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Abstract

This paper proposes an accurate, computationally efficient, and spectrum-free for-
mulation of the heat diffusion smoothing on 3D shapes, represented as triangle
meshes. The idea behind our approach is to apply a (r,r)-degree Padé-Chebyshev
rational approximation to the solution of the heat diffusion equation. The pro-
posed formulation is equivalent to solve r sparse, symmetric linear systems, is
free of user-defined parameters, and is robust to surface discretization. We also
discuss a simple criterion to select the time parameter that provides the best com-
promise between approximation accuracy and smoothness of the solution. Finally,
our experiments on anatomical data show that the spectrum-free approach greatly
reduces the computational cost and guarantees a higher approximation accuracy
than previous work.

Keywords: Heat kernel smoothing; Surface-based representations;
Padé-Chebyshev method; Medical data.

1. Introduction

In medical applications, the heat kernel is central in diffusion filtering and
smoothing of images [1–6], 3D shapes [7, 8], and anatomical surfaces [9, 10].
However, the computational cost for the evaluation of the heat kernel is the main
bottleneck for processing both surfaces and volumetric data; in fact, it takes from
O(n) to O(n3) time on a data set sampled with n points, according to the spar-
sity of the Laplacian matrix. This aspect becomes more evident for medical data,
which are nowadays acquired by PET, MRI systems and whose resolution is con-
stantly increasing with the improvement of the underlying imaging protocols and
hardware.

To overcome the time-consuming computation of the Laplacian spectrum on
large data sets (Sect. 2), the heat kernel has been approximated by prolongat-
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Figure 1: L-curve and `1 discrepancy. (a) Optimal parameter and corresponding diffusion
smoothing (upper part, right�Padé-Chebyshev approximation of degree r = 7) on the noisy 3D
shapes of the teeth. (b) Error e1 := k(Kt �K(k)

t )eik1 (y-axis) between the Padé-Chebyshev
approximation (r := 7) of Kt and its truncated spectral approximation K(k)

t with k eigenpairs
(k  103, x-axis), and different values of t.

ing its values evaluated on a sub-sampling of the input surface [11–13]; applying
multi-resolution decompositions [14] or a rational approximation of the exponen-
tial representation of the heat kernel [15]; and considering the contribution of the
eigenvectors related to smaller eigenvalues. The heat equation has been solved
through explicit [16] or backward [17, 18] Euler methods, whose solution no more
satisfies the diffusion problem. Further approaches apply a Krylov subspace pro-
jection [19], which becomes computationally expensive when the dimension of
the Krylov space increases, still remaining much lower than n.

This paper proposes an accurate, computationally efficient, and spectrum-free
evaluation of the diffusive smoothing on 3D shapes, represented as polygonal
meshes. The idea behind our approach (Sect. 3) is to apply the (r,r)-degree
Padé-Chebyshev rational polynomial approximation of the exponential map to
the solution of the heat equation. This spectrum-free formulation converts the
heat equation to a set of sparse, symmetric linear systems and the resulting com-
putational scheme is independent of the evaluation of the Laplacian spectrum,
the selection of a specific subset of eigenpairs, and multi-resolutive prolongation
operators. Our approach has a linear computational cost, is free of user-defined
parameters, and works with sparse, symmetric, well-conditioned matrices. Since
the computation is mainly based on numerical linear algebra, our method can
be applied to any class of Laplacian weights and any data representation (e.g.,
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3D shapes, multi-dimensional data), thus overcoming the ambiguous definition
of multi-resolutive and prolongation operators on point-sampled or non-manifold
surfaces. Bypassing the computation of the eigenvectors related to small eigenval-
ues, which are necessary to correctly recover local features of the input shape or
signal, the spectrum-free computation is robust with respect to data discretization.
As a result, it properly encodes local and global features of the input data in the
heat diffusion kernel. For any data representation and Laplacian weights, the accu-
racy of the heat smoothing computed through the Padé-Chebyshev approximation
is lower than 10�r, where r := 5,7 is the degree of the rational polynomial, and can
be further reduced by slightly increasing r. Finally (Sect. 4), our experiments on
surfaces and volumes representing anatomical data show that the spectrum-free
approach greatly reduces the computational cost (from 32 up to 164 times) and
guarantee a higher approximation accuracy than previous work.

2. Previous work

Let us consider the heat equation (∂t +D)F(·, t) = 0, F(·,0) = f , on a closed,
connected manifoldN of R3, where f :N ! R defines the initial condition onM.
The solution to the heat equation (∂t +D)F(p, t) = 0, F(·,0) = f , is computed as
the convolution F(p, t) := Kt(p, ·)? f between the initial condition f and the heat
kernel Kt(p,q) := Â+1

n=0 exp(�lnt)fn(p)fn(q). Here, {(ln,fn)}+1n=0 is the Lapla-
cian eigensystem Dfn = lnfn, ln  ln+1.

The heat equation is solved through its FEM formulation [20] on a discrete
surface M (e.g., triangle mesh, point set) of N . Indicating with L̃ the Lapla-
cian matrix, which discretizes the Laplace-Beltrami operator onM, the “power”
method applies the identity (Kt/m)

m = Kt , where m is chosen in such a way that
t/m is sufficiently small to guarantee that the approximation Kt/m ⇡ (I� t

mL̃) is
accurate. Here, I is the identity matrix. However, the selection of m and its ef-
fect on the approximation accuracy cannot be estimated a-priori. In [17, 18], the
solution to the heat equation is computed through the Euler backward method
(tL̃+ I)Fk+1(t) = Fk(t), F0 = f. The resulting functions are over-smoothed and
converge to a constant map, as k!+1. Krylov subspace projection [19], which
replaces the Laplacian matrix with a full coefficient matrix of smaller size, has
computational and memory bottlenecks when the dimension k of the Krylov space
increases, still remaining much lower than n (e.g., k ⇡ 5K).

Once the Laplacian matrix has been computed, we evaluate its spectrum and
approximate the heat kernel by considering the contribution of the Laplacian
eigenvectors related to smaller eigenvalues, which are computed in superlinear
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(d) k = 100 k = 500 k = 1K

Figure 2: (a) Input and (b) noisy data set. Diffusion smoothing of (b) computed with (c) the Padé-
Chebyshev approximation of degree r = 7 and (d) the truncated approximation with k Laplacian
eigenparis. A low number of eigenpairs oversmooth the shape details; increasing k reconstructs
the surface noise. The `1 error between (a) and the smooth approximation of (b) is lower than 1%
for (c) the Padé-Chebyshev method and (d) varies from 12% (k = 100) up to 13% (k = 1K) for the
truncated spectral approximation.

time [21]. Such an approximation is accurate only if the exponential filter decays
fast (e.g., large values of time). Otherwise, a lager number of eigenpairs is needed
and the resulting computational cost varies from O(kn2) to O(n3) time, according
to the sparsity of the Laplacian matrix. Furthermore, the number of eigenpairs is
heuristically selected and its effect on the resulting approximation accuracy can-
not be estimated without computing the whole spectrum. Finally, we can apply
multi-resolution prolongation operators [13] and numerical schemes based on the
Padé-Chebyschev polynomial [15, 22]. However, previous work has not addressed
this extension, convergence results, and the selection of the optimal scale.
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Figure 3: (a) Input and (b) noisy data set. Diffusion smoothing computed with (c) the Padé-
Chebyshev approximation and (d) the truncated approximation with k Laplacian eigenparis. The
truncated spectral approximation does not preserve sharp features of the brain structure, which are
accurately reconstructed by the Padé-Chebyshev method.

3. Discrete heat diffusion smoothing

Let us discretize the input shape as a triangle meshM, with verticesP := {pi}ni=1,
which is the output of a 3D scanning device or a segmentation of a MRI acquisi-
tion of an anatomical structure. Let L̃ := B�1L be the Laplacian matrix, where L
is a symmetric, positive semi-definite matrix and B is a symmetric and positive
definite matrix. On triangle meshes, L is the Laplacian matrix with cotangent
weights [23, 24] or associated to the Gaussian kernel [25], and B is the mass
matrix of the Voronoi [18] or triangle [26] areas. For any class of weights, the
Laplacian matrix L̃ is uniquely defined by the couple (L,B) and is associated to
the generalized eigensystem (X,L) such that

⇢
LX = BXL, X>BX = I,
X := [x1, . . . ,xn], L := diag(li)n

i=1,
(1)

where X and L are the eigenvectors’ and eigenvalues’ matrices. From the relation
(1), we get the identities B�1L = XLX�1 = XLX>B and

(B�1L)i = (XLX>B)i

= XL(X>BX) . . .(X>BX)LX>B
= XLiX>B, i 2 N.

(2)
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Figure 4: Heat diffusion smoothing of noisy data with the Padé-Cebyshev and truncated
spectral approximation. (a) Input data set, represented as a triangle mesh, and L-curve of the
approximation accuracy (y-axis) versus the solution smoothness (x-axis). (b) Data set achieved
by adding a Gaussian noise to (a). Diffusion smoothing computed with (c) the Padé-Chebyshev
approximation of degree r = 7 and (d) the truncated approximation with k Laplacian eigenparis.
A low number of eigenpairs smooths local details; increasing k reconstructs the noisy component.
The `1 error between the ground-truth (a) and the smooth approximation of (b) is lower than 1%
for the Padé-Chebyshev method (c) and varies from 12% (k = 100) up to 13% (k = 1K) for the
truncated spectral approximation (d).

Then, the spectral representation of the heat kernel is
(

Kt = exp(�tL̃) = Â+1
i=0

(�tB�1L)i

i! =(2) XDtX>B,
Dt := diag(exp(�lit))n

i=1 .
(3)

For a signal f :M! R, f := ( f (pi))n
i=1, sampled at P, the solution F(t) = Ktf,

F(t) := (F(pi, t))n
i=1, to the heat equation (∂t + L̃)F(t) = 0, F(0) = f, is achieved

by multiplying the heat kernel matrix Kt := exp(�tL̃) with the initial condition f.
Applying the Padé-Chebyshev approximation to the exponential of the Laplacian
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Algorithm 1 Spectrum-free heat kernel smoothing.
Require: A noisy map f : P! R, f := ( f (pi))n

i=1.
Ensure: A smooth approximation F(t) = Ktf of f.

1: Select the value of t (e.g., optimal value, Sect. 3).
2: for i = 1, . . . ,r�1 do
3: Compute gi: (tL+qiB)gi = �aiBf.
4: end for
5: Approximate Ktf as a0f+Âr

i=1 gi.

matrix in Eq. (3), we get
⇢

exp(�tL̃) ⇡ a0I+Âr
i=1 ai(�tL̃�qiI)�1,

Ktf ⇡ a0f+Âr
i=1 ai(tL+qiB)�1Bf = a0f+Âr

i=1 gi,
(4)

and the vector Ktf is the sum of the solutions of r sparse linear systems

(tL+qiB)gi = �aiBf, i = 1, . . . ,r. (5)

We briefly recall that the weights (ai)r
i=1 and nodes (qi)r

i=1 of the Padé-Chebyshev
approximation (4) are precomputed for any polynomial degree [27]. Each vec-
tor gi is calculated as a minimum norm residual solution [28], without pre-factorizing
the matrices L and B. Algorithm 1 summarizes the main steps of the proposed
computation.

According to Varga [29], the L2 approximation error between the exponential
map and its rational polynomial approximation crr(s) = a0 +Âr

i=1 ai(ts�qi)�1 is
bounded by the uniform rational Chebyshev constant srr, which is independent
of t and lower than 10�r. Assuming exact arithmetic, the approximation error is
bounded as

kKtf� crr(tL̃)fkB =

"
r

Â
i=1
|exp(�tli)� crr(tli)|2 |hf,xiiB|2

#1/2

 srrkfkB  10�rkfkB;

(6)

in particular, selecting the degree r := 7 in Eq. (6) provides an error lower than
10�7, which is satisfactory for the approximation of Ktf on 3D shapes. Iterative
solvers of sparse linear systems are generally efficient and accurate for the com-
putation of the diffusion smoothing; for several values of t, a factorization (e.g.,
LU) of the coefficient matrix of the linear systems can be precomputed and used
for their solution in linear time.
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t = 0.1 t = 0.01 t = 0.01
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Figure 5: Robustness of the Padé-Chebyshev approximation of the heat kernel with different values
of the time parameter and with respect to surface sampling and noise.

Optimal time parameter. Among the possible time parameters, we select a value
that provides a small residual kF(t)� fk2B and a low value of the penalty term
kF(t)k2B, which controls the smoothness of the solution. Rewriting these two func-
tions in terms of the Laplacian spectrum as

⇢ kF(t)� fk2B = Ân
i=1(1� exp(�2lit))2|hf,xiiB|2

kF(t)k2B = Ân
i=1 exp(�2lit)|hf,xiiB|2, (7)

the residual and penalty terms are increasing and decreasing maps with respect
to t, respectively. If t tends to zero, then the residual becomes null and the smooth-
ness term converges to the energy kfkB. If t becomes large, then the residual tends
to |hf,x1iB| and the solution norm converges to (kfk2B� |hf,x1iB|2)1/2. Indeed, the
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t = 0.01 t = 0.1 t = 1
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Figure 6: Robustness of the Padé-Chebyshev approximation with respect to surface sampling.

plot of e(·) is L-shaped [30] and its corner provides the optimal regularization
parameter, which is the best compromise between approximation accuracy and
smoothness (Fig. 1a).

In previous work, the evaluation of the L-curve is computationally expensive,
as it generally involves the evaluation of the Laplacian spectrum and/or the so-
lution of a linear system with slowly converging iterative solvers. Through the
Padé-Chebyshev approximation, we have an efficient way to evaluate the map
e(·) for several values of t, thus precisely estimating the optimal time parameter.
In fact, the terms in Eq. (7) are evaluated by applying the Padé-Chebyshev ap-
proximation of Ktf and computing kF̃(t)� fkB and kF̃(t)kB. In this way, we avoid
the evaluation of the spectral representations (7) through the computation of the
Laplacian spectrum.

4. Discussion

We consider the solution Ktei to the heat diffusion process, whose initial con-
dition takes value 1 at the anchor point pi and 0 otherwise. For our tests on triangle
meshes, we have selected the linear FEM weights [21, 26]. In this case [15], the
discretization of the L2(M) inner product is induced by the matrix B, which is
intrinsic to the surfaceM and is adapted to the local sampling through the vari-
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Figure 7: Comparison of the accuracy of different approximations of the heat kernel on the
unitary sphere. `1 error (y-axis) between the ground-truth diffusion smoothing on the cylin-
der, with a different sampling (x-axis) and scales. For different scales, the accuracy of the Padé-
Chebyshev method (r = 5, orange line) remains almost unchanged and higher than the truncated
approximation with 100 and 200 eigenpairs (red, blue line), the Euler backward (green line) and
power (black line) methods.

ation of the triangles’ or Voronoi areas. In the paper examples, the level-sets
are associated to iso-values uniformly sampled in the range of the solution to the
heat equation, whose minimum and maximum are depicted in blue and red, re-
spectively. Furthermore, the color coding represents the same scale of values for
multiple shapes. Noisy examples have been achieved by adding a 20% Gaussian
noise to the input shapes.

Truncated spectral and Padé-Chebyshev approximations. For the truncated spec-
tral approximation Fk(t) = Âk

i=1 exp(�lit)hf,xiiBxi of the solution to the heat equa-
tion, the number k of eigenpairs must be selected by the user and the approxima-
tion accuracy cannot be estimated without extracting the whole spectrum. The
different accuracy (Fig. 1b) of the truncated spectral approximation and the Padé-
Chebyshev method of the heat kernel is analyzed by measuring the `1 approx-
imation error (y-axis) between the spectral representation of the heat kernel Kt ,
computed using a different number k (x-axis) of eigenfunctions, and the corre-
sponding Padé-Chebyshev approximation. For small values of t, the partial spec-
tral representation requires a large number k of Laplacian eigenvectors to recover
local details. For instance, selecting 1K eigenpairs the approximation error re-
mains higher than 10�2; in fact, local shape features encoded by Kt are recovered
for a small t using the eigenvectors associated with high frequencies, thus requir-
ing the computation of a large part of the Laplacian spectrum. For large values
of t, increasing k strongly reduces the approximation error until it becomes almost
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Table 1: Timings (in seconds) for the evaluation of the heat kernel on 3D shapes with n points,
approximated with k = 500 eigenpairs (Eigs) and the Padé-Chebyshev approximation (Cheb.).
Column ’⇥’ indicates the number of times the computational cost is reduced. Tests have been
performed on a 2.7 GHz Intel Core i7 Processor, with 8 GB memory.

Teeth Surf. (Fig. 3) Brain (Fig. 5)
n Eigs Cheb. ⇥ n Eigs Cheb. ⇥
10K 39.01 0.32 122 20K 99.77 0.61 164
50K 154.13 2.50 62 50K 189.02 2.08 91
80K 188.21 4.12 46 100K 299.20 4.98 60
100K 307.03 6.21 49 200K 658.11 11.20 59
200K 450.21 10.03 45 400K 850.11 18.21 47
500K 670.31 21.11 32 500K 1001.11 32.11 78

constant and close to zero. In this case, the behavior of the heat kernel is mainly in-
fluenced by the Laplacian eigenvectors related to the eigenvalues of smaller mag-
nitude. Indeed, the spectral representation generally requires a high number of
eigenpairs without achieving an accuracy of the same order of the spectrum-free
approximation through the Padé-Chebyshev method.

Robustness to noise and sampling. Figs. 2, 3, and 4 compare the diffusion smooth-
ing of a noisy data set computed with the Padé-Chebyshev approximation of de-
gree r = 7 and the truncated approximation with k Laplacian eigenparis. A low
number of eigenpairs does not preserve shape details; increasing k reconstructs
the surface noise. For both examples, the `1 error between (a) and the smooth
approximation of (b) is lower than 1% for (c) the Padé-Chebyshev method and (d)
varies from 12% (k = 100) up to 13% (k = 1K) for the truncated spectral approx-
imation.

On irregularly-sampled and noisy shapes (Figs. 5, 6), the spectrum-free com-
putation provides smooth level sets, which are well-distributed around the anchor
point pi and remain almost unchanged and coherent with respect to the origi-
nal shape. A higher resolution of P improves the quality of the level-sets of the
canonical basis function, which are always uniformly distributed around the an-
chor (black dot). Finally, an increase of the noise magnitude does not affect the
shape and distribution of the level sets.

We also compare the accuracy of the heat kernel on the unitary sphere and
computed with (i) the proposed approach; (ii) the spectral representation of the
heat kernel Kt , with k eigenpairs; (iii) the Euler backward method; and (iv) the
power method (Sect. 2). For all the scales (Fig. 7), the approximation accuracy
of the Padé-Chebyshev method is higher than the truncated Laplacian spectrum
with k eigenpairs, k = 1, . . . ,103, the Euler backward method, and the power
method. Reducing the scale, the accuracy of the Padé-Chebyshev remains al-
most unchanged while the other methods are affected by a larger discrepancy
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Figure 8: Numerical stability of the Padé-Chebyshev approximation. With reference to Fig. 4,
conditioning number k2 (y-axis) of the matrices {(tL+qiB)}7i=1, for different time parameters t;
the indices of the coefficients {qi}7i=1 are reported on the x-axis.

and tend to have an analogous behavior (t = 10�4). Finally, the Euler backward
method generally over-smooths the solution, which converges to a constant map
as k!+1, and the selection of m with respect to the shape details is guided by
heuristic criteria.

Numerical stability. According to Sect. 3, the scale t influences the conditioning
number of the coefficient matrices (tL+qiB), i = 1, . . . ,r, which are generally
well-conditioned, as also confirmed by our experiments (Fig. 8). While previous
work requires to heuristically tune the number of selected eigenpairs to the cho-
sen scale, the Padé-Chebyshev approximation has a higher approximation accu-
racy, which is independent of the selected scale. Furthermore, those scales close
to zero would require a larger number of eigenpairs, thus resulting in a larger
computational cost for the truncated spectral approximation.

Computational cost. Approximating the exponential map with a (rational) poly-
nomial of degree r, the evaluation of the solution to the heat diffusion equation
and the evaluation of the heat kernel Kt(·, ·) at (pi,p j) is reduced to solve r sparse,
symmetric, linear systems (c.f., Eq. (5)), whose coefficient matrices have the
same structure and sparsity of the adjacency matrix of the input triangle mesh.
Applying an iterative and sparse linear solver (e.g., Gauss-Seidel method, conju-
gate gradient) [28] (Ch. 10), the computational cost for the evaluation of the heat
kernel and the diffusion distance between two points is O(rt(n)), where O(t(n))
is the computational cost of the selected solver. Here, the function t(n), which de-
pends on the number n of shape samples and the sparsity of the coefficient matrix,
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typically varies from t(n) = n to t(n) = n logn. In fact, O(n logn) is the average
computational cost of the aforementioned iterative solvers of sparse linear sys-
tems. Timings (Table 1) are also reduced from 32 up to 164 times with respect to
the approximation based on a fixed number of Laplacian eigenpairs.

5. Conclusions and future work

We have presented an efficient computation of the diffusion soothing of med-
ical data and the selection of the optimal scale, which provides the best compro-
mise between approximation accuracy and smoothness of the solution. As future
work, we foresee a specialization of the spectrum-free computation and the se-
lection of the optimal time parameter for the analysis of brain structures and the
smoothing of MRI images.
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