in this way, the interpolated high-resolution
image is less affected by artifacts along contours and
the edge information is implicitly retrieved from covari-
ance. As main applications, we mention image registra-
tion [16] and surface reconstruction [21].

Sparse representations and manifold regularized sparse
learning have been successfully applied to image super-
resolution. More precisely, in [87] the super-resolution
reconstruction of low resolution MR images is based on
a joint sparse representation through a `1 norm min-
imization and suppresses blurring effects with sparse
priors. Most of the interpolation methods for image
super-resolution disregards that a low resolution pixel

4



Figure 1: Given a discrete function f : P! R on a set of
points P := {xi}ni=1 of points of Rd , we compute a smooth function
F : Rd ! R, whose value F(x) at a given sample point x is computed
by locally interpolating/approximating the f -values at the points of P
belonging to a neighbor Nx of x. The function F in Nx is defined
as a linear combination of RBFs centered at the points of Nx and is
continuous at any point x; i.e., limy!x F(y) = F(x).

can be considered as a weighted average of high res-
olution pixels inside it and are typically affected by
blurred edges and complex textures. To avoid these ar-
tifacts, the resolution and contrast of MR images can
be improved by fusing multiple 2D slices with different
directions [74, 63] and feature-based approaches [44].
Over-complete dictionaries for resolution enhancement
of MR images have been defined in [85, 24], and in [56]
manifold regularized sparse learning has been applied
to preserve the intrinsic structure between MR images
and to exploit the intra-patient priors. In fact, intra-
patient MR images [71, 12, 84] are typically available
in follow-up monitoring of degenerate pathologies or
when different acquisition parameters are chosen to ac-
quire a series of scans.

Methods based on partial differential equations [49]
are suitable for edge preservation and combine linear
interpolation with fuzzy logic to overcome the main
disadvantages given by simple linear image interpola-
tion approaches. Moreover, these methods can be im-
proved with an edge-oriented refinement to better pre-
serve boundaries, which is usually achieved by selecting
different neighbors with different shapes.

2.2. Morphological analysis of segmented images

Literature on 3D semi-automatic erosion detection is
mainly focused on algorithms’ validation against a ref-
erence value, obtained by the Omeract-Ramris scor-
ing system [7]. Semi-automatic procedures aim to im-

(a) Input 256⇥256

(b) Input 128⇥128 (c) Gauss 256⇥256
MRE = 97.63,PSNR = 28.23

(d) Thin-Plate 256⇥256 (e) Hardy 256⇥256
MRE = 92.42,PSNR = 28.47 MRE = 90.26,PSNR = 28.58

Figure 2: Image up-sampling and metrics induced by (c-e) different
kernels. For all the images, (a) has been down-sampled to (b) 128⇥
128 resolution and brought back to the initial 256⇥256 resolution.

prove the reproducibility and sensitivity of the semi-
quantitative scoring systems [70], and different meth-
ods [8, 5, 4, 51] have been validated on images and on
surface meshes. High or low field MRIs can be used
with negligible differences on erosion detection [27].
Leung et al. [51] proposed a global measures (e.g., vol-
ume) for monitoring the erosion progression. Compar-
ing a sequence of bones acquired at different times with
a reference atlas, they found an unexpected volume fluc-
tuation in time, which does not identify a clear erosion
as a matter of an inaccurate identification of the bound-
aries of segmented bones.

In [25], a semi-automated analysis of the carpal bones
district from CT images is based on a segmentation that
starts with a manually seeded edge detection and pro-

5



(a) Input 256⇥256 (b) Bi-linear 256⇥256 (c) Spline 256⇥256
down-sampled to 128⇥128 MRE = 284, PSNR = 23.60 MRE = 277, PSNR = 23.70

(d) RBF (Gauss) 256⇥256 (e) RBF (Hardy) 256⇥256 (f) RBF (Thin-plate) 256⇥256
MRE = 136, PSNR = 26.70 MRE = 151, PSNR = 24.20 MRE = 146, PSNR = 25.30

Figure 3: Different up-samplings of a 128⇥128 image achieved as a downsampling of (a). The (b) bi-linear and (c) spline interpolation show a
blurring effect over the whole image, (d) Gaussian and (e) Hardy kernels suffer from aliasing, as can be noticed on the contour of the shoulder, and
thin-plate RBFs (f) provide a better up-sampling of the original image in (a). When the image is brought back to its original resolution, a blurring
effect is associated with the bi-linear approximation and it is slightly reduced with a third order spline interpolator. The approximation with RBFs
(d-f) provides a more definite image and preserves finer details.

gresses with an automated active contour method. Mul-
tiple iterations of the active contour method on each
slice produce the final segmentation. Indeed, the ex-
pert judgment has a crucial role in the discrimination of
anatomical structures, especially if they are separated
by weak boundaries. Local assessment is performed by
monitoring only specific regions, which are identified
as lesions. Cartilage damage assessment [32], which is
useful for the early stage detection and monitoring of
the disease, can be performed through the analysis of
its thickness. Methods for the automatic estimation of
the space narrowing and bone erosions are available for
2D X-Ray images [48] and 3D images (MRI or CT se-
quences) [51]. In [51], the automated approach shows
a good correlation (0.80) with the same semi-automated
procedure, but it is characterized by significant differ-

ences in the global bones’ volume. For this reason, the
expert judgment still has a crucial role in the discrim-
ination of anatomical structures, especially if there are
low-gradient structure boundaries in the image and re-
gardless the use of segmented MRI data.

To train users of Omeract-Ramris, Ejbjerg et al. [27]
developed an atlas with example images for the semi-
quantitative scoring of synovitis, bone oedema, and
erosion. Moving towards computer-aided assessments,
Bird et al. [7] investigated the inter-reader reliability
of computer-assisted (manual) erosion volume measure-
ment in patients with rheumatoid arthritis and compared
the results with the existing Omeract-Ramris scoring
system. They found a strong positive correlation be-
tween the total erosion volumes and scores for all ac-
quisitions, and a positive agreement between the man-
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(a) 512⇥512 (b) 128⇥128 (c) Bi-linear 512⇥512 (d) RBF (Gauss) 512⇥512

Figure 4: (b) 128⇥128 Down-sampling of (a) a high-resolution image and (b) up-sampling to the initial resolution with (c) bi-linear and (d)
meshless (Gaussian kernel) approximations.

ual evaluation of volumetric erosion by OsiriX [1] and
the Omeract-Ramris classification. However, the inter-
reader reliability was not sufficient to perform consis-
tent multi-center studies, at least without a prior and ho-
mogeneous training of the users.

3. Local image up-sampling

Given a map f : P! R, on a set P := {xi}ni=1 of points
in Rd , we propose a variant of the MLS scheme [52,
65, 64] for the computation of its underlying map
F : Rd ! R, which is defined as a smooth function
that locally approximates the f -values f := ( f (xi))n

i=1
(Fig. 1). For instance, for a 3D image {xi}ni=1 are the co-
ordinates of the voxels, f (xi) is the corresponding pixel
intensity, and n is the total number of voxels in the im-
age space. The idea behind our approach is to compute
the function F(·) in a neighbor Nx of x by imposing
the f -values at Nx, instead of P, as approximation con-
straints. In fact, the behavior of any continuous approx-
imation of f at x is mainly controlled by the f -values
in Nx.

3.1. Local MLS approximation with RBFs

We search the approximation F(·) in the linear
space F generated by the radial basis functions
{f js(z) := f(kz�x jsk2)}ks=1 centered at the points of
the neighbor Nx := {x js }ks=1 of x and defined by the
kernel f. Let W (·, ·) be a strictly positive function
and k · kW(x) the norm induced by the scalar prod-
uct hf,giW(x) = f>W(x)g, W(x) := diag(W (x,xi))n

i=1.
Then, the MLS approximation F(x) = Âk

s=1 as(x)f js(x)
minimizes the energy
(

E(a) := kFa(x)� fk2W(x), a(x) := (ai(x))k
i=1,

F := (fir)
r=1,...,k
i=1,...,n , fir := f jr(xi).

Deriving E(·) with respect to a(x), the normal equation
⇥
F>W(x)F

⇤
a(x) = F>W(x)f, (1)

depends on x and the points inNx. Since the kernel f is
positive-definite, the k⇥ k coefficient matrix F>W(x)F
is positive definite; in particular, Eq. (1) has a unique
solution. If the f -values are noise-free or have been
smoothed, then we apply interpolating constraints by
selecting F = (fir)k

i,r=1 and W(x) := I. Since the num-
ber of points in each neighbor is generally small, we
select a kernel with a global support; i.e., the closure
of the set of points where the kernel does not vanish
is equal to R+. In our tests, we choose the Gaussian
f(t) := exp(�t/s) or bi-harmonic f(t) := |t3|/s kernel,
with support s, and W (x,y) := exp(�kx�yk2)/s is the
Gaussian function. Enlarging the width of the kernel
generally increases the robustness to noise and the ap-
proximation error.

Computational cost. The global approximation with
RBFs requires the solution of one n⇥n system of lin-
ear equations for the whole data and then only a min-
imal amount of calculation is needed to evaluate the
approximating function at any spatial location. In this
case, the approximation with globally- and locally-
supported RBFs takes O(n3) and O(n logn) time, re-
spectively [38]. However, the allocation of the coeffi-
cient matrix and the numerical solver of the linear sys-
tem for globally-supported RBFs represent a concrete
bottleneck in all those applications where we deal with
big data. Our approach requires the solution of a k⇥ k
linear system in O(k3) time, where k is a small constant
(e.g., 20  k  30) that represents the average number of
points in a given neighbor of a sample. This cost is com-
parable with the multi-level partition of the unity ap-
proximation [62], which applies a domain decomposi-
tion and solve only a linear system for each partitioning
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(a) 512⇥512 (b) 512⇥512 (c) 512⇥512 (d) 512⇥512
Figure Error Linear Polynomial RBF Feature-based, sparse & total variation

approx. approximation approximation approximations
r = 1 r = 3 r = 4 r = 5 Hardy Gauss Thin FB Mean LRTV Sparse

2⇥ Downsampling & Up-sampling

(a)
MRE 43 41 41 41 36 37 51 36.10 36.12 36.09
PSNR 31.73 31.95 31.94 31.93 30.55 32.39 31 31.02 30.55 31.54
SSIM 0.84 0.85 0.85 0.85 0.86 0.85 0.84 0.84 0.84 0.83

(b)
MRE 70 62 61 61 54 59 55 54.31 54.52 54
PSNR 29.68 30.19 30.22 30.23 29.26 30.42 30.68 29.62 29.30 29.26
SSIM 0.87 0.88 0.88 0.88 0.89 0.88 0.89 0.85 0.84 0.89

(c)
MRE 113 102 102 101 90 97 92 92 91.04 90
PSNR 27.57 28.01 28.04 28.05 26.58 28.23 28.47 27.20 26.71 26.59
SSIM 0.85 0.85 0.85 0.85 0.87 0.85 0.86 0.86 0.84 0.87

(d)
MRE 105 94 93 93 82 87 83 82 82 82
PSNR 27.88 28.39 28.42 28.43 26.89 28.71 28.91 26.90 26.91 28.89
SSIM 0.86 0.87 0.87 0.87 0.88 0.87 0.88 0.88 0.88 0.88

4⇥ Downsampling & Up-sampling

(a)
MRE 94 91 91 92 63 64 2893 63.20 63 63.01
PSNR 28.37 28.54 28.50 28.47 27.90 30.01 13.52 27.91 27.90 27.90
SSIM 0.75 0.76 0.75 0.75 0.79 0.77 0.05 0.77 0.75 0.79

(b)
MRE 134 127 128 129 127 127 2115 127 127.29 127
PSNR 26.85 27.08 27.05 27.02 26.06 27.09 27.88 27.01 27.05 26.10
SSIM 0.79 0.79 0.79 0.78 0.79 0.79 0.81 0.79 0.75 0.79

(c)
MRE 207 201 204 205 201 202 2792 200 201 201
PSNR 24.96 25.08 25.03 24.99 24.09 25.11 33.67 24.10 24.09 24.09
SSIM 0.75 0.75 0.74 0.74 0.75 0.75 0.20 0.75 0.77 0.75

(d)
MRE 201 189 191 193 184 189 3132 185 186 184
PSNR 25.09 25.35 25.31 25.27 24.31 25.35 25.17 24.42 24.31 24.33
SSIM 0.76 0.77 0.76 0.76 0.77 0.77 0.21 0.77 0.77 0.75

8⇥ Downsampling & Up-sampling

(a)
MRE 196 206 210 212 153 160 2893 153 153 153
PSNR 25.19 24.97 24.89 24.85 23.27 26.06 23.52 24.10 23.30 23.27
SSIM 0.62 0.61 0.61 0.61 0.63 0.62 0.05 0.61 0.6 0.631

(b)
MRE 282 291 295 298 273 294 2115 273 273 273
PSNR 23.63 23.49 23.42 23.38 22.46 23.44 24.88 22.50 24.90 22.47
SSIM 0.69 0.68 0.68 0.67 0.67 0.67 0.21 0.65 0.67 0.67

(c)
MRE 389 420 430 435 376 421 2792 377 376 376
PSNR 22.23 21.89 21.79 21.74 21.62 21.89 23.67 22.01 21.62 21.64
SSIM 0.66 0.64 0.63 0.63 0.64 0.64 0.20 0.64 0.64 0.64

(d)
MRE 426 450 460 465 421 449 3132 439 421 422
PSNR 21.83 21.59 21.50 21.45 20.69 21.61 1317 20.69 20.69 20.69
SSIM 0.65 0.63 0.63 0.63 0.64 0.63 0.21 0.62 0.63 0.64

Table 1: Statistics related to the 2⇥, 4⇥, and 8⇥ image up-sampling of a set of (a-d) MR images with: (i) the local approximation induced by
the Hardy, Gauss, and thin-plate kernels, (ii) linear and polynomial approximations of different order r, (iii) feature-based [44], sparse [56] and
total variation [74] methods. For the local approximation with RBFs, the highest approximation accuracy is achieved with the Hardy’s kernel,
with slightly worse results when using the Gaussian kernel. Thin-plate kernel approximation does not work well for high resolution up-sampling
(e.g., 4⇥ and 8⇥) due to the ill-conditioning of the corresponding coefficient matrix and the high smoothness of the resulting approximation. The
proposed approach provides results comparable with the feature-based, sparse, and total variation methods. Best results are shown in bold.

of the space and the linear/polynomial MLS approxima-
tions. Indeed, the proposed scheme has a lower compu-
tational cost until the number s of samples is lower than
n logn/k3.

Continuity. To show the continuity of the local ap-
proximation scheme, let us assume that the entries of
the weight matrix are bounded; i.e., 0 < a Wi(·)  b.
Since F(x) = b>(x)f̃(x) is a linear combination of con-
tinuous basis functions, we verify the continuity of F(·)
at x by showing that b(·) is continuous at x. The normal
equations at x and y are given by

⇢
[F>x W(x)Fx]b(x) = F>x W(x)fx,⇥
F>y W(y)Fy

⇤
b(y) = F>y W(y)fy.

(2)

Applying the continuity of the weight matrix W(y) and
of the basis functions at x, from Eq. (2) it follows that
[F>x W(x)Fx] limy!x b(y) = F>x fx. We now show that
the l2 norm of b(y) is bounded by a constant that is in-
dependent of y. Firstly, we verify that

ali(F>F)  li(F>W(x)F)  bli(F>F), (3)

i = 1, . . . ,k, in fact, the Railegh quotient satisfies the re-
lations

a
v>F>Fv

v>v
 (Fv)>W(x)(Fv)

v>v
 b

v>F>Fv
v>v

, v 2Rk.
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512⇥512 512⇥512 512⇥512

(a) (b) (c)
Figure Error Linear Polynomial RBF Feature-based, sparse & total variation

approx. approx. approx. approx.
r = 1 r = 3 r = 4 r = 5 Hardy Gauss Thin FB Mean LRTV Sparse

2⇥ Downsampling & Up-sampling

(a)
MRE 116 108 108 108 89 94 108 90 90 91
PSNR 27.46 27.77 27.77 27.76 26.61 28.40 27.76 26.61 26.90 27.01
SSIM 0.81 0.82 0.82 0.82 0.85 0.83 0.82 0.84 0.83 0.83

(b)
MRE 216 203 203 203 189 199 199 190 189 189
PSNR 24.78 25.05 25.05 25.04 24.36 25.13 25.13 24.37 24.40 24.36
SSIM 0.86 0.86 0.85 0.86 0.87 0.85 0.85 87 87 87

(c)
MRE 110 101 101 101 83 86 98 84 83 83
PSNR 27.70 28.05 28.05 28.05 26.93 28.78 28.18 27.01 27.00 26.98
SSIM 0.86 0.87 0.87 0.87 0.88 0.87 0.85 0.86 0.87 0.88

4⇥ Downsampling & Up-sampling

(a)
MRE 211 199 201 202 188 182 5746 184 183 182
PSNR 24.87 25.13 25.10 25.07 24.37 25.51 10.54 25.01 25.50 24.67
SSIM 0.64 0.66 0.66 0.65 0.66 0.67 0.02 0.67 0.67 0.67

(b)
MRE 342 300 300 301 307 298 7754 300 299 299
PSNR 22.79 23.35 23.35 23.33 22.25 23.30 9.24 22.28 22.25 22.25
SSIM 0.76 0.77 0.77 0.77 0.77 0.77 0.45 0.75 0.75 0.77

(c)
MRE 197 177 177 178 168 165 6856 165 166 165
PSNR 25.17 25.65 25.64 25.62 25.85 25.05 9.77 25.08 25.05 25.05
SSIM 0.75 0.76 0.76 0.76 0.76 0.76 0.24 0.75 0.76 0.76

(c)
MRE 234 230 228 218 249 230 4838 235 266 260
PSNR 26.34 26.65 28.64 29.62 25.13 25.00 39.44 25.08 27.06 25.05
SSIM 0.35 0.36 0.36 0.36 0.36 0.36 0.34 0.35 0.36 0.36

Table 2: Approximation accuracy of a 2⇥ and 4⇥ up-sampling of a (a-c) 3D MR images: best results are reported in bold. Statistics show a good
performance of Hardy’s approximation on average, with slightly worse results when using a Gaussian kernel. Thin-plate kernel approximation
does not work well for high resolution up-sampling (e.g., 4⇥) and the resulting approximation accuracy is analogous to splines, for any degree.
The highest approximation accuracy is achieved with the local approximation with RBFs.

Then, we get that

kb(y)k2 Eq. (2) bl�1
1 (F>y W(y)Fy)kF>y k2kfyk2

Eq. (3) l�1
1 (F>F)ln(F)kfk2.

Since the coefficient matrix F>x W(x)Fx in Eq. (2)
is invertible and limy!x b(y) is finite, the unique-
ness of the solution b(x) to Eq. (2) guarantees that
limy!x b(y) = b(x); i.e., b(·) is continuous at x.

Finally, the `2 condition number of the coefficient ma-
trix of the MLS approximation as

k2(F>W(p)F) =
lmax(F>W(p)F)

lmin(F>W(p)F)

 b
a

lmax(F>F)

lmin(F>F)
=

b
a

k2(F>F).

3.2. Experimental results

We compare our approach with linear [80], spline [72,
79], local interpolation [59], feature-based [44],

sparse [56], and total variation [74] methods on 2D
and 3D MR images with low resolution. To evalu-
ate the accuracy of the up-sampling scheme, we down-
sample a given image, bring it back to the initial reso-
lution, and evaluate the differences between the original
and the up-sampled images. The mean square (resid-

ual) error is defined as MRE(A,B) := m�1
m
Â

i=1
(ai�bi)2,

where A and B are two matrices with image intensi-
ties ai and bi, respectively, and m is the number of
pixels. MRE range depends on the maximum inten-
sity value l in the image and lower values of MRE
correspond to a higher similarity between images; e.g.,
in a grayscale image with values from 0 to l = 255,
MRE spans from 0 to l2. The peak signal-to-noise
ratio PSNR(A,B) := �10log10(l�2MRE(A,B)) returns
values in [10,+1), which increase as the compared im-
ages become similar. The structural similarly index
(SSIM) [82] mimics the human visual system and is in-
dependent of l. It works on squared windows of the
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Figure 5: Input images (first column) have been locally approximated
with RBFs (second column) at a double resolution and the resulting
approximation has been sampled on a new slice (right picture).

images and returns a decimal value in [�1,1], where 1
corresponds to the case of two identical images.

In Fig. 2, the Hardy’s kernel provides the best up-
sampled image according to MRE and PSNR. In Fig. 3,
the (b,c) bi-linear and spline interpolations show a blur-
ring effect over the whole image, (d,e) Gaussian and
Hardy kernels suffer from aliasing, as can be noticed
on the contour of the shoulder, and thin-plate RBFs (f)
provide a better up-sampling of the original image, in
terms of details’ preservation. In Fig. 4, the four-times
image up-sampling (d) along each axis preserves finer
details than the bi-linear interpolation (c), which tends
to smooth out small-scale features of the input image.

Statistics (Tables 1, 2) show a good performance of
Hardy’s approximation on average with slightly worse
results when using a Gaussian kernel. Thin-plate ker-
nel approximation does not provide the same results in
terms of quality, but it is on the same level of spline
results, independently of the polynomial order. This re-
sult suggests a preference for third order splines, which
perform faster than higher order splines. Linear approx-
imation is worse than splines and requires less compu-
tational effort, but in some cases it can generate unde-
sired effects, such as aliasing. Differences among the
seven approaches are more emphasized for the first three
sampled images. In the other cases, effects are attenu-
ated, because MRI slices include wider and more ho-
mogeneous black areas. Moreover, thin-plate does not

(a) Non-local up-sampl. [59] 50⇥50

(b) RBF (Gauss) 50⇥50

Figure 6: 2⇥ image up-sampling with (a) the non-local method
(MRE = 13.44; PSNR = 36.27) and (b) RBF approximation (Gaus-
sian kernel) (MRE = 13.65; PSNR = 33.87), on a cerebral image.

work well for extreme resolution up-sampling (e.g., 4⇥
and 8⇥), as can be noticed in the last columns. The
proposed approach also provides results that are com-
parable with the feature-based [44], sparse [56], and
total variation [74] methods. An analogous discussion
applies to the up-sampling of volumetric MR images,
whose statistics (Table 3) with the minimum, maximum,
and average PSNR, SSIM confirm the accuracy of the
local approximation with RBFs.

Comparing our approach (Fig. 6) with the non-local up-
sampling [59], the latter exhibits a slightly better accu-
racy that is due to the more accurate up-sampling but
requires a de-noising step and several iterations to op-
timize the image quality. Furthermore, these steps also
raise computational complexity of the entire procedure.
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Error Linear Polynomial RBF Feature-based, sparse & total variation
approx. approx. approx. approx.
r = 1 r = 3 r = 4 r = 5 Hardy Gauss Thin FB Mean LRTV Sparse

min
PSNR 41.63 41.51 41.49 41.48 41.43 41.25 41.56 41.26 41.25 41.15
max
PSNR 62.90 62.40 62.30 62.25 62.36 62.10 62.52 62.20 62.11 61.15
avg.
PSNR 47.28 47.00 46.96 46.94 46.82 46.27 47.09 46.27 46.29 46.27

min
SSIM 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
max
SSIM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00
avg.
SSIM 0.94 0.93 0.93 0.93 0.93 0.86 0.93 0.87 0.88 0.87

Table 3: With reference to Fig. 3(a), metrics for different up-sampling methods applied to image series (intensity value range is [0, 65535]). the
minimum, maximum, and average PSNR, SSIM values confirm the higher accuracy of the local approximation with RBF induced by the Gauss
kernel. A sample slice of the image series is shown in Fig. 2(a). Best results are shown in bold.

(a) Input im. 512⇥512 (b) Down-sampl. im. 256⇥256

(c) Interp. im. 512⇥512 (d) Error 512⇥512

Figure 7: (d) Squared difference between (a) the input images and
(c) our local up-sampling with RBFs of the down-sampled image in
(b); (d) the whiter pixels are, the higher is the discrepancy between
(a) and (c).

Through the proposed meshless approximation, we eas-
ily rescale the resolution of anisotropic images both on
the image plane and inter-slices (Fig. 5). In this way,
we further support the consistency of the approxima-
tion through a larger number of interpolating constraints
across consecutive slices. Visualizing the point-wise ap-
proximation error as an image (Fig. 7), where the pixel
intensity is the squared difference of the corresponding
pixel values, the loss of information is mainly localized
along the edges. However, in the up-sampled image,
feature lines are accurately preserved as a matter of the
interpolation constraints that guarantee a generally low
approximation error, which is mainly due to the kernel
smoothness.

(a) (b)
Bone One-side Hausdorff distance
Capitate - 10.2 58.3 - 44.2 - 13.6 57.4
Hamate 12.2 - 48.2 - - - - 7.5
Lunate 58.2 48.2 - - 17.3 - - 60.3
Pisiform - - - - - - - 44.7
Scaphoid 44.1 - 17.3 - - - 19.5 -
Trapezium - - - - 34.9 - 60.1 -
Trapezoid 12.7 - - - 19.6 60.1 - -
Triquetal 57.2 7.5 60.4 44.1 - - - -

(c)

Figure 8: (a) One-side Hausdorff distance and (b) carpal bones. Ar-
rows are a pictorial representations of distances. (c) Adjacency matrix
for the wrist and intra-bones distance variation between the follow-up
and the baseline.

4. Morphological analysis of low-resolution and up-
sampled MR images

In the following, we focus on the main aspects of
the rheumatoid arthritis (Sect. 4.1), the morphological
analysis of single scans (Sect. 4.2) and follow-up data
(Sect. 4.3) from MR images of the hand-wrist sector.

4.1. MR images for the analysis of rheumatoid arthritis

This study is focused on the quantitative assessment
of bone erosion in rheumatoid arthritis with MR im-
ages. We briefly recall that the rheumatoid arthritis is a
chronic systemic disease that involves soft tissues (i.e.,
synovial tissue), cartilages, and bones of the peripheral
joints. The temporal evolution of the disease is non-
linear and the disease stages evolve from reversible to
permanent, depending on the involved structures. The
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(a) (b)

Figure 9: ICP registration on (a) an entire wrist sector and (b) for
each bone.

Figure 10: (a) Segmented wrist district, (b) baseline (orange) and
follow-up (grey) data, (c) co-registration. (d,e) Identification of local
erosions of single bones and (f) eroded volume. The colormap varies
from blue (lowest distance) to red (highest distance).

stages of rheumatoid arthritis can be conceptually di-
vided into two groups, without or with effects on the ge-
ometry of hard structures, such as bones and cartilages.
In the first group, we include early stage inflammation,
synovitis, and effusion; in the latter group, we consider
the narrowing of joint space and erosion.

MR images generally show a good contrast among
bones and surrounding tissues. In fact, bone ero-
sion may be preceded by pathologies (e.g., inflamma-
tions, abnormalities) of the soft tissues by months or
years [36]. These aspects and the low radiation associ-
ated with the acquisition of MR images show their im-
portance for the early diagnosis and monitoring of the
rheumatoid arthritis. A recent study [23] also demon-
strates a correlation between erosion volumes detected
by MR and CT, with MR that is capable of detecting
72% of the erosion detected by CT [30]. Since the cor-
tical bone is detected as black in MR images and can be
included in the eroded region, an overestimation of the
eroded volume might affect the analysis with respect to
CT [37], with a good inter-modality agreement between
CT and MR on the volume of single erosions.

To measure the erosion score, we follow the standard

OMERACT scoring system [28], which is based on the
separate semi-quantitative evaluation of synovitis, bone
edema, and bone erosion. Synovitis is assessed on a
scale from 0 to 3 (none, mild, moderate, and severe),
edema on a scale from 0 to 3 (none, one third, two
thirds, and full), and erosions on a scale from 0 to 10
(none, 10%, 20%, 30%, . . .). Bone erosion is also de-
fined on the basis of images radiological appearance. To
reduce some disadvantages of MR images (e.g., motion
artifacts, aliasing artifacts, chemical shift artifacts), low-
field local scans have been developed for the purpose of
analyzing only a specific part of a limb. Finally, for our
tests and as a ground truth, we have used the clinical
database [77], which consists of low-field MRI images
acquired from 30 patients affected by rheumatic arthri-
tis and 10 healthy patients that have been segmented by
rheumatologists.

4.2. Morphological analysis of single scans

The input to our process is a set of low-resolution and
up-sampled MR images of complete joints, which are
segmented with a geodesic active contour method [15]
and are associated with a semantic label. For the carpal
bones of the wrist district, the labels are: capitate,
hamate, lunate, pisiform, scaphoid, trapezium, trape-
zoid, and triquetral. The proposed approach works
on surface-based segmented data, while previous work
is based mainly on volumetric data. For the analy-
sis of a single exam (e.g., bone or complete joint),
intra-bones distances are computed on the basis of
anatomical atlases, where couples of neighbor bones
are identified in the joint by the corresponding en-
tries of an adjacency matrix (Fig. 8c). The intra-
bones distance between two adjacent bones X, Y is
computed as d(X,Y) := max{dX(Y),dY(X)}, where
dX(Y) := maxx2X{miny2Y{kx�yk2} is the one-side
Hausdorff distance. Each distance is then stored and
compared with the following acquisitions to evaluate the
joint space narrowing. Additional parameters of the in-
put surface (e.g., curvature, roughness) can be extracted
by applying geometric methods [4, 5] for the analysis of
geometric surfaces.

4.3. Morphological analysis of follow-up data

The quantitative comparison between baseline and
follow-up is performed by segmenting the individual
bones, registering the segmented images, and calculat-
ing the distance between the corresponding segments.
To this end, let us assume that our follow-up data set
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(a) (b) (c) (d)

Figure 11: Capitate with a large erosion on the (right) surface at the (a) baseline and (b) follow-up time; (c) identification of the erosion (white
region) and (d) reconstruction of the missing volume (red region).

(a) (b) (c) (d)

Figure 12: (a,b) Local erosions of two wrist districts, (c) zoom-in of (a), and (d) color map.

R := {R j}sj=1 is represented as s segmented regions R j

of the same anatomical district, which have been ac-
quired at different time steps {ti}si=1, ti < ti+1. Then, the
segmented anatomical district is represented as the set
R j := {R j

i }k j
i=1, where each connected component R j

i is a
triangle mesh and is associated with its semantic label.

Co-registration of the anatomical sectors. Given two
consecutive scans Ri and R j, the first issue to address
is their misalignment, which is generally due to a dif-
ferent reference frame during the acquisition of the
anatomical district. The registration of two scans of
the same anatomical district can be based on the prin-
cipal component analysis or the iterative closest point
method [6, 19]. In the first case, we compute the ref-
erence frames F i, F j of the two districts or of couples
of corresponding bones (according to their label); then,
we apply the translation and rotation that map F j to F i

(Fig. 9a). In the latter case, the interior closest point

(ICP) method minimizes a target function that measures
the distance between Ri, R j (Fig. 9b). Even though
both methods perform well, the ICP method has been
selected for our analysis as it allows the user to prop-
erly tune the convergence parameters (e.g., maximum
number of iterations, maximum tolerance). To avoid er-
rors related to the joint mobility, the shape registration
(Fig. 10(b,c)) is achieved by minimizing the `1 norm of
each couple of corresponding bones in the baseline and
follow-up.

Hausdorff distance of corresponding bones in two
aligned scans. For the detection and quantification
of local morphological variations (e.g., erosion) on a
bone with respect to its baseline, we apply the two-
side Hausdorff distance computed between the co-
registered shapes. For each vertex of the baseline sur-
face (Fig. 10(d,e)), the distance of the closest vertex of
the follow-up surface is rendered according to a color
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(a) (b) (c)

Figure 13: Low field MRI (0.2T ) magnification. Image resolution 256⇥ 256⇥ 104; x,y,z spacing 0.55mm, 0.55mm, 0.60mm. Coronal view (a)
of carpal bones and non interpolated zoom on the capitate-lunate distance, (b) (ITK-SNAP [86]). Capitate-lunate distance (c) (2.6mm, RadiAnt
DICOM Viewer [60]).

map, where blue and red identify small and large dis-
tance values, respectively.

Analysis of the local erosion. The one-side Hausdorff
distance provides a correspondence, which is not nec-
essarily injective, between the point of X and Y; in
fact, each point x is assigned to the point y 2Y such
that y = argmin{d(x,z), z 2Y}. Exploiting this corre-
spondence, a set of “eroded parts” is built on the base-
line shape by coupling the vertices of each triangle of
the baseline surface with the corresponding closest ver-
tices of the follow-up surface. Then, the volume of each
eroded part is computed and gives a quantitative local
information that is less affected by the global variabil-
ity of the pipeline (Figs. 10(f), 11). This information on
the position of the eroded regions (Fig. 12), their area
and volume variation are annotated in the segmentation.
To identify the zones with larger erosion, the values of
the Hausdorff distance are mapped onto the baseline (or
follow-up) geometry by means of a color map. A set of
“missing parts”, corresponding to the eroded volumes,
is visualized on the baseline shape.

4.4. Experimental results

We now discuss the morphological analysis of low-
resolution and up-sampled MR images of the hand-wrist
sector and affected by musculo-skeletal pathologies.

Pipeline repeatability assessment on the hand-wrist dis-
trict. To evaluate the variability associated with the
user-guided segmentation process, we consider a set
of low-resolution MR images (0.20 Tesla, 256⇥ 256⇥
104; x,y,z spacing 0.55 mm, 0.55 mm, 0.60 mm) and

a rough estimation of the error in the intra-joint dis-
tance computation is derived as follow. According to
Fig. 13, the distance between capitate and lunate corre-
sponds to a minimum of 3 and a maximum of 5 pixels
crossed diagonally. Since each pixel crossed diagonally
measures 0.78mm, the associated distance can vary be-
tween 2.34mm and 3.90mm. Considering the voxels’ di-
mension, the relative errors for intra-bones distance and
global volume evaluation are about ±15% and ±25%,
respectively.

Inter-observer and intra-observer agreements of global
bone volume computation were evaluated with a data set
of 117 and 32 bones, respectively. Three expert users
segmented all the bones, and results were compared
and analyzed by Bland-Altman statistics [9]. Inter-
observer agreement analysis for each couple (useri vs.
user j), i, j = 1,2,3, gives biases and confidence bounds
(±1.96 · s) of �0.5 ± 20.0%, �18.1 ± 27.2%, �11.1 ±
29.6%. Intra-observer agreement analysis gives lim-
its of agreement (±1.96 ·s) of �3.2±19.5% for user1,
0.7±16.5% for user2, and �4.2±13.3% for user3,
user2. Given the geometric complexity and scale of the
wrist sector, we conclude that this variability is due to
the image quality; in fact, these results are in agreement
with the evaluation of the relative errors based on image.

Follow-up volume variation and joint space narrowing.
A set of 120 bones (15 wrists), segmented by an expert
in rheumatoid arthritis and acquired from 5 different pa-
tients, was analyzed to check if the global bone volume
and the intra-bones distance (related to joint space nar-
rowing) can be correlated to the disease evolution, in
terms of erosion progression, assuming that erosion pro-
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(a)

(b)

Figure 14: (a) Bone volume variations and (b) joint space narrowing
for each follow-up exam for carpal bones. Vi and Di are the volume
and distance at the i-th temporal acquisition, respectively.

duce a global volume reduction. For each bone, volume
variations are computed with respect to the baseline ac-
quisition (i.e., earliest exam); a negative value indicates
a reduction in the bone volume. Results are dispersed
(Figs. 14(a), 15(a)) and the mean value for the volume
variation is (+1.76 ± 10.71%). In these experiments,
the statistical significance of the results is p = 0.89 and
it reflects the difficulties of operating on complex and
low-resolution data already noted in the data variability
analysis.

Intra-bones distance variations were evaluated on the
same data set, to check if this measure is able to track
the joint space narrowing evolution (connected to bone
erosion, also in the early stages of the disease), as-
suming that the intra joint distance decreases in time,
as typical of the rheumatoid arthritis. On the basis

(a)

(b)

Figure 15: (a) Inter-observer agreement. Data and line of equality
for the volume of bones segmented by user1 vs user2 (circles) and vs
user3 (triangles). (b) Intra-observer agreement. Data and line of
equality for the volume of bones segmented by each user (1st vs 2nd

measurement). user1 (squares), user2 (circles) and user3 (triangles).

of an anatomical atlas, the adjacency matrix for the
wrist sector (Fig. 8) was used to couple neighbor bones.
Fig. 14(b) shows the mean distance variation for each
wrist sector with reference to its corresponding base-
line exam (Fig. 15(b)). Each point on the graph rep-
resents the mean of the distance variations of a com-
plete joint acquired at a time following the baseline, and
the corresponding confidence bound. The global mean
value (±s) is �5.3± 8.1%. Also in this case the check
of statistical significance is critical, as we obtained a
p = 0.64.

Morphological analysis of up-sampled MR images.
Image up-sampling allows us to achieve a more ac-
curate segmentation and quantitative analysis of mor-
phological parameters of segmented 3D anatomical dis-
tricts from low field MR images, reduce the effect of
volume variability, and improve the consistency of the
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(a) 128⇥128⇥51

(b) 256⇥256⇥102

Figure 16: Single bone segmentation. Two views (a) of a slice are
compared with the two corresponding views (b) of the up-sampled im-
age. The image up-sampling facilitates the selection of the seed points
of small bones and tiny cartilage for a more detailed and reliable seg-
mentation with the geodesics-active contour.

results for follow-up data. To this end (Fig. 16), a
MR image 128 ⇥ 128 ⇥ 51 has been up-sampled to a
finer 256⇥ 256⇥ 102 resolution and the comparison is
conducted setting the same segmentation parameters for
the low- and high-resolution images. The segmenta-
tion algorithm works better on higher resolution images
because it penetrates higher frequency features more
easily and can reach the segmented object boundaries
more closely. Main improvements (Figs. 12, 17) after
up-sampling include a higher precision along contours
(from left image) and reliability of the morphology of
the segmented bones (right image). Due to a higher pre-
cision in the identification of the seed voxel used by the
segmentation with geodesic active contours, we avoid
segmentation errors, such as spurious connected com-
ponents (first upper bone on the right), which are typ-
ically induced by a wrong selection of the seed in low
resolution images.

Our preliminary results on the comparison of the seg-
mentation of up-sampled MR images of the hand-wrist
sectors of 10 patients affected by rheumatoid arthri-

128⇥128⇥51

256⇥256⇥102

Figure 17: Segmentation of an MR 3D image: coronal view to the left
side and 3D rendering to the right. The upper image corresponds to a
volume with resolution 128⇥128⇥51, whereas the lower image is its
RBF up-sampled version, with resolution 256⇥256⇥102.

tis with the corresponding ground-truth [77] show (i)
a higher precision (23.5%) in the identification of the
seed voxel used by the segmentation with geodesic ac-
tive contours; (ii) a higher precision (19.5%) of the seg-
mented contours and less smoothed bones; and (iii) a
lower number (21%) of segmentation errors (e.g., spu-
rious connected components) that are typically induced
by a wrong selection of the seed pixels.

5. Conclusions and future work

We have proposed a local moving least-squares approx-
imation with radial basis functions for the up-sampling
of low resolution MR images; in this case, the volumet-
ric and meshless properties of the approximation allow
us to easily process images with anisotropic voxel size
by rescaling the image and inter-slices resolution. This
up-sampling method has been used to support a more
accurate segmentation and quantitative analysis of mor-
phological parameters of segmented 3D anatomical dis-
tricts.

Morphological characterization can provide valuable in-
dicators to be used in clinical assessments and in studies

16



(a) (b) (c) (d)

Figure 18: Knee joint and intra-bones distance (femur $ tibia)
mapped in different postures. (a,c) 0� and (b,d) 80�. The colormap
varies from white (lowest distance) to red (highest distance).

on large populations. By this characterization, an auto-
matic analysis of large data sets can be carried out, thus
addressing inter-observer agreement issues and saving
experts’ time. The mandatory prerequisite for the use of
these procedures is a significant validation against ex-
perts’ evaluation with a reference scoring system (e.g.,
for rheumatoid arthritis, the RAMRIS). The morpholog-
ical analysis of the local erosion can be useful to com-
pare qualitatively and quantitatively segmented data,
and to aid the identification of eroded or locally mod-
ified regions.

The morphological characterization of segmented data
is general enough to be applied to different anatomical
districts for the identification of artifacts in the acquired
data, the analysis of the effects of degenerative patholo-
gies of soft and bony tissues, and the localization of
shape variations due to posture. Initial tests have been
performed on knee sectors from low field MR images
(0.25 Tesla; x,y,z spacing: 0.70 mm, 0.70 mm, 0.90
mm), acquired at two different postures, with a joint an-
gle of 0� and 80�, and segmented by an expert. The
evaluated variation of the intra-bones distances on two
scans of the knee district of four patients shows a ho-
mogeneous reduction (�24.0±22%) for the 80� posture
with respect to the 0� posture. The distances between
adjacent structures is mapped on the bones (Fig. 18) and
the quantification of their variation is useful to charac-
terize different diseases, such as cartilage destruction or
other pathologies involving a geometrical modification
of the joint structures. Finally, as future work we plan to
validate both the image up-sapling method and the mor-
phological analysis on a larger data set, also involving
medical doctors and radiologist for a clinical validation
of the results.
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