
Volume xx (200y), Number z, pp. 1–13

Accurate and Efficient Computation of
Laplacian Spectral Distances and Kernels

Giuseppe Patané, CNR-IMATI - Genova, Italy

Abstract
This paper introduces the Laplacian spectral distances, as a function that resembles the usual distance map,
but exhibits properties (e.g., smoothness, locality, invariance to shape transformations) that make them useful to
processing and analyzing geometric data. Spectral distances are easily defined through a filtering of the Laplacian
eigenpairs and reduce to the heat diffusion, wave, bi-harmonic, and commute-time distances for specific filters. In
particular, the smoothness of the spectral distances and the encoding of local and global shape properties depend
on the convergence of the filtered eigenvalues to zero. Instead of applying a truncated spectral approximation
or prolongation operators, we propose a computation of Laplacian distances and kernels through the solution of
sparse linear systems. Our approach is free of user-defined parameters, overcomes the evaluation of the Laplacian
spectrum, and guarantees a higher approximation accuracy than previous work.

Categories and Subject Descriptors (according to ACM CCS): Computer graphics [Computing methodologies]:
Shape modeling—

1. Introduction

This paper introduces the Laplacian spectral distances,
as a function that resembles the usual distance map,
but exhibits properties (e.g., smoothness, locality, invari-
ance to shape transformations) that make them useful
to processing geometric data. Spectral distances are eas-
ily defined through a filtering of the Laplacian eigen-
pairs and include random walks [FPS05, RS13], heat diffu-
sion [BBK⇤10,BBOG11,CL06,GBAL09,LKC06,LSW09],
bi-harmonic [LRF10], and wave kernel [BB11, ASC11] dis-
tances. Laplacian spectral distances have been applied to
shape segmentation [dGGV08] and comparison [BBOG11,
GBAL09, Mem09, OMMG10, SOG09]. In fact, they are in-
trinsic to the input shape, invariant to isometries, multi-scale,
and robust to noise and tessellation. Biharmonic [LRF10]
distances provide a trade-off between a nearly geodesic be-
havior for small distances and the encoding of global sur-
face properties for large distances, thus guaranteeing an
intrinsic, multi-scale characterization of the input shape.
The heat kernel [BBG94] is also central in diffusion ge-
ometry [BN03, CL06, GK06, Sin06], dimensionality reduc-
tion [BN03, XHW10], and data classification [SK03].

For a surface sampled with n points, the evaluation of
the spectral distances and kernels generally requires a high
computational cost, which varies from O(n) to O(n3) time
(e.g., QR factorization), according to the sparsity of the

Laplacian matrix. Even though iterative solvers of sparse
eigenproblems reduce the computational cost to super lin-
ear time [VL08], only a part of the Laplacian spectrum
is computed. To speed-up the computation, spectral dis-
tances are approximated by prolongating their values eval-
uated on a sub-sampling of the input shape [VBCG10]; ap-
plying multi-resolution decompositions [CL06]; or consid-
ering only the eigenvectors related to smaller eigenvalues. In
these cases, the number of selected eigenpairs and the tar-
geted approximation accuracy are heuristically adapted to
shape details and parameters (e.g., time for the heat kernel).
This approximation is accurate only if the coefficients de-
cay fast (e.g., large scales in the diffusion kernel and dis-
tances); otherwise (e.g., periodic or increasing decaying fil-
ters), a larger number of eigenpairs is needed, with a O(n2)
computational cost. Similarly to signal smoothing [CPS13,
DMSB99,KR05,Tau95,TZG96,ZF03], geodesic [CWW13],
bi-harmonic [LRF10], and diffusion [HVG11, Pat14, Pat13,
PS13] distances have been rewritten in terms of the corre-
sponding kernels, thus bypassing the evaluation of the Lapla-
cian spectrum.

Overview and contribution We propose an accurate, com-
putationally efficient approximation of spectral distances,
through the solution of sparse linear systems, which is in-
dependent of the evaluation of the Laplacian spectrum. As
(filtered) Laplacian spectral distance, we refer to any dis-
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rt(s) = s2 rt(s) = exp(ts), t = 10�1 rt(s) = sexp(ts) rt(s) = exp(ts)/s rt(s) = exp(ts)/s2

Biharmonic dist. Harmonic dist.

Figure 1: Level-sets of the spectral distances from a source point (white dot) induced by the filter r and evaluated with the Padé-
Chebyshev approximation (r = 5). The level-sets are associated to iso-values uniformly sampled in the range of the distances,
whose minimum and maximum are depicted in blue and red. The color coding represents the same scale for multiple images.

tance d2(pi,p j) := Ân
l=1 |xl(pi)� xl(p j)|2/r2(ll), which is

a combination of the Laplacian eigenpairs {(ll ,xl)}n
l=1 of

a surface or volume N sampled with n points P := {pi}n
i=1

and induced by a positive filter r : R+ ! R. With respect to
previous work on Laplacian distances and smoothing based
on a filtering of the Laplacian spectrum, our approach takes
this idea further by incorporating the Padé-Chebyshev ap-
proximation, which allows us to define more general dis-
tances. Furthermore, we provide an extensive analysis of er-
ror behavior in order to support a practical approach to the
computation of the spectral distances. Finally, our work ties
rational filtering to distance computation and demonstrates
that it pays-off in terms of efficiency and stability.

The proposed definition of the spectral distance in-
cludes the bi-harmonic [LRF10] (r(s) := s2), wave [BB11,
ASC11] (rt(s) := exp(ist)), diffusion [CWW13, HVG11,
Pat13] (rt(s) := exp(st)) distances and Mexican hat
wavelets [HQ12] (r(s) := sexp(s2)). The filter map is de-
fined according to different properties of the resulting dis-
tances, such as isometry invariance, localization in both
space and frequency [HVG11], or through a supervised
learning [ABBK11]. The selection of r also provides a sim-
ple way to design new distances, whose smoothness and bal-
ance between the measure of both local and global proper-
ties depend on the convergence of the filtered eigenvalues
(1/r(li))

n
i=1 to zero or on their periodic behavior. Increasing

the growth of the filter r, the influence of the larger eigen-
values and of the corresponding eigenvectors on the filtered
spectral distance is negligible with respect to the contribu-
tion of the lower eigenvalues. The resulting distance char-
acterizes the global shape properties and local features are
encoded by reducing the filter values.

Our representation (Sect. 2) of the spectral distances is
equivalent to solving r sparse and symmetric linear systems,
where r is the degree of the rational polynomial approxi-
mation of the filter. In this way, the proposed computation
(Sect. 3) is independent of the evaluation of the Laplacian
spectrum, is robust to shape discretization, and applies to

both surfaces and volumes. Furthermore, it is free of user-
defined parameters (e.g., the selection of the eigenpairs with
respect to the approximation accuracy), which are used by
the truncated spectral approximation and multi-resolution
prolongation operators.

Neglecting round-off errors, the computation of spectral
kernels and distances induced by polynomial filter maps
is exact (e.g., for bi-harmonic kernel [Rus11] and dis-
tances [LRF10]). For arbitrary (e.g., heat diffusion, wave
kernel) distances, the approximation accuracy is estimated
a-priori in terms of the polynomial degree r and it can be fur-
ther reduced by slightly increasing r. For instance, the accu-
racy of the diffusion distances computed through the Padé-
Chebyshev approximation is lower than 10�r, where r = 5,7
is the degree of the rational polynomial. Applying an itera-
tive linear solver (e.g., Gauss-Seidel method, conjugate gra-
dient) [GV89] (Ch. 10) that takes O(t(n)) time, the com-
putational cost for the evaluation of any Laplacian spec-
tral kernel and distance between two points is O(rt(n)).
Here, the function t(n), which depends on the number n
of shape samples and the sparsity of the coefficient ma-
trix, typically varies from t(n) = n to t(n) = n logn. Since
we solve r sparse, symmetric linear systems with n differ-
ent right-hand vectors, our computation of the one-to-all dis-
tances takes O(rnt(n)) time, which is comparable with the
O(kn2) time of the truncated spectral approximation with k
Laplacian eigenpairs.

According to our tests (Sects. 4, 5), the proposed approach
is competitive with respect to previous work for the evalua-
tion of spectral distances, especially those ones induced by
slowly-increasing (e.g., diffusion distances at small scales)
or periodic filters and provides a higher approximation ac-
curacy. Our computation is also useful to evaluate the spec-
tral distances on densely sampled surfaces or among seed
points sampled on the input surface, which is typical in
the evaluation of shape descriptors [OFCD02] and bags-of-
features [BB11, BBOG11]. In this case, the number of seed
points is much lower than the number of samples and the

submitted to COMPUTER GRAPHICS Forum (5/2016).



G. Patané / Laplacian Spectral Distances and Kernels 3

(a) (b)

rt(s) := (1�s)s2 +sexp(st), t = 0.1

(c) s = 0 (d) s = 0.3

(e) s = 0.6 (f) s = 1

Figure 2: Spectral distances induced by: (a,b) the filter in
[HVG11] (r = 5); (c-f) a convex combination of bi-harmonic
(s = 0) and diffusion (s = 1, t = 0.1) distances (r = 7).

higher accuracy improves the discrimination capabilities of
shape descriptors based on spectral distances.

2. Spectral distances and kernels

Let L2(N ) be the space of square integrable maps on the
manifold N and {(li,fi)}+1

i=0 the orthonormal Laplacian
eigensystem Dfi = lifi, 0  li  li+1. Given a strictly pos-
itive filter map r : R+ ! R, the spectral distances on N are
defined through a filtering of the Laplacian spectrum as

d2(p,q) =
+1
Â
n=0

|fn(p)�fn(q)|2
r2(ln)

. (1)

According to [Hoe68, Sog88], the Laplacian eigen-
function fn on a 2-manifold N and associated with
the eigenvalue ln, ln 6= 0, satisfies the upper bound
kfnk1 Cl1/4

n kfnk2, where C is a constant that depends

r1(s) = s2 exp(st); r2(s) = sexp(st); r3(s) = s2; r4(s) = s

Figure 3: `1 error (y-axis) between the ground-truth dis-
tances induced by the filters {ri}i and the truncated approx-
imation with k (x-axis) eigenpairs. For the Padé-Chebyshev
method (r = 5) and all the filters, the `1 error with respect
to the ground-truth is lower than 6.5⇥10�6.

only on the geometric properties (i.e., sectional curvature,
injectivity radius) of N . Selecting eigenfunctions with uni-
tary norm, the spectral distance satisfies the upper bound

d2(p,q) 4
+1
Â
n=0

kfnk2
1

r2(ln)
 4C2

+1
Â
n=0

l1/2
n

r2(ln)
.

If the map r̃(s) := s1/2/r2(s) is integrable on R+, then
the series that defines the spectral distance is convergent.
The nullity condition d(p,q) = 0 holds if and only if
fi(p) = fi(q), 8i 2 N; i.e., h1p �1q,fii2 = 0, where 1p(·)
has value one at p and zero otherwise. Noting that {fi}+1

i=0
is a basis of L2(N ), the nullity relation is satisfied if and
only if (1p �1q) is the null function; i.e., p = q. The sym-
metry and triangular inequality follow from Eq. (1).

In a similar way, we define the filtered kernel

K(p,q) :=
+1
Â
n=0

fn(p)fn(q)
r(ln)

, (2)

which is related to the spectral distances through the identity
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Algorithm 1 Computation of the spectral distances.
Require: A surface or volume N , a filter map r : R! R.
Ensure: The spectral distance d(pi,p j) in Eq. (1), pi,p j 2N .
1: Compute (L,B), which define the Laplacian L̃ := B�1L.
2: Define the vector f = ei � e j .
3: CASE I - Arbitrary filter: polynomial approximation
4: Compute the polynomial approx. pr(s) = Âr

i=0 aisi of 1/r.
5: Compute g1: Bg1 = Lf.
6: for i = 1, . . . , r�1 do
7: Compute gi+1: Bgi+1 = Lgi
8: end for
9: Compute u = K1/rf ⇡ pr(L̃) = a0f+Âr

i=1 aigi (c.f., Eq. (5)).
10: Compute the distance d(pi,p j) = kukB (c.f., Eq. (3)).
11: CASE II - Arbitrary filter: Padé-Chebyshev approximation
12: Compute the P.C. approx. pr(s) = Âr

i=1 ai(1+bis)�1 of 1/r.
13: for i = 1, . . . , r do
14: Compute gi: (B+biL)gi = Bf (c.f., Eq. (6))
15: end for
16: Compute u = K1/rf ⇡ pr(L̃)f = Âr

i=1 aigi.
17: Compute the distance d(pi,p j) = kukB (c.f., Eq. (3)).

d(p,q) = kK(p, ·)�K(q, ·)k2. From the upper bound

K(p,q)
+1
Â
n=0

kfnk2
1

r(ln)
C2

+1
Â
n=0

l1/2
n

r(ln)
,

we get that the integrability of r̃(s) := s1/2/r(s) on R+

guarantees the well-posedness of the spectral kernel. The
symmetry and self-adjointness of the kernel follow from its
definition.

In particular, if the Laplacian eugenfunctions are uni-
formly bounded (i.e., kfnk1 C1, 8n 2 N) then the inte-
grability of 1/r guarantees the well-posedness of the spec-
tral kernel and distance. This hypothesis applies only to the
continuous case; in fact, their discrete counterparts (c.f., Eqs.
(3), (4)) are defined through a finite sum.

Discrete spectral distances On the space of maps
f : P ! R, f := ( f (pi))

n
i=1, on the point set P := {pi}n

i=1,
we represent the Laplacian matrix as L̃ := B�1L, where B
is a positive definite matrix (e.g., mass matrix [RWP06,
VL08], diagonal matrix of Voronoi areas [DMSB99])
and L is symmetric, positive semi-definite (e.g., cotan-
gent [PP93, AW11] or exponential weights [BSW08, BN03,
BN08, CL06, LPG12] on polygonal meshes or point
sets) (Sect. 4). Let LX = BXL be the generalized or-
thonormal eigensystem, X>BX = I, where X := [x1, . . . ,xn]
and L := diag(li)

n
i=1 are the eigenvectors’ and eigenval-

ues’ matrices. Let ei be the canonical vector whose i-
th entry is 1 and 0 otherwise. Rewriting Eq. (2) as
hK(p, ·),fli2 = hfl ,1pi2/r(ll) and sampling it on P , the
weak formulation hK(pi, ·),fli2 = hfl ,eii2/r(ll) of the ker-
nel is equivalent to

hK1/rei,xliB =
hxl ,eiiB

r(ll)
() K1/rei =

n

Â
l=1

hxl ,eiiB
r(ll)

xl ,

Figure 4: `1 error (y-axis) between the diffusion dis-
tance computed with the truncated spectral approxima-
tion with k (x-axis) Laplacian eigenpairs. For the Padé-
Chebyshev method (r = 5) and all the scales, the `1 error
with respect to the ground-truth is lower than 8.9⇥10�6.

where hf,giB := f>Bg is the inner product induced by B.
Indeed, the filtered kernel matrix is K1/r = Xr†(L)X>B,
r†(L) := diag(1/r(li))

n
i=1, and the spectral distances are

d2(pi,p j) = kK1/r(ei � e j)k2
B =

n

Â
l=1

|hxl ,ei � e jiB|2
r2(ll)

. (3)

If r(li) = 0, then the corresponding entry in r†(L) is chosen
equal to zero. In the last equality of Eq. (3), we have applied
the identity K>

1/rBK1/r = BX[r†(L)]2X>B.

Filtered kernel and pseudo-inverse Writing the filter map
as the power series r(s) = Â+1

n=0 ansn and noting that
L̃ = XLX>B, we get that

r(L̃) = X
+1
Â
n=0

anLnX>B = Xr(L)X>B = Kr; (4)
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t = 1 t = 10�1 t = 10�2

(a)

(b)

(c)

Figure 5: Diffusion distances at different scales t = 10�k,
k = 0,1,2 (from left to right), and at the higher resolution
(n = 115K); computational costs are reported in Table 1.
The degree of the Padé-Chebyshev polynomial is r = 5.

i.e., the spectral kernel Kr = r(L̃) is a filtered version of
the Laplacian matrix. Furthermore, Kr is the pseudo-inverse
of K1/r; i.e., KrK1/rKr = Kr, K1/rKrK1/r = K1/r, and
the matrices KrK1/r, K1/rKr are B-adjoint. In fact,

KrK1/rKr = Xr(L)r†(L)r(L)X>B = Xr(L)X>B = Kr,

(KrK1/r)
>B = BXr†(L)r(L)XB = B(KrK1/r).

3. Distance computation

In the paper examples, the level-sets of the spectral dis-
tances are associated with iso-values uniformly sampled in
the range of the spectral distances, whose minimum and
maximum are depicted in blue and red, respectively. The
color coding represents the same scale of values for mul-
tiple shapes. For the computation of the spectral distances,
we distinguish two main cases, according to the polynomial
or arbitrary representation of the filter.

If r(s) := Âr
i=0 aisi is a polynomial filter (e.g., commute-

time, poly-harmonic [LRF10] distances), then Kr = r(L̃)
is computed from the representation of r and L̃. Ap-
plying Eq. (3) and the relation K†

r = K1/r, the distance
d(pi,p j) = kukB is equal to the norm of the solution u to the

Table 1: Accuracy and time (in seconds) of the diffusion dis-
tances with the (i) truncated spectral approximation (TSA)
with k = 50 Laplacian eigenpairs, (ii) multi-resolution pro-
longation operators (MPO), (iii) Padé-Chebyshev (P-C)
method (r = 5). Here, t is the scale, n is the number of ver-
tices at a given resolution, RMSE is the root mean square
deviation, and ’⇥’ is the reduction rate of the computational
cost of the Padé-Chebyshev method with respect to multi-
resolution prolongation operators (i.e., MPO/P-C).

Fig. 5(a)
t n TSA MPO RMSE P-C RMSE ⇥

K ⇥10�4 ⇥10�6

10�3 115 6.85 26.17 0.2 7.04 1.1 3.7
10�2 150 10.34 20.42 0.6 14.21 2.5 1.4
10�1 7 1.52 19.51 19 1.23 7.4 15.8
1 6 1.27 15.50 5.7 0.98 5.5 15.8

Fig. 5(b)
10�3 115 5.58 24.17 0.3 8.42 4.1 2.8
10�2 150 11.46 21.02 0.7 13.12 2.2 1.6
10�1 7 1.68 18.12 2.7 1.20 7.3 15.1
1 6 1.16 16.19 7.3 0.89 1.5 18.1

Fig. 5(c)
10�3 115 6.38 20.13 0.2 7.57 5.2 2.6
10�2 150 12.46 18.01 0.1 11.25 1.1 1.6
10�1 7 0.98 17.11 0.6 1.61 5.2 10.6
1 6 1.42 12.18 1.4 1.01 0.1 12.0

linear system Kru = ei � e j. If r is an arbitrary filter (e.g.,
diffusion, wave kernel distances), then it is approximated
with a polynomial or rational polynomial of degree r and
the evaluation of the corresponding distance reduces to the
solution of r sparse, symmetric linear systems. Each linear
system is solved with the minres procedure [GV89] (Ch. 10),
which computes a minimum norm residual solution.

Arbitrary filter: polynomial approximation Let [0,l] be
an interval that contains the spectrum of L̃, where l is the
maximum eigenvalue, which is computed by the Arnoldi
method [GV89], or is set equal to the upper bound [LS96,
Sor92]

ln  min{max
i
{Â

j
L̃(i, j)},max

j
{Â

i
L̃(i, j)}}.

Computing the best r-degree polynomial approximation
pr(s) = Âr

i=0 aisi of r with respect to the L1 norm (Fig. 1,
r(s) = sk exp(ts), k 2 {�2,�1,1}, r = 7) and introducing
the vector f = ei � e j, Eq. (3) is rewritten as

u = K1/rf ⇡ pr(K̃)f = a0f+
r

Â
i=1

aigi, (5)

where gi := (B�1L)if is calculated recursively. At the
first iteration Bg1 = Lf and at the (i+1)-th step we ap-
ply the relation gi+1 := (B�1L)i+1f = B�1Lgi; i.e., gi+1
solves the sparse, symmetric, positive-definite linear system
Bgi+1 = Lgi, i = 1, . . . ,r�1.

Arbitrary filter: Padé-Chebyshev approximation For an
arbitrary filter (Fig. 1), we consider the rational Padé-
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Figure 6: `1 error (y-axis) between the ground-truth diffusion distances on the cylinder, with a different sampling (x-axis). For
different scales, the accuracy of the Padé-Chebyshev method (r = 5, orange) remains almost unchanged and higher than the
truncated approximation with 100 and 200 eigenpairs (red, blue), the Euler backward (green) and power (black) methods.

t = 10�1 t = 10�2 t = 10�1 t = 10�2

(a) (b) (c) (d)

Figure 7: Robustness of the Padé-Chebyshev approximation (r = 7) of the (a,c) diffusion kernel Ktei and (b,d) distance at pi
(black dot) on a smooth and noisy triangulated surface.

Chebyshev approximation pr(s) = ar(s)
br(s)

of 1/r [GV89]
(Ch. 11) with respect to the L1 norm. Here, ar(·) and br(·)
are polynomials of degree equal to or lower than r. Let
pr(s) = Âr

i=1 ai(1+bis)�1 be the partial form of the Padé-
Chebyshev approximation, where (ai)

r
i=1 are the weights

and (bi)
r
i=1 are the nodes of the r-point Gauss-Legendre

quadrature rule [GV89] (Ch. 11). The weights and nodes
are precomputed for any degree of the rational polyno-
mial [CRV84]. Applying this approximation to the spectral
kernel, we get that

u = K1/rf ⇡ pr(L̃)f =
r

Â
i=1

ai
�
I+biL̃

��1 f =
r

Â
i=1

aigi,

where gi solves the symmetric and sparse linear system

(B+biL)gi = Bf, i = 1, . . . ,r. (6)

The Padé-Chebyshev approximation generally provides an
accuracy higher than the polynomial approximation, as a
matter of its uniform convergence to the filter.

Applying the Padé-Chebyshev rational polynomial
pr(s) = a0 +Âr

i=1 ai/(s�qi) of the exponential map to
the heat kernel [HVG11, Pat13] Kt = exp(�tL̃) (Fig. 1),
Eq. (6) reduces to (tL+qiB)gi = aiBf, i = 1, . . . ,r. This
approximation also provides an efficient way to com-

pute geodesics on surfaces, through the relation between
geodesics and heat kernel recently presented in [CWW13].
In spectral graph theory [OSV12], the Padé-Chebyshev and
the Lanczos methods have been applied to the approxima-
tion of exp(�A)f, where A is a symmetric and positive
semi-definite matrix. Finally, these approximations are
included in numerical libraries for signal processing.

4. Results and discussion

We now discuss the filter selection (Sect. 4.1), the approx-
imation accuracy (Sect. 4.2), stability (Sect. 4.3), and com-
putational cost (Sect. 4.4).

4.1. Selection of the filter map

Increasing the growth of the filter r (i.e., the decay of the
filtered eigenvalues (1/r(li))

n
i=1 to zero), the effects of the

larger eigenvalues and of the corresponding eigenvectors on
the spectral distance are negligible with respect to the con-
tribution of the lower eigenvalues. The resulting distance
encodes the global shape properties; e.g., increasing the
power k of r(s) = sk log(1+ s) in Fig. 1. Reducing the fil-
ter growth, local shape features are better characterized.
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(a) n = 5K, n = 20K (b) n = 5K

(c) n = 5K (d) n = 20K

t = 10�1 t = 10�2 t = 10�1 t = 10�2

Figure 8: (a) Input shapes at different resolution. Robustness of the Padé-Chebyshev approximation (r = 5) of the heat kernel
at different scales (t = 10�1, 10�2) with respect to (b) noise and (c,d) surface sampling (n = 5K, 20K).

Similarly to random walks [FPS05, RS13], we con-
sider the filter map rt(s) = t�ks�a exp(tsa), where k scales
the diffusion rate and a controls the distance smoothness
(Fig. 1). The filters rt(s) := [cos�1(

p
st),s�1/2 sin(

p
st)]

and r(s, t) = exp(srt) are associated with the diffusion equa-
tions

⇣
∂2

t +D
⌘

F(·, t) = 0 and (∂t +Dr)F(·, t) = 0, respec-
tively. To achieve localization of the signal content in both
space and frequency [HVG11], we select a filter map r that
has a power growth r(s) = s�a

1 sa on the interval [0,s1) and a
power decay r(s) = sb

2s�b in (s2,+1), s1 < s2, for large s.
In [s1,s2], r is a cubic polynomial such that the filter map
and its first derivative are continuous on R+. A stronger or
weaker encoding of surface details is achieved by enlarging
or reducing the interval size. A common choice is a = b = 1,
s1 = 1, s2 = 2, r(s) =�5+11s�6s2 + s3 (Fig. 2(a,b)).
In [ABBK11], a spline filter is defined through a supervised
learning process that discriminates among shapes of a cer-
tain class and is insensitive to a selected family of transfor-
mations. Finally, for the definition of new distances we can
consider a convex combination of the filters (Fig. 2(c-f)).

4.2. Approximation accuracy

Let l be an upper bound to the Laplacian eigenvalues, pr
the polynomial or Padé-Chebyshev rational polynomial of
degree r that approximates the filter map, and C1 the upper

bound to the approximation between r and pr. Since

kK1/rf� pr(L̃)fk2
B 

n

Â
i=1

|r�1(li)� pr(li)|2|hf,xiiB|2

C2
1kfk2

B,

the approximation error is controlled by the approximation
accuracy of the filter map. For the polynomial approximation

C1 = n
(r+1)!

h
lmax(L)
lmin(B)

ir+1
kr(r+1)(L̃)k2 and for the Padé-

Chebyshev approximation C1  10�r. For the exponential
filter [Var90], the `2 error between exp(�tL̃) and its rational
approximation pr(tL̃) is lower than the uniform Chebyshev
constant srr. Since this constant is known, independent of t,
and related to the degree of the rational Padé-Chebyshev ap-
proximation by the relation srr ⇡ 10�r, the degrees r = 5,7
provide an error that is satisfactory for the evaluation of dif-
fusion distances. If necessary, the degree is easily tuned to
improve the approximation accuracy.

For the evaluation of the approximation accuracy, we
compare the ground-truth distances on cylinders and spheres
with the proposed approach and the truncated spectral ap-
proximation, where the Laplacian eigenpairs have been com-
puted through a variant [VL08] of the Arnoldi iteration
method [LS96,Sor92]. According to [RBG⇤09], we consider
a rectangular domain with edge length a = 1, b = 2 and the
corresponding isometric cylinder (cosx,y,sinx). Introduc-
ing Neumann boundary conditions, their Laplacian eigen-
pairs are fm,n(x,y) := (cos(mf

a x),cos( nf
b y)), m,n 2 N, and
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r(s) = s3

(a) e1 = 1.2⇥10�5 (b) e1 = 9.1⇥10�4

r(s) = sexp(s)

(c) e1 = 2.3⇥10�5 (d) e1 = 4.2⇥10�4

r(s) = sexp(s)

(e) e1 = 1.2⇥10�5 (f) e1 = 2.1⇥10�4

Figure 9: Distances computed with the Padé-Chebyshev method (r = 5) on (a,c,e) regularly-sampled and (b,d,f) irregularly-
sampled (left) meshes and (right) point sets with holes. To improve the visualization, points are represented as spheres.

lm,n := p2(m2/a2 +n2/b2). For the sphere, the spherical
harmonics are fm,n(q,r) = N exp(imr)pm

l (cosq), where N
is a normalization constant and pm

l (·) is an associated
Legendre function. Since we have an infinite number
of eigenpairs, we select k such that the spectral dis-
tance dk(p,q) := Âk

n=0
|fn(p)�fn(q)|2

r2(ln)
becomes stationary;

i.e., |dk+1(p,q)�dk(p,q)|< e, where e is equal to the 1%.

Fig. 3 reports the `1 error (y-axis) between the ground-
truth distances induced by four filters and their approxima-
tion with the truncated spectral method with k Laplacian
eigenpairs (x-axis) and our approach. For filters with a fast
growth (e.g., r1 = s2 exp(st), r2 = sexp(st)), the truncated
spectral approximation provides a good accuracy (i.e., lower
than 10�5, with k � 85 for the cylinder, and k � 137 for the
sphere). Slowly increasing filters generally require a large
number of eigenpairs (i.e., k � 300 for the cylinder, k � 1K
for the sphere) to achieve an accuracy lower than 10�1.

Fig. 4 reports the `1 discrepancy (y-axis) between the
diffusion distance on the sphere/cylinder and its approxi-
mation computed with the Padé-Chebyshev method and the
truncated spectral approximation. In this case, the analyti-
cal expression of the Laplacian eigenfunctions on the sphere
and cylinder has been used to compute the ground-truth dis-
tances. For small scales (e.g., t = 10�2, 10�3), the approxi-
mation error remains higher than 10�2, with k  280 eigen-
pairs; in fact, local shape features encoded by the heat ker-
nel are recovered for a small t using the eigenvectors as-
sociated with high frequencies, thus requiring the compu-
tation of a large part of the Laplacian spectrum. For large
scales (e.g., t = 1, 10�1), increasing k strongly reduces the
approximation error until it becomes almost constant and
close to zero. In this case, the behavior of the heat kernel
is mainly influenced by the Laplacian eigenvectors related
to the smaller eigenvalues. Indeed, the truncated spectral
representation generally requires a high number of eigen-
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Figure 10: Conditioning number k2 (y-axis) of the matrices
{(tL+qiB)}r

i=1, r = 7, for the diffusion distance at scale t;
the indices of the poles {qi}7

i=1 are reported on the x-axis.

pairs and does not achieve the approximation accuracy of
our approach, which remains lower than 8.9⇥10�6 for all
the scales. According to [VBCG10], there are no theoret-
ical guarantees on the approximation accuracy of the heat
kernel provided by multi-resolution prolongation operators.
Furthermore, a low-resolution sampling of the input surface
might affect the resulting accuracy. Our tests (Table 1, Fig. 5)
show that the proposed computation is competitive with re-
spect to the computational cost of prolongation operators
and provides a higher approximation accuracy.

We also compare the accuracy of the diffusion distances
computed with (i) the proposed approach; (ii) the spec-
tral representation of the heat kernel Kt , with k eigen-
pairs; (iii) the Euler backward method; and (iv) the power
method. We recall that the power method applies the ap-
proximation Kt ⇡ (I� t

m L̃)m, where m is chosen in such a
way that t/m is sufficiently small, and the Euler backward
method [CDR00,DMSB99] solves the heat equation through
the iterative scheme (tL̃+ I)Fk+1(t) = Fk(t), F0 = f. For
all the scales (Fig. 6), the accuracy of the Padé-Chebyshev
method is higher than the truncated approximation with k
eigenpairs, k = 1, . . . ,103, the Euler backward method, and
the power method. Reducing the scale, the accuracy of the
Padé-Chebyshev remains almost unchanged while the other
methods are affected by a larger discrepancy and tend to
have an analogous behavior (t = 10�4). Finally, the Eu-
ler backward method generally over-smooths the solution,
which converges to a constant as k !+1, and the selec-
tion of the power m is guided by heuristics.

t = 0.1

t = 1

Figure 11: Volumetric heat kernel (r = 7). The colors begin
with red, pass through yellow, green, cyan, blue, and ma-
genta, and return to red. At scale t = 1, the level-sets cor-
respond to iso-values uniformly sampled in the range of the
solution restricted to the volume boundary.

4.3. Approximation stability

We discuss the stability of our approach with respect to
shape changes or to the approximation of the spectral kernel.
To this end, we consider the solution Ktei to the heat dif-
fusion process, whose initial condition takes value 1 at the
anchor point pi and 0 otherwise. On noisy and irregularly-
sampled meshes (Figs. 7, 8) or point sets (Fig. 9), the level-
sets of Ktei are smooth, well-distributed around the anchor
point pi, and remain almost unchanged and coherent with
respect to the original shape. These results confirm the ro-
bustness of the Padé-Chebyshev approximation to surface
discretization. In these examples, the maximum variation be-
tween the spectral distances on the complete surface and its
representation with holes is lower than 10�3.

According to [MVL03], the approximation of the ma-
trix r(L̃) might be numerically unstable if kL̃k2 is
large. From the bound kB�1Lk2  l�1

min(B)lmax(L), a
well-conditioned mass matrix B guarantees that kB�1Lk2
is bounded. Recalling that X>(B+biL)X = (I+biL),
{1+bil j}n

j=1 are the eigenvalues of (B+biL) and its con-
ditioning number is bounded by the constant (1+bmaxln),
bmax := maxi=1,...,n |bi|. Indeed, the coefficient matrices in
Eq. (6) are well-conditioned, as also confirmed by our tests
(Fig. 10). In any case, pre-conditioners and regularization
techniques [GV89] can be applied to attenuate numerical in-
stabilities. Finally, our computation applies to any discretiza-
tion of the input domain; in particular, volumes (Fig. 11) that
have been considered in few approaches (e.g., [ABBK11,
LBB11, LBB12, RBBK10]) due to the high computational
cost and low accuracy of the truncated approximation.

The truncated spectra1 approximation of the diffusion dis-
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(a) t = 10�1 (b) t = 10�2 (c) t = 10�3

(d) t = 10�4 (e) t = 10�1 (f) t = 10�2

Figure 12: (a-d) Robustness of the Padé-Chebyshev approximation and (e,f) sensitiveness of truncated spectral approximation
to the Gibbs phenomenon. At all scales (a-d), the distance values (red curve) computed with the Padé-Chebyshev approxima-
tion are positive; at large scales (e,f), the truncated spectral approximation is already affected by the Gibbs phenomenon, as
represented by the part of the plot below the zero line (black curve).

Table 2: Timings (in seconds) for the evaluation of the heat
kernel on surfaces with n points (K := 103), approximated
with k = 500 eigenpairs (Eigs) and the Padé-Chebyshev ap-
proximation (Ch., r = 5). Column ’⇥’ indicates the number
of times the cost is reduced. Tests have been performed on
a 2.7 GHz Intel Core i7 Processor, with 8 GB memory.

Hand (Fig. 9a)
n Ch. k = ⇥ k = ⇥ k = ⇥
K 50 100 500
100 5.0 4.9 0.9 9.2 1.8 49.2 9.7
300 54.9 46.0 0.8 90.4 1.6 423.2 7.6
600 230.5 170.3 0.7 334.1 1.4 1232.0 5.3
800 43.4 312.2 7.1 523.1 12.0 1345.1 30.9

Cat (Fig. 9b)
200 22.0 21.2 0.9 39.2 1.7 198.1 9
500 159.2 119.2 0.7 231.2 1.4 1087.3 6.8
900 523.4 458.7 0.8 1138.3 2.1 4232.2 8.0
1M 753.2 957.2 1.2 1746.4 2.3 7897.3 10.4

Bimba (Fig. 9c)
400 98.4 82.4 0.8 156.8 1.5 745.2 7.5
600 212.2 162.3 0.7 323.5 1.4 1189.2 5.3
700 319.3 265.5 0.8 489.6 1.5 1203.5 3.7
900 520.1 438.4 0.8 1076.8 2.1 4156.0 8.0

tance is generally affected by the Gibbs phenomenon; i.e.,
small negative distance values. This phenomenon is more
evident at small cases, which induce diffusion distances that
decrease fast to zero and that are largely affected by small
negative values. In fact, at small scales the diffusion dis-

tances decrease fast to zero and the negative values are no
more compensated by the Laplacian eigenvectors related to
smaller eigenvalues, as they are not included in the approx-
imation (Fig. 12(e,f)). For the Padé-Chebyshev approxima-
tion (Fig. 12(a-d)), the distance values are positive at all the
scales; in fact, we approximate the filter map without select-
ing a sub-part of the Laplacian spectrum.

4.4. Computational cost

Approximating an arbitrary filter map with a rational poly-
nomial of degree r, the evaluation of the corresponding spec-
tral distance between two points is reduced to solve r sparse,
symmetric, linear systems (c.f., Eqs. (5), (6)), whose coef-
ficient matrices have the same structure and sparsity of the
connectivity matrix of the input triangle mesh or of the k-
nearest neighbor graph for a point set. Applying an iterative
and sparse linear solver (e.g., Gauss-Seidel method, con-
jugate gradient) [GV89] (Ch. 10), the computational cost
for the evaluation of any Laplacian spectral kernel and dis-
tance between two points is O(rt(n)), where O(t(n)) is the
computational cost of the selected solver. Here, the function
t(n), which depends on the number n of shape samples and
the sparsity of the coefficient matrix, varies from t(n) = n
to t(n) = n logn, where O(n logn) is the average computa-
tional cost of the iterative solvers of sparse linear systems.
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(a) (b)

Figure 13: Trade-off between accuracy (y-axis) and time (x-axis) for the Padé-Chebyshev of degree r (r = 5,7, black boxes)
and truncated approximation (k = 50 eigenpairs) on the (a) sphere and (b) cylinder. Tests have been performed on a 2.7 GHz
Intel Core i7 Processor, with 8 GB memory.

Figure 14: Timings (in seconds) for the evaluation of the heat kernels on a domain with n points, approximated with
k = 100, 500 eigenpairs (Eigs) and the Padé-Chebyshev approximation (r = 7). Tests have been performed on a 2.7 GHz Intel
Core i7 Processor, with 8 GB memory.

Since the truncated spectral approximation and the multi-
resolution prolongation operators are independent of the se-
lected filter map, the computed eigenpairs and the multi-
resolution structures can be used to evaluate several spectral
distances on the same domain. Our computation of the one-
to-all distances {d(pi,p j)}n

j=1 takes O(rnt(n)) time; in fact,
we solve the linear system (6) with n different right-hand
vectors (ei � e j), j = 1, . . . ,n. Computing a fixed number k
of eigenpairs in O(kn2) time, the one-to-all distance is eval-
uated in constant time; indeed, the resulting computational
cost is competitive with respect to the truncated spectral ap-
proximation with k(n)� rt(n)/n Laplacian eigenpairs. In
the average case, t(n)⇡ n logn and k(n)� kn, kn = r logn.

For a surface sampled with n = 104,105,106 points and
a degree r = 5, the number of eigenpairs is kn = 46,58,69;
in particular, this growth of kn with respect to n is slow, as a
matter of the logarithm in kn. Fixing the number of Laplacian
eigenpairs makes the truncated spectral approximation of the
one-to-all distances faster than ours but generally provides a
lower approximation accuracy (Sect. 4.2). Slowly-increasing
filters and small scales for the diffusion distances also re-
quire the computation of a large number of Laplacian eigen-
pairs, thus reducing the gap between the computational cost
of the proposed approximation of the one-to-all distances
and previous work. An analogous discussion applies to pro-
longation operators, which still compute the truncated spec-
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tral approximation on a lower resolution of the input shape.
Furthermore, previous work has not addressed methods for
the selection of the proper number of eigenpairs with respect
to the target approximation accuracy, which cannot be esti-
mated without computing the whole Laplacian spectrum.

Results in Figs. 13, 14 and Table 2 confirm that the diffu-
sion distances at small scales generally require a number of
eigenpairs that is much higher than the estimated value kn.
This case makes our computation of the one-to-all distance
competitive with respect to its truncated approximation and
useful to evaluate the distances among seed points, which
is typical in the evaluation of shape descriptors [OFCD02]
and bags-of-features [BB11,BBOG11]. Here, the number of
seeds is much lower than the number of samples and the
higher accuracy of our computation improves the discrimi-
nation capabilities of descriptors based on spectral distances.

5. Conclusions and future work

This paper has presented a computation of spectral distances
and kernels through the solution of a set of sparse, symmet-
ric, well-conditioned linear systems. Our approach is inde-
pendent of user-defined or heuristic parameters, the compu-
tation of the Laplacian spectrum, multi-resolution prolonga-
tion operators, and the discretization of both the Laplace-
Beltrami operator and the input domain. As main future
work, we foresee a deeper analysis of the constraints that the
filter map must satisfy in order to define spectral distances
and kernels for shape analysis.
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