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Abstract

Background: Pathogenesis of in�ammatory diseases can be tracked by studying the causality relationships

among the factors contributing to its development. We could, for instance, hypothesize on the connections of

the pathogenesis outcomes to the observed conditions. And to prove such causal hypotheses we would need to

have the full understanding of the causal relationships, and we would have to provide all the necessary

evidences to support our claims. In practice, however, we might not possess all the background knowledge on

the causality relationships, and we might be unable to collect all the evidence to prove our hypotheses.

Results: In this work we propose a methodology for the translation of biological knowledge on causality

relationships of biological processes and their e�ects on conditions to a computational framework for

hypothesis testing. The methodology consists of two main points: hypothesis graph construction from the

formalization of the background knowledge on causality relationships, and con�dence measurement in a

causality hypothesis as a normalized weighted path computation in the hypothesis graph. In this framework, we

can simulate collection of evidences and assess con�dence in a causality hypothesis by measuring it

proportionally to the amount of available knowledge and collected evidences.

Conclusions: We evaluate our methodology on a hypothesis graph that represents both contributing factors

which may cause cartilage degradation and the factors which might be caused by the cartilage degradation

during osteoarthritis. Hypothesis graph construction has proven to be robust to the addition of potentially

contradictory information on the simultaneously positive and negative e�ects. The obtained con�dence

measures for the speci�c causality hypotheses have been validated by our domain experts, and, correspond

closely to their subjective assessments of con�dences in investigated hypotheses. Overall, our methodology for

a shared hypothesis testing framework exhibits important properties that researchers will �nd useful in

literature review for their experimental studies, planning and prioritizing evidence collection acquisition

procedures, and testing their hypotheses with di�erent depths of knowledge on causal dependencies of

biological processes and their e�ects on the observed conditions.
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Background

Diseases and pathologies may be evidenced across mul-

tiple biological scales (e.g., cellular, molecular, organic,

behavioural) as a set of factors, linked among each

other via causal relationships, which constitute the

multi-scale pathological cascade reactions. To study

the underlying causation mechanism of a certain dis-

ease, life science researchers rely on various sources,

such as (i) current knowledge (e.g. previously pub-

lished studies from the �eld), (ii) their data deduced

from empirical analysis of laboratory experiments

(e.g., gene analysis, immuno-assays, cell viability as-

says, histology) or other tests (i.e. mechanical tests,

imaging, gait analysis), as well as on (iii) consulta-

tions with other �elds (i.e. related research areas, hos-

pitals). To e�ectively make and test (prove or reject)

a causality hypothesis life science research studies face

two challenges: i) the information used in research

processes comes from various sources and is heteroge-

neous, which makes it hard to organize, analyze, and

assess their relevance in the overall disease process, ii)

researchers from di�erent �elds (i.e. molecular biolo-

gist, mechanobiologist, orthopaedists etc.) investigate

the same pathological event from di�erent aspects (bi-

ological scales), and might not be aware of the over-

laps and the impact of their individual �ndings in a

joint venture of understanding causality mechanisms

of pathologies and diseases.

To better convey the idea of causality hypothesis

testing we will focus on knee articular cartilage de-

generation during the onset of osteoarthritis (OA) to

present our use-case scenario. OA is a joint degenera-

tive disease and can be caused due to several factors,

such as genetic predisposition, joint overuse, previous

injury to the joint. The e�ect of these factors is hall-

marked with a complete joint breakdown and dysfunc-
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tion, causing a lot of pain [1, 2]. Based on common

knowledge, performed experiments, and diagnosis the

causality relation of certain factors to the development

of OA might have di�erent degrees of con�dence. On

the one hand, the degeneration of cartilage, synovial

thickening, osteophyte formation and joint space nar-

rowing, are known to be as the most marked features

of OA [3, 4, 5, 6]. On the other hand, for some fac-

tors we may have lower degrees of con�dence in their

causality relationship to OA. For instance, while be-

ing common in patients with OA, the exact causality

relation of in�ammation to OA is not completely un-

derstood [7, 8]. To handle such scenarios of causality

hypothesis testing, we propose to translate what we

observe in the biology into a computational framework,

which supports the researchers in their hypothesis test-

ing. In such a framework we systematically translate

our background knowledge on causality relationships

into the representations suitable for the computation,

and we quantify con�dences in our hypothesis with re-

spect to the amount of evidences that we can supply

to the framework.

Hypothesis testing

Schematically, the causality relationships between the

factors of diseases can be represented as directed

causality networks H0...n, where factors fi are rep-

resented as nodes and the causality relationships as

arcs (fi, fj). For instance, our hypothesis H0 can state

that in�ammation contributes to the development of

OA, where the in�ammation is the cause of biological

processes which lead to cartilage degradation (factor

f2, Figure 1) and �nally manifest in joint deforma-

tion condition (factor f3, Figure 1). To prove such a

causality hypothesis we need to evidence the instances

of all the participating factors. For example, the fac-

tors f2, f3 are evidenced as the results of diagnosis of

OA done by radiologists and orthopaedists using imag-

ing techniques (i.e. magnetic resonance-MRI, X-ray).
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By studying the literature we can discover that the

in�ammation can be characterized by the detection of

high levels of pro-in�ammatory factors in the synovial

cavity, and in particular tumor necrosis factor alpha

(TNFα) (factor f1 in Figure 1), was demonstrated to

be present in excess during OA [9]. A justi�cation or

evidence for the factor f1 (evidence of f1 in Figure 1)

can be obtained with molecular biological techniques

screening the biomarkers of the synovial �uid. Given

our knowledge of the participating biological processes

(hypothesis H0) and the supporting evidences (evi-

dences for factors f1, f2, f3) we have a certain level of

con�dence that the synovial in�ammation has been the

cause of the development of OA. However, is our hy-

pothesisH0 complete enough, and are the evidences for

factors (f1, f2, f3) enough to support our hypothesis?

Have we missed other factors? Have we been complete

enough in our characterization of all the participating

factors which support the hypothesis that the synovial

in�ammation has been the cause of cartilage degrada-

tion? Is the joint deformation the only consequence of

such a pathological cascaded of reactions?

Studying further the causality mechanism of OA,

we can re�ne our initial hypothesis H0. In particu-

lar, cellular biological studies observed that TNFα fa-

cilitates the catabolic processes of the chondrocytes,

including the production of matrix metalloproteinases

(MMPs), and the production of aggrecanases (mem-

bers of the ADAMTs family) [10, 11]. The MMPs,

especially MMP-13 and aggrecanases are proteases

responsible for the degradation of collagen macro-

molecules and proteoglycans respectively, as evidenced

in literature [12]. Collagens and proteoglycans are the

main building blocks of articular cartilage. Accord-

ingly, the excess of TNFα in the joint space can be

associated to the disruption of biochemical balance in

the cartilage. Factors: Loss of collagen and proteogly-

can molecules (factors f4, f5 in Figure 2), are caused

by the action of matrix degrading proteases, and can

be attached to higher scales in the OA processes, such

as the mechanical functioning of cartilage. These fac-

tors can be evidenced on the tissue level by histol-

ogy and immuno-histochemistry (evidences of f4, f5

in Figure 2). Collaborations with mechano-biological

�elds allow the detection of the changes in cartilage

mechanical properties due to the e�ect of high levels

of MMPs and aggrecanses [13, 14]. It has been shown

previously that once the cartilage su�ers collagen loss,

it is no longer able to withstand the mechanical forces

in the knee [15, 16]. Consequently, the cartilage, the

trabecular bone beneath it, and all surrounding tis-

sue components su�er damage, which can be evidenced

by imaging [17, 18]. Damage to the joint components,

will cause pain, joint deformation and loss of function,

which is a subject of behavioural scales and can be

evidenced by gait analysis [19].

The relationship between in�ammation and OA is

even more complex, than the example brought above.

Nonetheless, collaborations among medical doctors

and bench researchers of various �elds can reveal the

connections between molecular evidence and those ob-

served on organ scale. Accordingly, we can re�ne our

hypothesis by adding new causal relationships.

Shared hypothesis testing framework

In this work we propose a methodology for the transla-

tion of biological knowledge on causality relationships

of biological processes and their e�ects on conditions

to a computational framework for hypothesis testing.

The methodology consists of two main points: hypoth-

esis graph construction from the formalization of the

background knowledge on causality relationships, and

con�dence measurement in a causality hypothesis as a

normalized weighted path computation in the hypoth-

esis graph. In this framework, we can simulate collec-

tion of evidences and assess con�dence in a causal-

ity hypothesis by measuring it proportionally to the
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Figure 1 Causality hypothesis of TNF alpha overproduction leading to cartilage degeneration and provoking joint deformation.

Figure 2 Re�ned causality hypothesis of pro-in�ammatory factors leading to loss of building blocks of articular cartilage � collagen

and proteoglycan �, which in turn lead to cartilage degeneration and provoking joint deformation.
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amount of available knowledge and collected evidences.

We evaluate our method on an example causality hy-

pothesis of factors which cause and, in turn, may be

caused by cartilage degeneration during osteoarthri-

tis. The results of the evaluation and the feedback

from the domain experts allow us to conclude that our

methodology may simulate the execution of evidence

collection, and can be used as a means of measuring

the con�dence in a causality hypothesis with respect

to the amount of knowledge on causality relationships

among participating factors. Such simulation supports

the researchers in the planning and in the prioritization

of their next studies by identifying important factors

in a causality hypothesis. Our methodology demon-

strates robustness towards the addition of potentially

inconsistent knowledge by separately representing op-

posite causality possibilities for complementary biolog-

ical scenarios.

We would like to emphasize that the contribution of

this work is the methodology to extract the causality

information from the input ontologies into a hypoth-

esis graph, and perform hypothesis testing on the ob-

tained hypothesis graph. The ontologies and the on-

tology mappings discussed and provided are created

together with the domain experts, and in the context

of this work are only meant to serve as proof of con-

cept.

Related work

To the best of our knowledge the proposed methodol-

ogy to test a causality hypothesis in a collaborative set-

ting with respect to the amount of knowledge available

for the framework does not have an equivalent method-

ology or an implemented system to test against, in

its entirety. However, once decomposed, our method-

ology can be compared on speci�c steps and modelling

choices.

Formalization of background knowledge on a causal hy-

pothesis as ontologies. Our methodology for causal-

ity hypothesis testing relies on the formalization of

the background knowledge on a hypothesis with on-

tologies. Indeed, to facilitate knowledge sharing and

increase understanding of the method in use, it is com-

mon to employ already existing ontologies that are well

agreed on in the biomedical community (e.g., Gene

Ontology [20]). The most widely used ontology mod-

eling language is the (OWL 2) [21], based on formal

logic [22]. The main advantage of using logic over al-

ternative representation mechanisms is that logic pro-

vides an unambiguous meaning to ontologies. We as-

sume that the input ontologies to our framework focus

on (biological) processes and �ndings (i.e., laboratory

tests) that are or may be linked via a causality rela-

tionship, and other (material) entities that (actively or

passively) participate in the process or �nding. In this

work we assume that the input ontologies follow good

practices and relevant ontology classes are either sub-

sumed by or annotated with, for example, the concept

Biological_process (key concept in the Gene On-

tology [20]) or Finding (e.g., common semantic type

in the UMLS semantic network [23]). We expect the

following (object) properties or its potential subprop-

erties as source for causality relationships: causes,

results in, regulates, positively regulates,

negatively regulates, increases levels of

and decreases levels of. Most of these proper-

ties are available in the Relations ontology [24] and are

extensively used in biomedical ontologies. We reuse

the domain independent categories Continuant and

Occurrent, which are commonly used in the literature

(e.g., River Flow Model of Diseases (RFM) [25]) and in

upper ontologies (e.g., DOLCE [26] and BFO [27]). For

example, processes and �ndings are typically classi�ed

as occurrents, while material entities as continuants.
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Graph projection of OWL ontologies. The hypothesis

graph construction heavily relies on the graph projec-

tion of OWL ontologies. This procedure, at its core,

transforms an OWL ontology into its graph represen-

tation, by studying the axiomatic structure of the on-

tology and identifying nodes and edges (arcs) of its

equivalent graph representation. Implicitly, Lembo et

al. [28] use graph projections of OWL QL to pro-

pose ontology classi�cation algorithm, which trans-

forms OWL QL ontologies into directed graphs, and

computes subsumption relations via transitive closure

computation. Analogously, Seidenberg et al [29] use

graph representation of ontologies to propose a seg-

mentation algorithm based on subgraph extraction

procedure. Some of the proposed methodologies for

graph projection of OWL ontologies draw their inspira-

tions from Social Network Analysis (SNA) [30] for the

representation of the encoded semantic information in

an OWL ontology. SNA is the process of investigating

social structures of connected information/knowledge

entities through the use of network and graph the-

ories. SNA techniques application to ontology anal-

ysis has been pioneered by Hoser et al. [31], where

standards in SNA community graph metrics based on:

node degree, node betweenness and on eigenanalysis

of the adjacency matrix, were used to study proper-

ties of ontologies. The connection between SNA and

ontology analysis have also been studied in a highly

cited paper by Mika [32], bridging Social Networks

and Semantics. Network partitioning algorithms have

been used by Stuckenschmidt et al. [33] to identify

islands of ontology, a notion comparable to a mod-

ule of ontology (as used by the graph-based modular

extraction community), with the applications to Vi-

sual Analytics. Grontocrawler [34] transforms OWL-

EL [35] ontologies into networks by de�ning a rule-

based edge production procedure, which takes into ac-

count existential and values restrictions on object re-

lations. Formal treatment of rule-based graph projec-

tion procedures and their connection to the logical en-

tailment problem for OWL 2 ontologies have been re-

cently proposed [36, 37, 38]. In our work we use Gron-

tocrawler [34] for graph-based ontology projection, en-

riched with the projection of advanced OWL 2 axioms,

as suggested in Soylu et al. [38].

Rule-based reasoning with incomplete knowledge in the

biomedical domain. Similarly to previous works [39,

40], we focus on graph-based reasoning with incom-

plete knowledge, by analyzing OWL ontologies, to sup-

port researchers in the biomedical domain. In partic-

ular, Larson et al. [39] propose a method for rule-

based reasoning with a multi-scale neuroanatomical

ontology, where the authors conclude that OWL is an

important technology for merging disparate data and

performing multi-scale reasoning. They demonstrate

how OWL-based ontologies and rule-based reasoning

help infer novel facts about brain connectivity at large

scale from the existence of synapses at a micro scale.

Oberkampf et al. [40] propose a methodology for inter-

preting patient clinical data (medical images and re-

ports), semantically annotated by concepts from large

medical ontologies. They introduce an ontology con-

taining lymphoma-related diseases and symptoms as

well as their relations and use it to infer likely diseases

of patients based on annotations.

In contrast to Larson et al. [39] our graph-based rea-

soning method relies on network analysis of the �nal

hypothesis graph, which presents an advantage of a full

overview of all possible conclusions with the quanti�-

cation of the con�dence measure induced by the num-

ber of evidences that have been collected and the �nal

topology of the hypothesis graph. Oberkampf et al. [40]

focus on the problem of inferring likely diseases in the

presence of patient-speci�c evidences, represented as

symptoms, and the similarity of the diseases is then

ranked based on their distances to the symptoms. The
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focus of our work and the methodology are di�erent.

We tailor our causality hypotheses to a single diseases

and study causality relationships among the factors,

the �ndings obtained with our methodology may have

impact not only in the clinical, patient-speci�c setting,

but can be used in general research. Technically, our

methodology for graph projections employs a rich set

of OWL 2 axioms, and go beyond the usual taxonom-

ical relationships which can be extracted from the on-

tologies.

Probabilistic methodologies for reasoning with incom-

plete knowledge and causality inference, with applica-

tions in the biomedical domain. In a more general set-

ting, not necessarily connected to the biomedical do-

main, there are examples of general theoretical frame-

works which marry formal methods (e.g., First-Order

Logic) and probabilistic models (e.g., stochastic pro-

cesses) [41, 42, 43]. Application of those methodologies

in biology is studied in Ciocchetta et al [44] who tune

the Stochastic Process Algebra language PEPA [43]

to model biological pathways and complex biologi-

cal networks, involving stochastic processes. This line

of works bridge �uncertainty" and �formal methods"

for general frameworks for reasoning with incomplete

knowledge in biology, and di�erently with our method-

ology is not compatible with OWL ontologies, and thus

cannot bene�t from OWL reasoning tasks (e.g., clas-

si�cation, alignment).

Our work is perhaps similar in spirit to that of

Pearl et al. [45, 46], where the authors advocate for

a paradigmatic shift that must be undertaken in mov-

ing from traditional statistical analysis to causal anal-

ysis of multivariate data [45, 46]. Pearl et al. propose

a formal treatment and a uni�ed methodology for the

graphical representation of joint probability distribu-

tions along with rules for inferring causality directly

from such graphical representations. In particular, the

directed graphs are introduced as a compact way of

representing conditional independence restrictions for

complex multidimensional probability distributions. In

contrast, in our work we do not stress the existence

of joint probability distributions between the factors

of a hypothesis. Rather, we rely on expert knowledge

of causality relationship between the factors, already

known to the community, such as knowledge graphs

which can be obtained from literature sources, and/or

can be formalized in an OWL ontology by the domain

experts.

Methods

Herein we assume that there exists a universal causal-

ity hypothesis H that can be represented as a net-

work of factors with causality relationships, which we

call a hypothesis graph. The background knowledge

on the hypothesis graph H is formalized in an on-

tology O, which, for instance, may de�ne factors as

biological processes and conditions, and the causal-

ity relationships may indicate the connections between

them. Moreover, we assume that di�erent experts for-

malize the background knowledge on H in ontologies

Oi=1...n, such that each Oi highlights a certain subpart

of this hypothesis graph H. Consider O1 = 〈RboxO1
,

TboxO1
〉, O2 = 〈RboxO2

, TboxO2
〉 in Figure 3, the ex-

amples of formalization of the the causality relation-

ships among biological processes that participate in

OA pathogenesis, from two di�erent points of view.

The overlaps among the ontologies Oi may or may

not exist and, as the number of ontologies increases,

we assume that it is possible to assemble (align) these

ontologies. The assembled ontology
⋃n
i Oi = O repre-

sents the iteratively gathered and formalized biological

and biomedical knowledge on the hypothesis graph H.

Finally, the causality hypothesis graph H � the net-

work of factors interconnected with causality relation-

ships � can be extracted from the assembled ontology

O at any given point in time ti (Ht0 , . . . ,Htn). As a

consequence, the shape of the causality hypothesis Hti
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RboxO1
:=

results in InverseOf: resulted from

positively regulates ◦ results in SubPropertyOf: results in

negatively regulates ◦ positively regulates SubPropertyOf: negatively regulates

TboxO1
:=

Synovial inflammation SubClassOf: positively regulates some TNF alpha overproduction

TNF alpha overproduction SubClassOf: positively regulates some Chondrocytes catabolic activity

TNF alpha overproduction SubClassOf: negatively regulates some Chondrocytes anabolic activity

Chondrocytes catabolic activity SubClassOf: positively regulates some

(Aggrecanases production or MMP13 production)

Chondrocytes anabolic activity SubClassOf: positively regulates some

(Proteoglycan production or Collagen production)

Aggrecanases production SubClassOf: results in some Loss of Proteoglycan

MMP13 production SubClassOf: results in some Loss of Collagen

Loss of Proteoglycan SubClassOf: results in some Biochemical imbalance

Loss of Collagen SubClassOf: results in some Biochemical imbalance

Biochemical imbalance SubClassOf: resulted from some (Loss of Proteoglycan or Loss of Collagen)

RboxO2
:={

results in Characteristics: Transitive

results in ◦ causes SubPropertyOf: results in

TboxO2
:=

Knee joint inflammation SubClassOf: Synovial capsule inflammation

Disruption of biochemical balance SubClassOf: results in some (causes some Cartilage degradation)

Cartilage degeneration SubClassOf: results in some (results in some Knee joint inflammation)

Figure 3 Formalization of knowledge on OA pathogenesis processes

depends on the amount of background knowledge for-

malized in O at ti. Finally, the hypothesis graph con-

struction from ontologies is performed in a three-step

process: (1) projection of OWL 2 ontologies O1, . . . , On

into ontology graphs G1, . . . , Gn, (2) assembly of the

ontology graph G from G1, . . . , Gn, and (3) normaliza-

tion of the graph G to obtain the hypothesis graph H

(Figure 4).

Graph-based ontology projections

The nodes of the ontology-graph are unary predi-

cates and edges are labelled with possible relations be-

tween such elements, that is, binary predicates. The

key property of this ontology-graph is that every X-

labelled edge e = (v, w) is justi�ed by one or more

axioms entailed by the ontology which �semantically

relates� v to w via X. For example, edges e of the

form A
broader−−−−−→ B are justi�ed by the OWL 2 ax-

iom: B SubClassOf: A . We rely on the OWL 2 rea-
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Figure 4 Our methodology de�nes a pipeline to transform background knowledge into a hypothesis graph via sequential application

of processing steps: projection of input Oi ontologies into ontology graphs Gi, assembly of an ontology graph G with input ontology

mappings mi, normalization of the ontology graph G into a �nal hypothesis graph H.

soner HermiT [47] to build the ontology graph (e.g., ex-

traction of classi�cation) to consider both explicit and

implicit knowledge de�ned in the ontology O. In the

following, A,Asup, Asub, B,Bi represent classes, while

R,S, Si, R
− represent object properties. Edges e of the

form A
R−→ B are justi�ed by the following OWL 2 ax-

ioms:

(i) `A SubClassOf: R restriction B', where re-

striction is one of the following: some (existen-

tial restriction), only (universal restriction), min

x (minimum cardinality), max x (maximum car-

dinality) and exactly x (exact cardinality). Note

that axioms with an union of classes in the re-

striction (e.g. `A SubClassOf: R restriction

B1 or . . . or Bn') or an intersection of classes in

the restriction (e.g. `A SubClassOf: R restriction

B1 and . . . and Bn') also justify edges of the form

A
R−→ Bi with 1 ≤ i ≤ n.

(ii) Nesting (one level) with the same object property:

`A SubClassOf: R restriction (R restriction B)',

being R transitive.

(iii) Nesting (one level) with di�erent properties:

`A SubClassOf: R restriction (S restriction B)',

and the role chain axiom of the form: `R ◦
S SubPropertyOf: R'.

(iv) A combination of range and domain axioms of the

form: `R Domain: A' and `R Range: B'.

(v) Role chain axiom of the form: `S0 ◦ · · · ◦ Sn
SubPropertyOf: R' when the ontology graph al-

ready includes the edges A
S0−→ C1 . . . Cn

Sn−−→ B.

(vi) `R InverseOf: R−' when the ontology graph al-

ready includes the edge B
R−−−→ A.

(vii) Top-down propagation of restrictions:

`A SubClassOf: Asup' when the ontology graph

already includes the edge Asup
R−→ B.

(viii) Entailment among restrictions:

`Bsub SubClassOf: B' when the ontology graph

already includes the edge A
R−→ Bsub.

Assembly of ontology graphs

The ontologies formalizing the hypothesis graph may

be created by di�erent group of experts with di�er-

ent modelling (e.g., de�ning relationships between oc-

currents, or between ocurrents and continuants) and

naming conventions. For example, a group may use the

concept Cartilage degradation (occurrent) from

SNOMED-CT [48] while another may prefer to use

the concept negative regulation of cartilage

development (occurrent) from the GO [20]. Further-

more, other groups would rather use the concept

Cartilage (continuant) and push the semantics of

degradation into the ontology property.

Ontology alignment will enable the integration and

assembly of the (sub-)ontology graphs in a larger on-

tology graph. An ontology alignment is composed by

a set of ontology mappings. An ontology mapping m

between two concepts C1, C2 from the vocabulary of

two di�erent ontologies O1, O2 can be de�ned as fol-

lows: m = 〈C1, C2, r〉, where r is the relation be-

tween C1 and C2 and, using SKOS vocabulary, it
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Figure 5 Schematic representation of the three-step pipeline for the hypothesis graph H creation from the two input ontologies

O1, O2: i) use graph projection rules to transform each ontology Oi into its graph representation, ii) assemble the hypothesis graph

H from two ontology graphs by merging concepts for which we have ontology mappings mi, and �nally iii) normalize the hypothesis

graph H by extracting only the relevant information of causality relationships among the occurrents.

can be of one of the following types: skos:exactMatch, skos:closeMatch, skos:relatedMatch, skos:narrowMatch

or skos:broadMatch.
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Mappings to guide the assembly (i.e., link factors

from di�erent hypothesis) can be discovered in online

resources like UMLS Metathesaurus [49] and BioPortal

[50, 51], or using state of the art ontology alignment

systems like LogMap [52] and AML [53]. Mappings

in UMLS Metathesaurus or BioPortal typically repre-

sent correspondences of the type skos:exactMatch and

skos:closeMatch,[1] while the output provided by au-

tomatic systems will typically provided mappings of

diverse type and quality.

If a mapping exists to link two factors f1 and f
′

1

from two di�erent (sub-)ontology graphs, then these

two factors are merged into one. The weight of the

merged factor will be according to the type of the on-

tology mapping. In our setting, we assume the follow-

ing weight values w (ranging from 0 to 1) depending on

the mapping type: (1) skos:exactMatch mappings are

associated with a weight value 1.0, (2) skos:closeMatch

mappings with 0.75, while (3) skos:relatedMatch,

skos:narrowMatch and skos:broadMatch with a weight

of 0.5. The weight associated to each (merged) factor

will play a key role in our methodology for con�dence

measurement in a hypothesis.

Normalization of the assembled graph

The �nal step of hypothesis graph construction is

the normalization of the assembled hypothesis graph,

which pushes the rich semantics of causality relation-

ships (e.g., edges of the type A
R−→ B ) into, possibly

newly created, nodes. Generally speaking, the normal-

ization procedure leads to a simpli�ed representation

of all the available facts on causality relationships as a

directed graph with speci�c constraints on the types of

nodes and edges. Speci�cally, we aim to build a 1-mode

network where all the nodes represent the same fun-

damental metaphysical type (occurrent), and all the

edges represent the simpli�ed causality relationship

[1]See https://www.bioontology.org/wiki/index.php/BioPortal_

Mappings

de�ned between two occurrents. This is necessary be-

cause the general graph projection step of our pipeline

might produce semantic networks of concepts where

the concepts and the edges may have di�erent types.

For instance, the ontology graph may contain edges

representing causality relationships involving both an

occurrent and a continuant � two fundamentally dif-

ferent metaphysical types of concepts. Additionally,

the semantics of causality relations may re�ect com-

plementary e�ect when we consider causal chains in

the hypothesis graph, for instance negative and posi-

tive regulations of biological processes. The hypothesis

graph normalization consists in iterative rewriting of

the graph, where we �lter all edges and rewrite them

according to the following patterns:

(i) Occurrent
R−→ Occurrent where R represent the

property results in or causes justi�es the edge

in the hypothesis graph Occurrent 7→ Occurrent.

For example, if the ontology contains the axiom,

`Chondrocyte catabolism SubClassOf: results

in some Collagen degradation' the ontology

graph will include the edge Chondrocytes

catabolism
results in−−−−−−→ Collagen degradation

and the hypothesis graph will contain the causal-

ity relationship Chondrocytes catabolism 7→
Collagen degradation.

(ii) Occurrent
R−→ Occurrent where R represent the

property positively regulates or negatively

regulates. In this case the positive or nega-

tive semantics of the property are pushed to a

fresh ocurrent concept. For example, if the ontol-

ogy projection contains the edge Chondrocytes

anabolism
positively regulates−−−−−−−−−−−−−→ Collagen

production, we will add the causal relationship

Chondrocyte anabolism 7→ Positive regulation

of Collagen production.

(iii) Occurrent
R−→ Continuant where R represent the

property positively regulates, negatively
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regulates, increases levels of or decreases

levels of. For example if the ontology graph

includes the edge TNF alpha overproduction
decreases levels of−−−−−−−−−−−−→ Collagen the hypothesis graph

will include the fresh term Decreased levels

of Collagen (or Loss of Collagen) and the

causal relationship TNF alpha overproduction

7→ Decreased levels of Collagen.

In Figure 5 we illustrate the whole pipeline of con-

structing a hypothesis graph H from the two input on-

tologies O1, O2, de�ned in Figure 3. The two ontology

graphs G1, G2 represent the individual extent of back-

ground knowledge of the two specialists on causality

relationships of factors between synovial in�ammation

and cartilage degradation (obtained by projecting on-

tologies O1, O2). The assembly of the graphs takes as

input the ontology mappings m1 andm2 (see Table 1),

which have been manually created by the domain ex-

perts, to merge the graphs G1, G2. Overall, the graph

projection and the graph assembly steps of the pipeline

work in couple to entail new causal links among the

factors, which we represent in the assembled graph G.

For instance, once we align the two graphs we entail

the circular causality relationship, which states that

Synovial inflammation may be, simultaneously, the

cause and the e�ect of Cartilage degradation. No-

tice that before the alignment the two specialists were

not aware of this circular relationship. The normaliza-

tion of the assembled graph G splits the two biological

scenarios of chondrocytes' anabolic and catabolic ac-

tivities, such that the resulting hypothesis graph H

contains only unambiguous causality relations among

the factors.

Measuring con�dence in a hypothesis

Once we obtain the hypothesis graph H, we are ready

to form the causality hypothesis and perform evidence-

based hypothesis testing. Before we delve into this

topic, we brie�y introduce the notation that we use

for the hypothesis graphs throughout this work.

Notation for Hypothesis Graphs. Let H = (N,A)

be a directed graph, which we call hypothesis graph,

with ni ∈ N set of nodes. And A is a set of ordered

pairs of (s, t) in N , called arcs, where s denote the

source of the arc, and t the target of the arc [54]. A

path π(s, t) from source node s to the target node t

is denoted as πi(s, t) = (s, ni, . . . , t). We write Π(s, t)

to denote all possible simple paths in the hypothesis

graph from node s to the node t. A simple path is

a path which does not have repeating nodes. And we

use I(s, t) = {ni|ni ∈ πi,∀πi(s, t) ∈ Π(s, t)} to re-

fer to all the interior nodes which appear in all paths

from s to t.

Causality hypothesis. A causal hypothesis asks a

question whether some factor (s) has caused another

factor (t). There might be a direct causality relation-

ship from s to t, or there might exist an indirect causal-

ity relationship, such that s has caused t through some

intermediate factors, which might have participated

actively or passively to the causality chain from s to

t. These causal chains from s to t represent di�erent

possibilities of how s might have caused t. We use the

notation for hypothesis graph H to represent factors

as nodes fi ∈ N , direct causality relationships as arcs

(fi, fj) ∈ E, and causality chains as paths Π(s, t).

Consider an example causality hypothesis that pos-

tulates that s = Positive regulation of TNF alpha

overproduction caused t = Synovial inflammation

in Figure 6. In our example, we do not have a direct

causality relationship between these two factors, how-

ever there exist 6 di�erent causal chains, i.e., 6 di�erent

ways in which s might have caused t. In Figure 6 we

present two possible chains of factors (Path 1, Path 2)

starting from s and leading to t.
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Table 1 Ontology mappings created manually by the domain experts

Mapping mi O1 : C1 O2 : C2 r c

m1 O1:Synovial inflammation O2:Synovial capsule inflammation skos:closeMatch 0.75

m2 O1:Biochemical imbalance O2:Disruption of biochemical balance skos:relatedMatch 0.5

Figure 6 Two possible paths from the factor Positive regulation of TNF alpha overproduction to the factor Synovial

inflammation.

We are con�dent in our causality hypothesis � within

the domain of the known facts � when we are able to

provide evidences to all the factors that participate in

causality chains from s to t. I(s, t) represents the set

of nodes in the hypothesis graph H, which correspond

to the factors that need to be evidenced, E is an indi-

cator set which denotes factors evidenced so far, and

C(s, t, E) be the con�dence function. Intuitively, con-

�dence in a hypothesis should grow with the number

of factors that we are able to evidence, more factors

we evidence, more con�dent we are that s did indeed

cause t. Since, we might have several possibilities of

s causing t we, �rst, propose to measure con�dence

of each causality possibility separately, and then, we

propose to measure overall causality hypothesis as a

sum of the con�dences of all the known possibilities

(Equation 1). To this end, our con�dence in a causal-

ity hypothesis depends on three parameters: i) source

of the causality (s), ii) target of the causality (t), and

iii) set of evidenced factors (E).

Cts(E) =
∑

π∈Π(s,t)

∑
f∈π

F(f), (1)

Measuring con�dence in a causality hypothesis pro-

portionally to the number of evidenced factors might

not be correct, there are two sources of uncertainty

that might negatively e�ect our con�dence in the hy-

pothesis, even if we collect all the evidences, and

should be re�ected in the way we measure con�dence

in the hypothesis: i) the quality of the evidences, i.e.,
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we can surely state that the evidence is not due to

errors, and ii) quality of our modelling of the hypoth-

esis. The �rst source of uncertainty comes from the

fact that during our experiments or literature search

for the justi�cations of evidences we might face er-

rors. And the second source of uncertainty comes from

the way we model our hypothesis as an assembly of

sub-hypotheses, which relies on ontology mappings to

merge formalizations of the background knowledge of

the hypothesis. During this process we might introduce

uncertainty for the matched concepts representing fac-

tors of the hypothesis.

To this end, we introduce two functions de�ned on

the nodes of the hypothesis graph, φ : N 7→ [0 . . . 1]

that associates weights of the con�dence in the on-

tology mapping to every factor, and represents our

con�dence in the hypothesis modelling, and ψ : N 7→
[0 . . . 1] associates weights of the con�dence in evidence

for each factor. Equation 2 represents the contribution

function for the hypothesis factors.

F(f) =



0 f 6∈ E

factor f not evidenced

φ(f)ψ(f) f ∈ E

weighted contribution

if f evidenced

(2)

Properties of the con�dence function. Con�dence in

causality hypothesis is de�ned as a sum of weighted

contributions of factors, that participate in causality

possibilities. The contributions of factors is a weighted,

and most importantly a non-negative, function (Equa-

tion 1), thus thus as we add more evidenced factors

the value of the function, can only grow. Con�dence

depends on the evidenced factors, it has its minimum

value (Cts = 0) when we have no evidences (E = ∅),
and it has its maximum value when all the factors

have been evidenced (argmaxCts when E = I(s, t)). To

this end, we can normalize our con�dence function to

the maximum possible con�dence value we can obtain,

when all the factors have been evidenced, such that

the con�dence is always measured in the [0 . . . 1] range

(Equation 3).

0 =
Cts(E = ∅)
Cts(E = I)

≤ C
t
s(E ⊂ I)

Cts(E = I)
<
Cts(E = I)

Cts(E = I)
= 1. (3)

Results

With the help of our domain experts in biology and

biomechanical engineering (multi-disciplinary consor-

tium of the EU FP7 �MultiScaleHuman� project [55])

we have been formalizing the background knowledge

around factors participating in the process of cartilage

degradation, which can be evidenced across di�erent

biological scales. This background knowledge has been

captured, as a proof of concept, in an OWL 2 ontol-

ogy O and has been iteratively validated with our do-

main experts. This ontology has been designed to con-

tain a signi�cant amount of axioms which go beyond

the usual taxonomical relationships in the biomedical

ontologies, and instead, model causality relationships

with rich ontology concept construction operators in-

cluding nested OWL restrictions and property chains.

During our interviews (t1, . . . , tn) with the domain ex-

perts we have been updating the background knowl-

edge formalization (Ot1 , . . . , Otn), either with the help

of our domain experts or by translating discovered

causality relationships from the literature ourselves.

Each snapshot of the background knowledge Oti has

been presented as the results of our methodology of

hypothesis graph construction Hti for validation and

feedback. To report our results we �x our attention to

two speci�c snapshots of the causality hypothesis, and

we refer to them as Hsub and Hbroader. Hsub has been

extracted from the state of the ontology Oti , which

corresponds to the extent of knowledge of the molec-

ular biologist on causality relationships between the
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biological processes which lead to cartilage degrada-

tion with a focus on cellular and molecular biological

scales (Hsub is an equivalent hypothesis graph to what

we presented as a normalized hypothesis graph in the

Methods section). Hbroader was extracted from the on-

tology Otj at time point tj , which corresponds to the

ontology Oti updated with more knowledge about fac-

tors that lead to cartilage degradation, from organ and

behavior biological scales. Table 2 summarizes Oti , Otj

with ontology metrics and descriptions, computed with

the Protégé ontology editor.

In Figure 7 we notice that Hsub = 〈Nsub, Asub〉 is a
subgraph of Hbroader = 〈Nbroader, Abroader〉, such that

Nsub ⊆ Nbroader and Asub ⊆ Abroader . The additional
knowledge (Hbroader/Hsub) is not present in the for-

malization by the molecular biologist, meaning that he

might not be aware about alternative factors that con-

cur during osteoarthritis and might have played a sig-

ni�cant role in the causality hypothesis (Figure 7). The

subsequent experiments demonstrate how our method-

ology supports hypothesis testing by quantifying con-

�dence in a causality hypothesis with incomplete ev-

idences, and provides means to compare con�dence

measures with di�erent depths of knowledge.

Table 2 Oti , Otj ontology metrics

Ontology metric Oti Otj

Axioms 66 151

Logical axiom count 39 92

Declaration axiom count 18 34

Class count 14 30

Object property count 4 4

Robustness of the system in presence of complementary

causality relationships.

Our methodology is capable of adequately tracking two

complementary biological scenarios, where one factor

might stand as a cause of two opposite e�ects. We

tested our methodology for hypothesis graph construc-

tion with small increments in our knowledge which

might lead to big changes in the shape of the causality

hypothesis, and what we can understand from it. In

particular, at the time point ti the knowledge on the

hypothesis contained causality path from Mechanical

loading factor to the Chondrocytes catabolism fac-

tor. Indeed, the positive regulation of chondrocytes'

catabolism by mechanical loading has been demon-

strated in the literature [56]. However, it is also known

that the mechanical loading can also have positive ef-

fect on the chondrocytes anabolism (the opposite bi-

ological process of catabolism), and thus facilitate pro-

teoglycan and collagen production [57]. Based on the

complementary causality e�ects of mechanical load-

ing on the biochemical balance in cartilage, we can

thus hypothesize that mechanical loading might result

in both bene�cial and detrimental conditions of the

joint cartilage. This additional knowledge is re�ected

in the way our methodology constructs the hypothesis

graph. In particular, the normalization patterns (intro-

duced in the Methodology section) split the causality

chains starting in mechanical loading, that span two

complementary causality possibilities of benign and

malign e�ect on articular joint (Figure 7). Validly, all

the possibilities of mechanical loading leading carti-

lage degradation pass through the factor positive

regulation of chondrocytes catabolism and we

do not have a situation where mechanical loading

leads to cartilage degradation by passing through

positive regulation of chondrocytes anabolism.

Conversely all the causality chains which lead from

mechanical loading to collagen or proteoglycan

production pass through chondrocytes anabolism

factor.

Relative con�dence measurement

This experiment demonstrates how molecular objec-

tives can measure his con�dence in the causality hy-

pothesis according to his knowledge on causality rela-

tionships (Hsub) and can compare it to the con�dence
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Figure 7 Bold contours show the normalized hypothesis graph "known" to the molecular biologist Hsub, whereas the dotted

contours delineate the additional knowledge of which the biologist is not aware Hbroader.

measure when we add more knowledge Hbroader. We

simulate the case where the molecular biologist wants

to test a hypothesis that s = Synovial inflammation

has caused t = Cartilage degradation. We treat

Hbroader as a coarse approximation of our universal

knowledge on all possible causalities which lead from

s to t, and Hsub as a personal view of that universal

knowledge by the molecular biologist.

Table 3 Statistics of the graphs

Statistic Hsub Hbroader

Number of nodes |N | 15 30

Number of arcs |A| 19 57

Number of possible causal chains from s to t 6 24

Number of possible factors to evidence |I| 9 12

Table 3 summarizes network statistics of the two

graphs. In particular, in the universal hypothesis graph

Hbroader there are 24 possible causal chains which lead

from s to t, whereas in the subgraphHsub we have only

6 possible causal chains, which means that the molec-

ular biologist is missing a signi�cant amount of knowl-

edge about the causalities that he is studying. More-

over, in the universal knowledge of causality hypothesis

we have 12 (|IHbroader
| = 12) factors that can poten-

tially be evidenced and would contribute positively to

the overall con�dence of the hypothesis, whereas in

the restricted knowledge case we are aware of only 9

(|IHsub
| = 9) factors which need to be evidenced to ob-

tain the maximum con�dence in the same hypothesis

that s has caused t. To study the behavior of the con-

�dence function Cts in these two cases we perform the

following tests: i) study the evolution of the con�dence

function separately for two graphs, ii) normalize the

con�dence function with the maximum possible con�-

dence for individual graphs, iii) normalize the two con-

�dence functions with the maximum con�dence in the

universal graph. Note that, the parameter for the con-
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�dence function is the set of evidenced nodes, where

each node may have di�erent importance value, as de-

�ned by the weighting function F . To take into account
all the possible variability of the con�dence function we

compute the distributions of the con�dence values for a

gradually increasing number of evidences. That is, we

start with the case where the evidence set is empty,

corresponding to the initial phase of hypothesis test-

ing and where our con�dence is 0. Then, we compute

the distribution of con�dences for all evidence sets of

size (cardinality) 1, corresponding to di�erent choices

of choosing one factor to evidence. For instance, for the

universal hypothesis graph Hbroader we have 12 ways

to to prove hypothesis by evidencing only one factor

(out of 12 possible), whereas for Hsub we have 9 fac-

tors to choose from. We continue computing con�dence

distributions until we reach the full evidence set.

Figure 8 Con�dence distributions for gradually increasing

sizes of evidence sets for the two graphs Hsub, Hbroader, with

a trivial weighting function F(f) = 1

Figure 8 represents the distribution of con�dences

computed with Cts (Equation 1) for gradually increas-

ing sizes of evidence sets, with a trivial weighting func-

tion of factors � F = const 1 � where every factor has

equal contribution to the causality chains. The mean

values of the con�dence distributions grow linearly as

we increase the number of evidences, as expected, the

maximum con�dence value obtained in the universal

case is bigger than in the restricted case because we

take into account more possibilities in the universal

case. We now use the individual maximum mean con-

�dence values for each graph to scale our distributions,

such that they always stay in the 0..1 range.

Figure 9 Con�dence distributions for gradually increasing

sizes of evidence sets for the two graphs Hsub, Hbroader,

normalized by its maximum possible con�dence value

Figure 9 shows the normalized version of the con-

�dence distributions, namely Ĉts =
Ct

s

max(Ct
s) for Hsub

and Hbroader. In particular, it shows that a molecular

biologist, relative to his extent of knowledge, obtains

the 100% con�dence in his causality hypothesis by ev-

idencing all the possible factors which contribute to

all the possible ways in which s might have caused t,

however, with the same amount of evidence, but taking

into account universal knowledge about the causality

possibilities, his con�dence is less than 100%, which

shows that he has missed some important causality

possibilities. To quantify this uncertainty, which is pro-

portionate to the amount of missed causality possi-

bilities, we scale both con�dence distributions by the

maximum con�dence value that we may obtain in the

universal case.

Figure 10 demonstrates the relative con�dence of the

molecular biologist to the universal causality hypothe-
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Figure 10 Con�dence distributions for gradually increasing

sizes of evidence sets for the two graphs Hsub, Hbroader,

normalized by the maximum possible con�dence value in the

universal case

sis for the same evidenced sets. The x-axis is truncated

to evidence sets of size 9, since molecular biologist is

only aware of 9 factors which need to be evidenced

to prove his hypothesis. If we collect the mean values

of the con�dence distributions in two vectors x1, x2

then we can quantify the error as their Euclidean dis-

tance ‖x1 − x2‖. In Table 4 we summarize the errors

which quantify the uncertainty in obtained con�dence

measures with respect to the universal case for di�er-

ent weighting functions Fi. These weighting functions

were chosen as follows: i) F1 trivial weighting of im-

portance of factors, ii) F2 random weighting of impor-

tance of each factor, iii) F3 gives more importance to

factors which molecular biologist is aware of, whereas

those that he is not aware of are given less impor-

tance, iv) F4 opposite to F3, we give more importance

to factors that molecular biologist is not aware of and

we decrease the importance of factors that he is aware

of. The error variation is intuitive, if we evidence the

most important factors, even if we miss other factors

and other causality chains, but whose importance to

the overall hypothesis is signi�cantly smaller, then we

are more con�dent even with a restricted knowledge

of the causality possibilities. Vice-versa, if we evidence

less important factors and we miss the important ones,

then our con�dence is much more compromised.

Table 4 Mean squared error between the con�dence distributions

for di�erent weighting functions F

Weighting function Fi Error

F1(f) = 1 2.17

F2(f) = random(0, 1) 2.09

F3(f) = 1 if f ∈ IHsub
, otherwise 0.1 1.95

F4(f) = 1 if f ∈ IHbroader
, otherwise 0.1 2.96

Local importance of factors

Importance of the factors for a causality hypothesis

can be deduced from our con�dence measure de�ned

on the hypothesis graph. The factors ranked as the

most important may help the researchers prioritize

their next experiments, studies, and may help in the

discovery of the potential collaborations with other sci-

entists. Analogously, the factors that are identi�ed as

the least important for a speci�c causality hypothe-

sis hint on the lack of knowledge about the possibly

missing causality relationships, and might represent an

opportunity to focus on an underresearched topic. In

particular, Cts measures our con�dence in the causal-

ity hypothesis that factor s caused t with a given set

of evidenced nodes E . This function accumulates the

weighted contribution of all evidenced nodes in each

causality possibility leading from s to t. When we �rst

start proving our hypothesis we do not have any ev-

idence and we have a choice of I to evidence from.

However, do we need to evidence all the factors in the

interior of the causality hypothesis I? What if we can

only obtain an incomplete set of evidences, which fac-

tors should we choose? Intuitively, we should �rst focus

on evidencing factors which are most important in our

causality hypothesis. But how can we assess the impor-

tance of each factor in the causality hypothesis? In this

experiment, we propose a general approach to assess-

ing the local importance of factors, independently of
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the weighting function F . To do so we start with a case
where we do not have any evidence E = ∅, we then rank
each factor fi in the causality hypothesis by its po-

tential contribution to the con�dence in the causality

hypothesis if it was evidenced |Cts(E ∪ fi)−Cts(E = ∅)|.

Figure 11 depicts the variation of potential contri-

butions to the overall con�dence measure Cts for each

factor fi. In particular, we can observe that in both

cases: Hsub restricted personal view of the hypothesis,

and Hbroader universal causality hypothesis the most

important factors are: Positive regulation of TNF

alpha overproduction, s =Synovial inflammation,

t =Cartilage degeneration and Biochemical

imbalance. Indeed, to prove that s has resulted in

t our best strategy is to focus on evidencing those

two factors, however, given our knowledge of causal-

ity relationships, we might choose to evidence al-

ternative factors to obtain the same overall con�-

dence in the validity of our causality hypothesis.

We also observe that by extracting more knowl-

edge on causality relationships more important fac-

tors to our causality hypothesis emerge, i.e., the

factors which we did not know about before. For

instance, Decrease of cartilage elasticity and

Water content increase in cartilage have rela-

tively low potential con�dence contributions (< 0.04)

and thus our unawareness of the contribution to

causality hypothesis of these factors is not so penal-

izing. Yet, Diminution of load bearing capacity

of cartilage is capable of contributing more than

10% of the overall con�dence measure Cts. It is also in-

teresting to observe that adding knowledge (Hbroader)

reduces the importance of Biochemical imbalance

factor to the point that it is no longer one of the most

important factors in the causality hypothesis.

Generalization of the hypothesis con�guration

In the previous experiment we identi�ed the most im-

portant factors, such that evidencing them would max-

imize our con�dence in the causality hypothesis that s

resulted in t. We can use the local importance of factors

to the hypothesis con�guration to target our evidence

collection. Suppose we managed to evidence the four

most important factors for the hypothesis graph Hsub,

which we summarize in Table 5.

For the same evidence set Esub we obtain the normal-

ized con�dence of Cts = 0.66 for Hsub and C
t
s = 0.53

for Hbroader. Now, we ask ourselves a question "with

the same evidence set what other causalities can we

prove (with the same con�dence)?". If we keep the

same evidence set Esub we are able to prove causali-

ties with a con�dence > 60% as depicted in Table 6.

These causalities correspond to very similar causal-

ity chains, as our initial causality hypothesis that

Synovial inflammation has results in Cartilage

degradation.

Intuitively, Table 7 demonstrates that for the same

evidence set, as we add more knowledge (Hbroader) we

are able to prove more causality relationships, with a

good con�dence (> 50%).

Generalization of the hypothesis con�guration leads

to the scenarios where the seemingly wrong causality

relationships, might actually be explained with plau-

sible interpretations. One such example scenario is

when we obtain the signi�cant con�dence (0.60) in a

causality hypothesis that Cartilage calcification

might result in Positive regulation of TNF alpha

overproduction (line 1 in Table 7). First, it is tempt-

ing to say that this is a wrong hypothesis, and is due

to the error in the formalization of the background

knowledge on causality relationships. Partly, because

calci�cation of cartilage entails cell apoptosis and thus

should cause the decrease of levels of TNF alpha cy-

tokine cells. However, we get the high con�dence score

in this causality due to the presence of a path from

Cartilage calcification to Positive regulation

of TNF alpha overproduction (see Figure 7). This
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Figure 11 Contributions of the interior factors of the hypothesis s caused t for two hypothesis graphs Hsub, Hbroader with two

di�erent depths of knowledge

Table 5 4 Most important factors for Hsub in the two hypothesis graphs and their relative con�dence values in both Hsub and Hbroader

Evidence set Esub importance for Hbroader importance for Hsub

Biochemical imbalance 0.10 0.16

Cartilage degeneration 0.14 0.16

Positive regulation of TNF alpha overproduction 0.14 0.16

Synovial in�ammation 0.14 0.16

Ct
s(Esub) for Hbroader Ct

s(Esub) for Hsub

0.53 0.66

Table 6 Other causalities we can prove (> 60% con�dence) with the same evidence set Esub

source s target t Ct
s(Esub) for Hbroader Ct

s(Esub) for Hsub

Cartilage degeneration Biochemical imbalance 0.66 0.66

Negative regulation of Collagen production 0.75 0.75

Positive regulation of TNF alpha overproduction 1.00 1.00

Loss of collagen Positive regulation of TNF alpha overproduction 0.62 0.80

Loss of proteoglycan Positive regulation of TNF alpha overproduction 0.62 0.80

Synovial in�ammation Negative regulation of Chondrocytes anabolic activity 0.66 0.66

Negative regulation of Collagen production 0.66 0.66

Negative regulation of Proteoglycan production 0.66 0.66

Positive regulation of Chondrocytes catabolic activity 0.66 0.66

Positive regulation of TNF alpha overproduction 1.00 1.00

path represents our knowledge that calci�ed cartilage

will result in degeneration of cartilage tissue, which

will provoke synovial in�ammation, and we hypoth-

esized that synovial in�ammation will result in posi-

tive regulation of TNF alpha. After a discussion with

our domain experts we reached the conclusion that,

although this causality relationship between calci�ed

cartilage and positive regulation of TNF alpha might

seem contradictory, there actually might be a plausi-

ble explanation. Namely, while the calci�cation causes
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Table 7 Causalities we can prove (> 50% con�dence), as we add more knowledge, and which we cannot prove with our restricted

knowledge of causality relationships

source s target t Ct
s(Esub) for Hbroader Ct

s(Esub) for Hsub

Cartilage calci�cation Positive regulation of TNF alpha overproduction 0.60 0.0

Diminution of load bearing capacity Biochemical imbalance 0.57 0.0

of cartilage Negative regulation of Chondrocytes anabolic activity 0.60 0.0

Negative regulation of Collagen production 0.60 0.0

Negative regulation of Proteoglycan production 0.60 0.0

Positive regulation of Chondrocytes catabolic activity 0.60 0.0

Positive regulation of TNF alpha overproduction 0.75 0.0

Synovial in�ammation 0.66 0.0

Meniscal tear Biochemical imbalance 0.57 0.0

Negative regulation of Collagen production 0.60 0.0

Negative regulation of Proteoglycan production 0.60 0.0

Positive regulation of Chondrocytes catabolic activity 0.60 0.0

Positive regulation of TNF alpha overproduction 0.75 0.0

Water content increase in cartilage Positive regulation of TNF alpha overproduction 0.60 0.0

tissue death in cartilage, it does so only in a speci�c

region of cartilage. The calci�ed region, however, will

induce the diminution of the load bearing properties of

the whole cartilage, and this will provoke the synovial

in�ammation, which, in turn, will result in excessive

levels of TNF alpha in the neighbouring regions of the

cartilage (neighbouring to the calci�ed region).

Prototype

We implemented a prototype (Figure 12) to inter-

actively apply and present the proposed method-

ology for causality hypothesis testing on the ob-

tained hypothesis graphs. The demo of the proto-

type is available at http://hypothtest.plumdeq.

xyz/test/. Source code for the hypothesis testing of

the prototype and proof of concept ontologies, as well

as the Jupyter Notebooks (reproducible experiments

presented in this manuscript) are available on GitHub

at https://github.com/plumdeq/hypothtest (see

Subsection Availability of data and materials).

The interface of the prototype is divided into 4 logi-

cal blocks, labeled A, B, C, D in Figure 12.

(A) Control over the hypothesis con�guration. The

users can change the hypothesis con�guration in two

modes - i) identifying the boundary nodes s, t, ii) se-

lecting the evidenced nodes E . Each mode is triggered

by clicking on an associated button (see Figure 12, la-

bel A), and then selecting the speci�c nodes in the

hypothesis graph (Figure 12, label D).

(B) Hypothesis summary. A textual summary of a

current hypothesis con�guration (see Figure 12, la-

bel B).

(C) Local importance of nodes in the hypothesis. Lo-

cal importance of each node with respect to the hy-

pothesis con�guration.

(D) Visualisation of the hypothesis graph. Interac-

tive network visualisation with the force directed lay-

out [58] of the hypothesis graph H. The users can

interactively click on the nodes and drag them for

a visually better spatial distribution of the network.

The boundary nodes are visually distinguished as com-

pletely opaque nodes in the hypothesis graph (Fig-

ure 12), while all other nodes are semi-opaque. Evi-

denced nodes are visually distinguished as green nodes.

Consequently, if a node ni is both evidenced and ei-

ther a source or a target of the con�dence evaluation,

then it will be opaque green. The backend (server) of

the prototype constructs hypothesis graphs, computes
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importance measures on each node of the graph, and

evaluates con�dence in the hypothesis con�guration.

The frontend (client) is responsible for the interac-

tive visualisation of the hypothesis graph, and serves

as a user interface. In particular the user can interac-

tively assign the boundary nodes, and mark nodes as

evidenced. The user input is then transmitted to the

backend via custom data exchange protocol, based on

JSON �les. Each time the user changes the con�gu-

ration of the hypothesis (i.e., evidences/unevidences

node or assigns new source or target nodes of the con-

�dence evaluation the hypothesis con�dence is reeval-

uated and the results are sent back to the client.

Discussion

We evaluated our methodology on a hypothesis graph

which covers our use-case scenario of cartilage degra-

dation during osteoarthritis. The obtained hypothe-

sis graph represents both contributing factors which

may cause cartilage degradation and the factors which

might be caused by the cartilage degradation. Hy-

pothesis graph construction (see Section Robustness

of the system in presence of complementary causal-

ity relationships) has proven to be robust to the ad-

dition of potentially contradictory information on the

simultaneously positive and negative e�ects, by ade-

quately separating two complementary causality sce-

narios. By evaluating our methodology for relative con-

�dence measurement (see Section Relative con�dence

measurement) we have observed the following: i) the

more evidences we are able to provide (as E → I) the
bigger is our overall con�dence function (con�dence

grows Cts ↑), ii) our relative con�dence to the universal
knowledge of the hypothesis (i.e., the di�erence in con-

�dences) is proportionate to how much knowledge on

causal possibilities we lack with respect to the univer-

sal causality hypothesis, the less causality possibilities

we take into account in our formalization the smaller

is our con�dence in the causality hypothesis with re-

spect to the universal knowledge of the causality hy-

pothesis, iii) our con�dence in the causality hypoth-

esis increases when we evidence more factors favored

by F with respect to the universal formalization of

the causality hypothesis, even if we do not have full

knowledge of the causality possibilities. The domain

experts found that our computational methodology for

assessing con�dence in a causality hypothesis propor-

tionally to the amount of available knowledge, corre-

sponds to their subjective assessments of con�dences

in an investigated hypothesis. Moreover, the obtained

con�dence measures for the speci�c causality hypothe-

ses have been validated by our domain experts, and,

in some cases, have led to new interpretations of the

already known causality connections (see Section Gen-

eralization of the hypothesis con�guration).

Limits, assumptions and dependencies of methodology.

Overall our framework is dependant on the validity,

quality and the richness of the modelling, which will

induce the �nal shape and topology of the hypothesis

graph and the way the con�dence is assessed by using

our methodology for con�dence assessment. Of course,

our methodology has its limits and has its assump-

tions and dependencies. Main assumptions and depen-

dencies of the methodology for hypothesis testing rely

on: i) ontological commitment of the input ontologies

Oi that formalize background biological knowledge on

causality relationships, ii) biological validity and log-

ical consistency of the formalized knowledge - input

to the framework, iii) weighting scheme of factors of

the hypothesis that measure the quality of the ontol-

ogy matching of concepts used to assemble the �nal

ontology, and the con�dence of the obtained evidence

for a speci�c factor fi. Ontological commitment of the

modelled realities representing causality relationships

among the factors should follow the good design pat-

terns for modelling causalities, for both concepts and

relationships that interrelate those concepts. In partic-
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Figure 12 The interface of the prototype is divided into 4 logical blocks: A) control over the hypothesis con�guration h, B)

hypothesis summary, C) local importance of nodes in the hypothesis and D) visualization of the hypothesis graph.

ular, we consider the processual perspective of a dis-

ease as a causal chain structure as in River Flow Model

of Diseases [25] as opposed to an object-like perspec-

tive of a whole constituting a disease as in Ontology of

General Medical Sciences (OGMS) [59]. As has been

argued by Rovetto and Mizgouchi [25], the causality in

OGMS is unstated, implicit or stated indirectly. The

general account of disease in OGMS draws ideas from

Scheuermann et al. [60], and distinguishes diseases

from disease courses. Diseases in OGMS are treated as

dispositions potentially realizable via pathological pro-

cesses, and have some disorders as their physical basis.

In our work, we focus on causality relationships which

constitute a disease course, and reason on these rela-

tionships by relying on graph analysis techniques. Due

to this modelling choice we expect the input ontologies

to follow the RFM account of disease as a causal chain

structure. Speci�cally, our methodology for hypothe-

sis graph construction extracts causality relationships

from the assembled ontology such that the �nal hy-

pothesis graph contains nodes as occurrents, either bi-

ological processes, as exemplary modelled in the Gene

Ontology [20], or as conditions (abnormal states), ac-

cording to the guidelines of the RFM. The causality re-

lationships should be compliant with the Relation On-

tology [24], which, among other types, covers concur-

rent and overlapping causality relationships between

the occurrent entities, relying on Allen interval alge-

bra calculus for temporal logic [61]. Strategies toward

harmonization between disease accounts in OGMS and

RFM are brought up in Rovetto and Mizgouchi [25].

Hypothesis graph creation with input ontologies fol-

lowing the OGMS modelling of disease could represent

a promising future direction for the community.
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Weighting scheme for the factors of the hypothesis

graph will largely depend on the context (e.g., stud-

ied disease), the quality of the ontology mappings, and

the con�dence of the obtained evidence. Mappings to

guide the assembly (i.e., link factors from di�erent

hypothesis) can be discovered in online resources like

UMLS Metathesaurus [49] or BioPortal [50, 51], or us-

ing state of the art ontology alignment systems like

LogMap [52] or AML [53]. Con�dence in the obtained

evidence will depend on the methodology of the exper-

iment and should be assessed by the executioner of the

experiment, which might entail subjective importance

weight of the factor and might have subjective conse-

quences on the computation of the overall con�dence

in the causality hypothesis with our framework.

Conclusions

We have presented a promising and nascent method-

ology for the translation of biological knowledge on

causality relationships of biological processes and their

e�ects on conditions to a computational framework

for shared hypothesis testing. Furthermore, we have

de�ned a knowledge-driven, and evidenced-based way

of measuring con�dence in a causality hypothesis pro-

portionally to the amount of available knowledge and

collected evidences. The methodology resumes in two

points: hypothesis graph construction from the formal-

izations of the background knowledge on causality rela-

tionships, and con�dence measurement in a causality

hypothesis as a normalized weighted path computa-

tion in the hypothesis graph. Lastly, we have made

the source code and materials available to the com-

munity on GitHub at https://github.com/plumdeq/

hypothtest (see Subsection Availability of data and

materials).

Herein we took advantage of our domain experts to

build a simpli�ed and a tractable version of a causality

hypothesis graph of cartilage degradation during to os-

teoarthritis, and to validate our methodology for con-

�dence assessment of causality hypothesis. The evalu-

ation results, the feedback from our experts, and the

lessons learnt from this overall experience allow us to

conclude that a methodology for shared hypothesis

testing could be incorporated as an invaluable asset

to the online biological knowledge graph mining ser-

vices. In particular, our hypothesis graph construction

methodology could be used routinely to enrich biolog-

ical knowledge graphs (e.g., Knowledge Bio [62]) and

online databases (e.g., Gene Wiki [63]) by extracting

the causality relationships information from OWL 2

ontologies. Of course, the proposed set of patterns for

the normalization of the hypothesis graph will have

to be augmented and tuned for a speci�c studied con-

text. We, for instance, de�ned graph rewriting normal-

ization patterns to deal with complementary biological

scenarios of simultaneously positive and negative regu-

lations of biological processes (see Section Robustness

of the system in presence of complementary causality

relationships). In fact, the graph rewriting patterns is

a general paradigm for the transformation of formal-

ized knowledge on a speci�c biological pattern into

its equivalent graph representation and might open an

opportunity for more research and practical contribu-

tions from the biomedical community.

Shared hypothesis testing services built on top of the

con�dence measurement (see Section Relative con�-

dence measurement), and the inference procedures it

induces (see Section Generalization of the hypothe-

sis con�guration), will enhance the biological knowl-

edge graphs with advanced simulation functionalities

for continuous research. These services could support

researchers in literature review for their experimen-

tal studies, planning and prioritizing evidence collec-

tion acquisition procedures, and testing their hypothe-

ses with di�erent depths of knowledge on causal de-

pendencies of biological processes and their e�ects on

the observed conditions. Measuring con�dence in a
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causality hypothesis relatively to the already discov-

ered causality relationships might serve in the assess-

ment of the fairness of the obtained results, and its

signi�cance to the already known results. We believe

that the shared hypothesis testing could serve as an

important asset for the costless re-enactment of the

experiments, and might eventually contribute to the

future, purely computational benchmarks for the vali-

dation of the experiments.
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