
Chapter 1

State-of-the-Art and Perspectives of Geometric

and Implicit Modeling for Molecular Surfaces

Giuseppe Patané and Michela Spagnuolo

Abstract This paper reviews state-of-the-art methods and presents new perspec-
tives of implicit modeling, together with their relations with Constructive-Solid-
Geometry, for the computation and analysis of molecular surfaces. The link between
implicit modeling techniques and the generation of molecular surfaces is possible
thanks to the representation of the molecule as the iso-surface of an implicit func-
tion and to the definition of the solvent-accessible/solvent-excluded surfaces as the
union/intersection of atoms. We also review methods that consider the position of
each atom as a probability distribution and introduce new representations of molecu-
lar surfaces based on the uncertainty and thermal vibration of the atoms. Finally, the
specialization of implicit modeling techniques to molecular surfaces allows us to an-
alyze geometric/topological properties of molecules; to address molecular docking
through the identification of cavities; and to combine surface-based and volume-
based information through the implicit representation of the electron density map.

1.1 Introduction

The correct representation of molecular surfaces is fundamental for their process-
ing, analysis, and visualization. However, multiple connected components, spurious
cavities or holes, and topological inconsistencies generally affect the current rep-
resentations of molecular surfaces. A locally incorrect representation of molecules,
which is due to inherent pathologies in the classical definition of the van der Walls,
solvent-accessible and solvent-excluded surfaces, badly influences the classification
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of its features, the identification of docking sites, and the evaluation of local simi-
larities among molecules. These geometric and topological artifacts in the represen-
tation of the molecular surfaces [1] are also due to the resolution of the voxel grid,
on which the electrostatic field is sampled to extract the molecular surface through
Marching Cubes [13] or alternative algorithms [9]; local perturbations in the com-
puted samples of the electron density map; numerical errors; and a limited approxi-
mation accuracy. Indeed, the definition of a correct representation of the molecular
surface is still crucial to correctly simulate the mutual interactions of molecules and
the understanding of biological phenomena.

This paper reviews state-of-the-art methods and presents new perspectives of im-
plicit modeling, together with their relations with Constructive-Solid-Geometry
(CSG), for the computation and analysis of molecular surfaces. The link between
implicit modeling techniques with the generation and analysis of molecular sur-
faces is possible thanks to the representation of the molecule as the iso-surface of
an implicit function and to the definition of the solvent-accessible/solvent-excluded
surfaces as the union/intersection of atoms. Our interest on implicit surfaces for
molecular representation is also motivated by the possibility of extracting differ-
ential properties (e.g., normals, normal and principal curvatures) of the molecule
directly from the underlying implicit representation; computing set-theoretic oper-
ations (e.g., union, intersection, subtraction, off-setting) through functional oper-
ations; imposing interpolation/smoothness constraints on the surface through dif-
ferent implicit representations based on radial basis functions and moving least-
squares approximation. The application of implicit modeling techniques to the
case of molecular surfaces allows us to analyze geometric/topological properties
of molecules, to address molecular docking through the identification of cavities,
and to combine surface-based and volume-based information through the implicit
representation of the electron density map.

The blobby model and the CSG-based model for the generation of the molecular
surface assume that the position of the atom is fixed in space and that there is no
thermal vibration of the atoms and no uncertainty in the determination of their po-
sition. However, the atom position is fuzzy as a matter of the uncertainty in the
protein structure determination and the thermal vibration of the atoms. The spatial
organization of the atoms determines the bio-molecular properties of the molecule
and its surface is mainly defined by the force fields of the atoms, whose thermal vi-
bration determines rapid changes of the surface. To address these issues, we review
methods that consider the position of each atom as a probability distribution and
introduce new representations of molecular surfaces based on the uncertainty and
thermal vibration of the atoms.

This chapter is organized as follows. Firstly (Sect. 1.2), we introduce the molecular
surface representations with implicit functions through blobby models for the com-
putation of the volume electron density map and multi-resolution methods. Then, we
apply constructive solid geometry techniques (Sect. 1.3), thermal vibration and un-
certainty (Sect. 1.4) in the representation of molecules. We also characterize molec-
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ular cavities for docking and artifacts in the representation of molecules (Sect. 1.5).
Finally (Sect. 1.6), we discuss open issues and future work.

1.2 Molecular surface representations with implicit functions

The representation of the molecular surface is crucial to correctly simulate the
mutual interactions of molecules and the understanding of biological phenomena.
Among the different molecular surfaces, we recall the van der Walls surface, which
is the boundary of the spheres representing the atoms of the molecules; the solvent
accessible surface, which is defined as the boundary of the van der Walls spheres
whose radii have been increased by the radius of the solvent molecule; and the sol-
vent excluded surface, which is the surface that is traced out by rolling the solvent
molecule over the solvent accessible surface. Here, the solvent molecule (i.e., a wa-
ter molecule) is typically represented as a sphere and is used to localize the ligand
binding site; in fact, the ligand is capable of accessing all the sites that are reachable
by a water molecule. Then, the molecular surface includes the part of the van der
Walls surface that is accessible to a probe sphere (contact surface) and the inward
surface of the probe when it touches two or more atoms (reentrant surface). Gener-
ally, van der Walls surfaces are not capable of accurately describing the molecular
surface behavior, due to the overestimation of the surface in molecular dynamics
or to the incorrect encoding of the length of ionic and covalent bounds. Molecular
interfaces are determined by atomic and molecular interactions, which are also in-
fluenced by other physical phenomena in a neighborhood of the molecular surface.

This richness in the definition of the molecular surface highlights the difficulty in
the identification of a mathematical representation of this surface, which is crucial
to correctly simulate the mutual interactions of molecules and the understanding
of biological phenomena. To address this issue, we focus our attention on implicit
representations of surfaces (Sect. 1.2.1), which are successively specialized to the
class of molecules (Sect. 1.2.2). The aim of these definition is to provide a reli-
able representation the molecular surface, which resembles specific local properties
of the surface itself. However, a unique definition of the molecular surface, which
combines all its main properties, is still missing.

1.2.1 Implicit representation of surfaces

To introduce implicit modeling in a general context, let f : Rd ! R be a continuous
function. For instance, we can consider d := 3 (i.e., the Euclidean 3D space) and
select f as the implicit function underlying the blobby model (Sect. 1.2.2), which is
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commonly used to generate the molecular surface. Then, the function f defines the
implicit solid S := {x 2 Rd : f (x)� 0} as the set of points of Rd whose f -values
are greater than or equal to zero. The function f also identifies two half spaces on
which f is strictly positive or negative and the boundary f�1(0) of these two solids
is the level-set associated to the null iso-value. If f 2 C 2 and it has no critical points
(i.e., — f 6= 0), then the iso-surfaces Sa := f�1(a) related to different iso-values a
are well-defined, closed, and free of self-intersections. They also identify implicit
solids with different geometric (e.g., area, volume) and topological properties (e.g.,
number of connected components, genus).

The usefulness of implicit representations is due to the possibility of (i) extract-
ing differential properties (e.g., normals, normal and principal curvatures) of the
iso-surface directly from the underlying implicit representation; (ii) computing set-
theoretic operations (e.g., union, intersection, subtraction, off-setting) through func-
tional operations; (iii) imposing different constraints on the surface properties, such
as interpolation of points and smoothness conditions, through different implicit rep-
resentations based on radial basis functions and moving least-squares approxima-
tions.

According to the underlying function, implicit surfaces are classified into three main
groups: algebraic surfaces, globally- and locally-defined implicit surfaces. Alge-
braic surfaces are defined by a polynomial implicit function; in this case, we rep-
resent only simple surfaces, such as planes, spheres, cylinders, etc. Global implicit
representations are expressed as a linear combination of a set of basis functions;
among them, we mention blobby models and implicit representations with radial
basis functions. Blobby models are commonly used for the generation of the elec-
tron density map underlying the molecular surface and radial basis functions are
useful to interpolate and/or approximate a set of function values sampled at 3D
points. Local implicit representations approximate the input data in a neighborhood
of the sample point and locally adjust the implicit function to the approximation ac-
curacy, thus reducing the computational cost for sampling the implicit function on a
regular grid.

Global and local approximation of molecular properties Choosing a kernel
j : R+ ! R, the volumetric approximation F : R3 ! R of a discrete set of prop-
erties represented as the vector f := ( fi)n

i=1 is defined as a linear combination
F(x) := Ân

i=1 aiji(x) of the radial basis functions ji(x) := j(kx�xik2) centered
at {xi}n

i=1. Then, the coefficients a := (ai)n
i=1, which uniquely satisfy the interpo-

lating conditions F(xi) = fi, i = 1, . . . ,n, are the solutions of the n⇥n square linear
system Aa = f, where the entries of the matrix A are ai j := j(kxi �x jk2). In case
of noisy data, interpolating conditions are replaced by least-squares constraints. De-
pending on the properties of j and of the corresponding approximation scheme, we
distinguish globally-supported [3, 24] and compactly-supported [25, 15, 17] radial
basis functions, and the partition of unity [16, 27]. Globally-supported kernels are
associated to full coefficient matrices, which require a prohibitive storage and com-
putational cost with respect to compactly-supported kernels. Selecting compactly-



1 Implicit Modeling of Molecular Surafecs 5

supported basis functions generally provide sparse coefficient matrices and a lower
computation cost.

As an alternative to the global approximation schemes previously introduced, the
moving least-squares approximation [8, 12] defines a local approximation scheme
that is adapted to both the local distribution of points and the f -values. To this end,
a weight W (x,xi) is associated to each point xi with respect to x and a weighted
least-squares energy is minimized. Since the weight function W (·, ·) rapidly de-
creases to zero, in the approximation we consider only the f -values at those points
N

x

:= {x js}k
s=1 of x, which includes those points of P that fall inside the sphere

of center x and radius s(x). Here, the value s(x) is chosen according to the local
sampling density of P [22]. Then, we search the approximation F : R3 ! R in the
linear space of polynomial lower than a certain degree r (e.g., r := 2,3), thus solv-
ing a linear system whose size is proportional to the degree of the polynomials that
are reproduced by the method. This choice makes the approximation scheme local;
guarantees a O(r3) cost for the evaluation of F(x); avoids to sample every basis
function ji at x; and improves the conditioning number of the coefficient matrix of
the corresponding normal equation.

1.2.2 Blobby model and volume electron density map

We introduce the blobby model and its specialization to the definition of the elec-
tron density map for molecular surface representation. Then, we discuss the multi-
resolution representation of molecular surfaces, which is useful to encode the lo-
cal/global features and make the computation faster, also reducing the inflation of
the molecular surface due to Gaussian maps.

Blobby model The implicit function underlying the blobby model [2] is defined as
a linear combination of maps ji(x) := j(kx�xik2/si), generated by a decreasing
kernel j : R+ ! R and centered at the points xi, i = 1, . . . ,n; i.e.,

G(x) :=
n

Â
i=1

ai exp(�bij(kx�xik2)). (1.1)

In this representation, the parameter ai controls the strength of the map ji in G(·)
and bi controls its decay degree. Common choices are the Gaussian j(t) := exp(�t)
and the multi-quadratic j(t) :=

p
t2 + c2, c > 0, kernels. Since the Gaussian maps

exponentially tend to zero as we move far from their centers, in the evaluation of
Eq. (1.1) we consider only the contribution of those functions whose centers are
close to the evaluation point x. The resulting implicit surface is smooth, free of
singularities and self-intersections, and allows us to analytically compute geometric
surface properties, such as normals and curvature.
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(a)

(b) B :=�1 (c) B :=�2

Fig. 1.1: Electron density map and molecular surface. (a) Iso-curves of the elec-
tron density G(·) in Eq. (1.2) on the plane and generated by 5 atoms (white points)
with different radii. Color coding of the values of G(·) on a rectangle that contains
the atoms and corresponding iso-curves; (black) level-set related to the iso-value 1
mimics the molecular surface. (b,c) The behavior of G(·) and the shape of the cor-
responding level-set G�1(1) depend on the centers, radii, and the selected decay
factor.

Electron density map and molecular surface representation The blobby model
is specialized to molecular surfaces by considering only a constant decay and a
negative constant strength. Then, the molecular surface (implicit solvation surface)
is represented as the iso-surface S := G�1(1) of the volumetric electron density
map [28], which is defined as a linear combination of Gaussian functions centered
at the atoms ({ci,ri)}n

i=1 of the molecule; i.e.,

G(x) :=
n

Â
i=1

exp


B
✓
kx� cik2

r2
i

◆
�1

�
. (1.2)

The Gaussian basis functions, whose constant B controls both the decay and the
strength of the function G(·), identify the atomic density and recall the spherical
atomic orbitals. Indeed, this representation is a special case of the blobby model
(1.1); here, the selection of the blobby value B is related to the size of the solvent
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(a) (b)

(c) (d)

Fig. 1.2: Multi-resolution representation of molecular surfaces. (a, b) Input atoms
and (c,d) multi-resolutive hierarchy of atoms computed by clustering their centers
according to criterion of the minimal distance. Molecular surface at two levels of
detail in the hierarchy. (c) Low resolution level; several atoms have been clustered
and only the global structure of the molecular surface is reconstructed. (d) Residue-
level resolution, where we represent smaller details through the selection of a higher
number of atoms. Each molecular surface has been computed using the Marching
Cubes method; the values of the electron density map have been computed using the
blobby model (1.2) and have been sampled on a regular grid.

probe and influences the energy estimation of the molecular system (Fig. 1.1). For
values of B close to �• or 0, the density map tends to a constant. To extract the
molecular surface, we apply the Marching Cubes method [13] to the values of the
electron density map sampled on a regular or an adaptive grid and extract the molec-
ular surface as the iso-surface S := {x 2 R3 : G(x) = 1} related to the iso-value 1
(Fig. 1.2).

We briefly discuss the main pro and cons of blobby models for the representation of
molecular surfaces. Blobby models conform to the stability of the chemical struc-
ture of the atoms, recall the spherical representation of the orbits of the atoms, and
disregard the thermal vibration of atoms. They also provide a simple representa-
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tion of the electron density map as a linear combination of a set of Gaussian basis
functions centered at the atoms, which are sampled at any point and are efficiently
evaluated to identify the inner and outer part of the molecular surface. Furthermore,
the electron density map is differentiable and the resulting iso-surface is free of
self-intersections and singularities. However, models of the electrostatic potential
fields [6] are more accurate and computationally more expensive than blobby mod-
els. Since they are usually rasterized through partial differential equations on a regu-
lar grid, local changes to the grid generally require to recompute the whole solution.
On the contrary, for blobby models it is only necessary to sample the electron den-
sity map at the new sample points with a linear computational cost.

Multi-resolution representation of the molecular surface For the efficient com-
putation of the blobby model, multi-resolutive methods [28] reduce the inflation of
Gaussian basis functions and the computational cost for sampling the electron den-
sity map at the nodes of the volumetric grid, which depends on the number of atoms
and the grid size. To this end, atoms are hierarchically clustered according to prox-
imity criteria: at each level of the hierarchy, spheres are clustered in a priority queue
on the basis of a local error estimation and clustered spheres are replaced by a new
sphere. At the next level, the centre and radius of this new sphere is determined in
such a way that the new sphere encloses the clustered spheres (Fig. 1.2). The error
estimation for the generation of the priority queue takes into account the Euclidean
distance among the centers of the atoms that are clustered; the variation of the area
and volume of the generated molecular surface at each level of detail in the multi-
resolutive hierarchy; the Hausdorff distance between clustered atoms and molecular
surface. In this way, the molecular surface is encoded with a varying resolution and
the resulting multi-resolutive hierarchy allows us to identify its global structure and
local details.

1.3 Constructive solid geometry for molecular surface

representation

We now discuss how geometrical operations on solids are converted to operations
on the corresponding implicit representations; then, we specialize these results to
the computation of the molecular surface.

Constructive solid geometry with implicit surfaces We have previously men-
tioned that an implicit function identifies an implicit solid. We now define set-
theoretic operations [23], such as union, intersection, and subtraction, using min/max
operations or evaluating analytic representations. To this end, let us consider two
implicit solids S1, S2 defined by the implicit functions f1, f2. Then, their union is
represented as the implicit solid associated to the function f := max{ f1, f2}. In a
similar way, the union operation is associated to the function f := min{ f1, f2} and
the subtraction S1\S2 is identified by the map min{ f1,� f2} (Fig. 1.3(c-e)).
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S1 S2

(a) (b)

(c) S1\S2 (d) S1 \S2 (e) S1 [S2

(f) (g) (h)

Fig. 1.3: Constructive Solid Geometry operations on curves defined by implicit

maps. (a, b) Implicit (black) curves S1, S2 defined as the level-set of f1, f2 with
iso-value 0. (c-e) Behavior of the union, intersection, and subtraction of S1, S2
(black curves) computed applying the min, max operators to f1, f2. An example
of C 1 discontinuity is present at the intersection between S1 and S2. (f-h) Analytic
approximations (1.3) of the previous operations.

Alternatively [21], smooth versions of the set theoretic operations are defined
through the following analytic representations of the min/max operators as (Fig. 1.3(f-
h)) ⇢

S1 [Ss ! [ f1 + f2 +( f1 + f2 �2 f1 f2)] ,
S1 \Ss ! [ f1 + f2 � ( f1 + f2 �2 f1 f2)] ;

(1.3)

in particular S1\Ss = S1 \S C
2 , where S C

2 is induced by � f2. The use of min/max
and analytic representations of set-theoretic operations for implicit solids have the
following analogies and differences. Set-theoretic operations based on min/max are
only continuous with a C 1 discontinuity when f1 is equal to f2. Set-theoretic opera-
tions based on analytic representations have a C 1 smoothness but requires a higher
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(a) (b)

(c) (d)

Fig. 1.4: Main steps for the definition of the implicit function underlying the

molecular surface through CSG operations. (a) Sign changes of the implicit func-
tion underlying the molecular surface. (b) Identification of the atoms {(ci,ri)}i2|S |
that belong to the sphere of centre x and radius 2r. (c) Definition of the function
fi(x) := r+ ri +kx� cik2 centered at the atom (ci,ri) and used for the evaluation
of the map fSAS(x) = mini=1,...,|S|{ fi(x)} underlying the solvent accessible surface.
(d) Clustering of the atoms, according to the criterion of the minimal distance.

computational cost. For molecular surface representation, the previous min/max or
analytic representations are generally enough to generate a molecular surface of
good geometric quality.

We now discuss the link between set-theoretic operations and the generation of the
molecular surface, which is related to the following properties: (i) the molecular
surface is represented by an implicit function that bounds an implicit solid; (ii) the
solvent accessible surface and the solvent excluded surface can be defined as the
union/intersection of the atoms of the molecule and the probe radius.

Constructive solid geometry for molecular surface representation Applying
CSG operations, we define the solvent accessible surface and the solvent excluded
surface through intersection and union of solids, thus using the set-theoretic op-
erations and the corresponding function representations. More precisely [20], we
locally define a smooth implicit function f : R3 ! R such that (Fig. 1.4(a))

• f (x) is the point-to-set distance between x and the solvent excluded surface;
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(a) (b)

(c) (d)

Fig. 1.5: CSG-based computation of molecules. (a-c) Molecular surfaces computed
with set-theoretic operations, which guarantees the surface continuity. (d) Zoom-in.
Image courtesy of [20].

• f (x) = 0 if x belongs to the molecular surface;

• f (x) is strictly positive or negative if x is outside or inside the surface, respec-
tively.

The idea behind the proposed approach is to apply a local version of the blobby
model; where the locality is measured with respect to the sample point. More pre-
cisely, the implicit function fSAS(·) underlying the solvent accessible surface at x is
computed by summing the contribution of those atoms {(ci,ri)}i2|S | that belong to
the sphere of centre x and radius 2r (Fig. 1.4(b)). According to the functional repre-
sentation of set-theoretic operations, this function is computed by applying the min
operator; i.e., fSAS(x) = mini=1,...,|S|{r+ ri +kx� cik2} (Fig. 1.4(c,d)). In a simi-
lar way, the solvent excluded surface at x is computed by subtracting the union of
spheres centered at the previous set of atoms from the solvent accessible surface;
i.e., we apply the set-theoretic operations and we get (Fig. 1.5)

fSES(x) = fSAS(x)�
[

y2 f�1
SAS(0)

(R�kx�yk2) .
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These two surfaces are computed using the union, intersection, and subtraction of
implicit solids through min/max operations or their smooth approximation Eq. (1.3).

1.4 Thermal vibration and uncertainty for molecular surface

representation

A correct identification of the boundary between the solvent and the solute is cru-
cial to guarantee an accurate and stable computation of the solution to the Poisson-
Boltzman equation. On the one hand, the spatial organization of the atoms deter-
mines the bio-molecular properties of the molecule. On the other hand, the molecu-
lar surface is mainly defined by the force fields of the atoms, whose thermal vibra-
tion determines rapid changes of the surface. The blobby model and the CSG-based
model for the generation of the molecular surface assume that the position of the
atom is fixed in space and that there is no thermal vibration of the atoms and no
uncertainty in the determination of the atoms. However, the atom position is fuzzy
as a matter of the uncertainty in the protein structure determination and the thermal
vibration of the atoms.

According to [11], the idea is to consider the position of each atom as a probability
distribution; a natural choice is the Gaussian distribution. Collecting the probability
distributions of all the atoms, we compute the likelihood volume as the probability
that an atom is at a given location. In this way, atoms in stable conditions are still
represented as spheres and dynamic configurations are represented as a range of
positions of the atoms themselves. To encode the thermal vibration and uncertainty
in the blobby model, these two terms are modeled with a Gaussian distribution

G(x) :=


S�1

(2p)3 � 1
2

x

>S�1
x

�1/2

,

where S is the mean-squares displacement matrix. Assuming also that the thermal
vibration and the uncertainty are isotropic, the mean-squares displacement matrix
is diagonal and the Gaussian distribution is G(x) = (2ps)�3/2 exp(�(2s)�1kxk2).
Because each atom has an arbitrary centre and radius, we represent the distribu-
tion in homogeneous coordinates as G(x) = (2ps)�3/2 ��(2s)�1kMxk2

2
�
, where x

is the 4⇥4 homogeneous 3D transformation matrix for an atom. With reference
to Fig. 1.6(a), regions of the two Gaussian graphs with the same area have equal
probability to find the two atoms within distance s1 and s2 from their mean center.

Then, the p-probability sphere for an atom A is defined as the smallest sphere
that contains the center of A with probability p and the fuzzy molecular surface is
the collection of p-probability surfaces defined using a set of spheres each of that
encloses atoms with the same probability. The p-probability sphere for an atom A
is the smallest sphere that contains the center of A with probability p and the fuzzy
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(a)

(b) (c)

Fig. 1.6: Blobby and fuzzy molecular surfaces. (a) Gaussian probability distri-
bution of two atoms. Regions of the two graphs with the same area have equal
probability to find the two atoms within distance s1 and s2 from their mean center.
If s1 > s2, then atom A1 has a greater fuzziness (i.e., more vibration/uncertainty)
than A2. Comparison between the (b) blobby and (c) fuzzy molecular surfaces. Im-
ages (b,d) are courtesy of [11].

molecular surface is defined as the collection of p-probability surfaces defined using
a set of spheres each of that encloses atoms with the same probability. These new
basis functions are used to insert the information related to the uncertainty of the
positions of the atoms (Fig. 1.6(c)) in the definition of the electron density map
underlying the blobby model (Fig. 1.6(b)).

1.5 Characterization of the molecular surface

We have previously pointed-out that an implicit function identifies an implicit solid
and set-theoretic operations can be converted to function representations. We now
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(a) (b)

(c) (d)

Fig. 1.7: Point-to-set distance. (a) Definition and (b) example of the point-to-set
distance from the (white) curve A . (c) Signed point-to-set-distance. (d) Relation
between f (x) and the distance between x and the level-set f�1(0).

show that any closed set in Rd can be represented as the level-set of an implicit
function associated to the null iso-value. This function is the point-to-set distance
(Sect. 1.5.1), which will be used for the identification of cavities in molecular sur-
faces (Sect. 1.5.2); in fact, it provides a simple way to establish if a point is inside
or outside the molecular surface by simply checking its sign or the variation of its
sign.

1.5.1 Point-to-set distance for local shape characterization

The point-to-set distance of a point x to the closed set A of Rd is defined as the
minimum distance of x from A ; i.e., d(x,A ) := min

y2A {kx�yk2} (Fig. 1.7(a)).
Since we are evaluating the minimum of a continuous function (i.e., the Euclidean
distance) from a closed set (i.e., A ), we have that this minimum exists and is unique.
By definition, all the points of A have null point-to-set distance from A ; i.e., A
is the level-set associated to the null iso-value of the implicit function defined as
the point-to-set distance from A (Fig. 1.7(b)). The resulting surface depends on the
quality of the discrete sampling and its local geometry; in fact, the distance map has
a linear behavior when the sample point is close to the surface and the surface curva-
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.8: Exploration and characterization of molecular cavities. (a) Bounding box
of the molecular surface S and random samples; (b) identification of those samples
that are outside S and whose distance from S is lower than d := 2r, where r is the
probe radius. (c, d) Rays x+DN(x) through each sample x along the normal to the
molecular surface and its intersection with the molecular surface. (e) Intersection
points xA and xB between the molecular surface and the ray traced through x. (f)
Cavity graph defined as the undirected graph associated to the mid-points of xA, xB
previously computed.

ture is small with respect to the local sampling distance. Under specific assumptions
on the regularity of A , we can guarantee the smoothness of the signed point-to-set
distance. More precisely, if A is a closed subset with a piecewise smooth bound-
ary then the signed point-to-set distance is differentiable almost everywhere and its
gradient satisfies the eikonal equation.
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Fig. 1.9: Molecular cavities. Cavities’ graphs on molecular surfaces. Image cour-
tesy of [19].

Signed point-to-set distance In several applications (e.g., cavities exploration in
molecular surfaces), it is useful to distinguish points outside and inside the molecu-
lar surface. For instance, the definition of the molecular surface with CSG operations
(Sect. 1.3) uses an analogous implicit function. To this end, we consider the signed
point-to-set distance, which is a variation of the point-to-set distance and is defined
as (Fig. 1.7(c))

d(x,A ) :=
⇢

d(x,A C), x 2 A ,
�d(x,A ), x 2 A C.

According to this definition, the signed point-to-set distance is positive inside the
set A , negative outside A , and null on A . The signed distance field f : Rd ! R
can also be defined through the eikonal equation k— fk2 = 1 and the condition of
the zero set f |S = 0. The signed point-to-set distance is a continuous function and
its derivatives are defined almost everywhere; i.e., with the exception of those points
of Rd that have no unique closest surface points.

We now characterize the point-to-set distance to the iso-surface of an implicit func-
tion f : Rd ! R by understanding the relation between the value f (x) and the point-
to-set distance of x from the iso-surface f�1(0) (Fig. 1.7(d)). In general, it is not true
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that f (x) is equal to the point-to-set distance of x from f�1(0). For instance, if we
multiply f by a non-null constant a then a f has the same iso-surface of f for the
null iso-value and the same point-to-set distance function; however, the values of f
and a f at x are different, a 6= 1. Indeed, we need to introduce some assumptions
on the values of f and its smoothness in order to characterize the relation between
the value f (x) and the distance of x from the iso-surface f�1(0). According to [10],
let us assume that f is a Lipschitz function; i.e., there exists a constant Lip f such
that | f (x)� f (y)| Lip f kx�yk2. After the normalization of f with the Lipschitz
constant, | f (x)/Lip f | is lower than the point-to-set distance of x from the level-set
f�1(0); i.e., �����

f (x)
Lip f

����� d(x, f�1(0)). (1.4)

Since the implicit function underlying the blobby model is Lipschitz, it satisfies the
upper bound (1.4) to the point-to-set distance. After the normalization of the blobbly
implicit function with respect to its Lipschitz constant, Eq. (1.4) gives a simple way
to estimate the distance of a point x from the molecular surface. Finally, the solvent
excluded surface is computed locally and the implicit function provides the minimal
distance to S .

1.5.2 Cavities’ exploration for molecular docking

In the following, we discuss a simple and effective method to identify the cavities
of molecular surfaces [19], which is important for a better characterization of the
geometry of the molecular surface and the support to molecular docking [4, 18, 26].

First of all (Fig. 1.8(a)), we identify the bounding box of the molecular surface
and we sample s random points in this box and select d := 2r as the maximum
distance between the molecular surface and the sample x. Then, we remove all those
samples that are inside the molecular surface or whose point-to-set distance from the
molecular surface is greater than a given threshold, which is set equal to 2r, where r
is the probe radius (Fig. 1.8(b)). Using the CSG model for the molecular surface,
these two conditions are simply evaluated by sampling the implicit function at the
samples and checking if these two conditions are satisfied or if they are not fulfilled.

In the selected set of samples, we identify samples belonging to potential cavities by
casting a ray x+DN(x) through each sample x along the normal to the molecular
surface (i.e., using the gradient of the implicit function) and studying its intersection
with the molecular surface (Fig. 1.8(c,d)). More precisely, we need to solve the non-
linear equation f (x+DN(x)) = 0. To verify if this predicate is satisfied, we apply
a ray-tracing procedure or an iterative solver. In the first case, the time parameter
is incremented until the molecular surface is pierced by the ray and this procedure
is the same used for the visualization of the iso-surfaces of implicit maps. In the
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(a) (b)

Fig. 1.10: Morse complex and volumetric sampling of the electron density map. (a)
Morse complex and critical points of the curvature values on a molecular surface.
Maxima, minima, and saddles are represented as red, blue, and green points. (b)
Volumetric sampling of the density map induced by the interaction of this molecule
with surrounding molecules [28].

second case, the iterative solver approximates the solution to the non-linear equation
by locally linearizing it.

Let us assume that we have identified two points xA and xB of intersection between
the molecular surface and the ray traced through the sample point x (Fig. 1.8(e)). By
definition, one of these two points (i.e., the one closest to the molecular surface) is
identified by the point-to-set distance. Then, we replace x, xA, and xB with the mid
point between xA and xB. We then compute the cavity graph as an undirected graph
of these new points (Fig. 1.8(f)), where an edge of the graph exists if there is no
surface between the two endpoints. Fig. 1.9 shows the cavities’ graphs of different
molecular surfaces.

1.6 Discussion and future work

The correct representation of molecular surfaces is fundamental for their process-
ing, analysis, and visualization. However, multiple connected components, spurious
cavities or holes, and topological inconsistencies affect the current representations
of molecular surfaces. A locally incorrect representation of the molecular surface
wrongly influences the classification of its features, the identification of docking
sites, and the evaluation of local similarities among molecules. These geometric
and topological artifacts in the representation of the molecular surfaces [1] are also
due to the resolution of the voxel grid, on which the electrostatic field is sampled
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to extract the molecular surface through Marching Cubes [13] or alternative algo-
rithms [9]; local perturbations in the computed samples of the electron density map;
numerical errors; and a limited approximation accuracy. A locally incorrect repre-
sentation of molecules, which is due to inherent pathologies in the classical defini-
tion of the van der Walls, solvent-accessible and solvent-excluded surfaces, badly
influences the classification of its features, the identification of docking sites, and the
evaluation of local similarities among molecules. These geometric and topological
artifacts in the molecular surface representation are generally due to the resolution
of the voxel grid used by the Marching Cubes, local perturbations in the computed
samples of the electron density map, numerical errors, or limited approximation
accuracy.

In this context, we have reviewed implicit modeling techniques for the representa-
tion, analysis, and characterization of the electron density map and the underlying
molecular surface, with possible applications to the analysis of molecular cavities
for docking. Even though the definition of a correct representation of the molecular
surface is still crucial to correctly simulate the mutual interactions of molecules and
the understanding of biological phenomena, a unique definition of the molecular
surface, which combines all its main properties, is still missing. Recent definition of
the molecular surface, which take into account the vibration of the atoms and their
fuzzy location in space, are promising to address complex problems, such as the
study of the interactions among molecular and molecular docking.

The possibility of sampling the electron density map at the nodes of a volumet-
ric grid has allowed us to combine surface-based and volume-based information.
Fig. 1.10 shows a color coding of the values of the electron density map at the nodes
of a tetrahedral mesh generated staring from a triangle mesh of the molecular sur-
face (e.g., [7]). Considering the class of molecular surfaces defined through implicit
representations, discrete and continuous differential properties [14] of the electron
density map, such as the critical points classification and distribution, can be used
to automatically identify, classify, and remove degeneracies and inconsistencies dur-
ing the computation of the molecular surface. This discussion can be applied to both
discrete and continuous electron density maps, such as the blobby model [28], im-
plicit representations [19], the Connolly surface [5]. Indeed, as future work we plan
to investigate the analysis of degeneracies in molecular surfaces through differential
properties of implicit functions with the final aim of validating those methods of
differential geometry that are meaningful from the biophysics perspective and are
useful for the extraction of a molecular surface that is free of topological noise and
geometric artifacts.
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20 Giuseppe Patané and Michela Spagnuolo

References

1. C. Bajaj, A. Gillette, and S. Goswami. Topology based selection and curation of level sets.
In Topology-Based Methods in Visualization II, Mathematics and Visualization, pages 45–58.
Springer Berlin Heidelberg, 2009.

2. J. F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on Graphics,
1(3):235–256, 1982.

3. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R.
Evans. Reconstruction and representation of 3D objects with radial basis functions. In ACM
Siggraph, pages 67–76, 2001.

4. B. Y. Chen and B. Honig. Vasp: A volumetric analysis of surface properties yields insights
into protein-ligand binding specificity. PLoS Comput. Biol., 6(8):e1000881, 08 2010.

5. M. L. Connolly. Analytical molecular surface calculation. Journal of Applied Crystallography,
16(5):548–558, 1983.

6. S. Decherchi, J. Colmenares, C. E. Catalano, M. Spagnuolo E. Alexov, and W. Rocchia. Be-
tween algorithm and model: Different molecular surface definitions for the poisson-boltzmann
based electrostatic characterization of biomolecules in solution. Communications in Compu-
tational Physics, 13:61–89, 2013.

7. S. E.D. Dias and A. J.P. Gomes. Graphics processing unit-based triangulations of blinn molec-
ular surfaces. Concurrency and Computation: Practice and Experience, 23(17):2280–2291,
2011.

8. R. Farwig. Multivariate interpolation of arbitrarily spaced data by moving least squares meth-
ods. Journal of Computational and Applied Mathematics, 16(1):79–93, 1986.

9. A. Gomes, I. Voiculescu, J. Jorge, B. Wyvill, and C. Galbraith. Implicit Curves and Surfaces:
Mathematics, Data Structures and Algorithms. Springer Publishing Company, Incorporated,
1st edition, 2009.

10. J. C. Hart. Sphere tracing: a geometric method for the antialiased ray tracing of implicit
surfaces. The Visual Computer, 12(10):527–545, 1996.

11. C. H. Lee and A. Varshney. Representing thermal vibrations and uncertainty in molecular
surfaces. Proc. SPIE, 4665:80–90, 2002.

12. D. Levin. The approximation power of moving least-squares. Mathematics of Computation,
67(224):1517–1531, 1998.

13. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface construction
algorithm. ACM SIGGRAPH Computer Graphics, 21(4):163–169, 1987.

14. J. Milnor. Morse Theory, volume 51 of Annals of Mathematics Studies. Princeton University
Press, 1963.

15. B. S. Morse, T. S. Yoo, D. T. Chen, P. Rheingans, and K. R. Subramanian. Interpolating
implicit surfaces from scattered surface data using compactly supported radial basis functions.
In IEEE Shape Modeling and Applications, pages 89–98, 2001.

16. Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-level partition of unity
implicits. ACM Siggraph, 22(3):463–470, 2003.

17. Y. Ohtake, A. Belyaev, and H.-P. Seidel. 3D scattered data interpolation and approximation
with multilevel compactly supported RBFs. Graphical Models, 67(3):150–165, 2005.

18. J. Parulek and A. Brambilla. Fast blending scheme for molecular surface representation. IEEE
Transactions on Visualization and Computer Graphics, page to appear, 2013.

19. J. Parulek, C. Turkay, N. Reuter, and I. Viola. Implicit surfaces for interactive graph based
cavity analysis of molecular simulations. In 2nd IEEE Symposium on Biological Data Visual-
ization, 2012.

20. J. Parulek and I. Viola. Implicit representation of molecular surfaces. In IEEE Pacific Visual-
ization Symposium, pages 217–224, 2012.

21. A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Function representation in geometric
modeling: concepts, implementation and applications. The Visual Computer, 11(8):429–446,
1995.



1 Implicit Modeling of Molecular Surafecs 21

22. M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape modeling with point-sampled geom-
etry. ACM Transactions on Graphics, 22(3):641–650, 2003.

23. A. Ricci. A constructive geometry for computer graphics. The Computer Journal, 16(2):157–
160, 1973.

24. G. Turk and J. F. O’Brien. Modelling with implicit surfaces that interpolate. ACM Siggraph,
21(4):855–873, 2002.

25. H. Wendland. Real piecewise polynomial, positive definite and compactly supported radial
functions of minimal degree. Advances in Computational Mathematics, 4(4):389–396, 1995.

26. Zhang X. and Bajaj C. Extraction, quantification and visualization of protein pockets. Comput
Syst Bioinformatics Conf., (6):275–286, 2007.

27. H. Xie, K. T. McDonnell, and H. Qin. Surface reconstruction of noisy and defective data sets.
In IEEE Visualization, pages 259–266, 2004.

28. Y. Zhang, G. Xu, and C. Bajaj. Quality meshing of implicit solvation models of biomolecular
structures. Computer Aided Geometric Design, 23(6):21, 2006.


