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Abstract

In engineering, geographical applications, bio-informatics, and scientific visualisation,

a variety of phenomena is described by data modelled as the values of a scalar function

defined on a surface or a volume, and critical points (i.e., maxima, minima, saddles)

usually represent a relevant information about the input data or an underlying phe-

nomenon. Furthermore, the distribution of the critical points is crucial for geometry

processing and shape analysis; e.g., for controlling the number of patches in quadrilat-

eral remeshing and the number of nodes of Reeb graphs and Morse-Smale complexes.

In this context, we address the design of a smooth function, whose maxima, minima,

and saddles are selected by the user or imported from a template (e.g., Laplacian eigen-

functions, diffusion maps). In this way, we support the selection of the saddles of the

resulting function and not only its extrema, which is one of the main limitations of pre-

vious work. Then, we discuss the meshless approximation of an input scalar function

by preserving its persistent critical points and its local behaviour, as encoded by the

spatial distribution and shape of the level-sets. Both problems are addressed by com-

puting an implicit approximation with radial basis functions, which is independent of

the discretisation of differential operators and of assumptions on the sampling of the in-

put domain. This approximation allows us to introduce a meshless iso-contouring and

classification of the critical points, which are characterised in terms of the differential

properties of the meshless approximation and of the geometry of the input surface, as

encoded by its first and second fundamental form. Furthermore, the computation is per-
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formed at an arbitrary resolution by locally refining the input surface and by applying

differential calculus to the meshless approximation. As main applications, we consider

the approximation and analysis of scalar functions on both 3D shapes and volumes in

graphics, Geographic Information Systems, medicine, and bio-informatics.

Keywords: Scalar function design; meshless approximation; critical points; Laplacian

matrix; visualisation; applications

1. Introduction

In several applications (e.g., engineering, geographical applications, bio-informatics,

and scientific visualisation), scalar functions defined on a surface or a volume are used

to model a relevant information about the input data or an underlying phenomenon.

Controlling the distribution of the critical points (i.e., maxima, minima, saddles) of

a scalar function during its design is also crucial for geometry processing and shape

analysis. For instance, properly designing a scalar function with a prescribed set of

critical points provides a flexible control over the number, shape, and size of the result-

ing quadrangular patches of remeshed surfaces [20, 30, 41], the number of nodes of the

Reeb graph [44, 50] and of the Morse-Smale complex. However, harmonic functions

allow the user to select only the number and position of its maxima and minima, with

no control on the corresponding saddles. In a similar way, Laplacian eigenfunctions

associated with small eigenvalues and diffusion maps at small scales are characterised

by a generally low number of critical points, whose spatial location cannot be defined

a-priori.

After a brief review of previous work (Sect. 2), our first goal (Sect. 3) is to design

a smooth function whose maxima, minima, and saddles are selected by the user or im-

ported from a template function. As main examples of template functions, we mention

the Laplacian eigenfunctions [54] and the diffusion maps [12, 45], which are intrin-

sically defined by the input surface and their critical points represent relevant shape

features, such as protrusions and high-curvature regions. The function with designed

critical points is computed by applying either a mesh-based or a meshless approxi-

mation and by combining interpolating or least-squares constraints with the spectral
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properties of the Laplacian matrix. Then, the resulting problem reduces to the solution

of a linear system. As novel contribution with respect to previous work, we allow the

user to select the saddles of the designed function, and not only its extrema.

Our second goal (Sect. 4) is to compute a meshless approximation of an input

scalar function by preserving its persistent critical points and its local behaviour (e.g.,

as encoded by the level-sets), instead of minimising only the approximation error as

done by previous work. The proposed approximation preserves the topology of the

global structure of the input scalar function by applying interpolating constraints on its

values at the persistent critical points and at their 1-star vertices. It also approximates

the local details according to the target accuracy, through least-squares constraints on

the function values at a sub-sampling of the level-sets. The resulting function provides

a good approximation accuracy without over-fitting the input data, and is robust against

noise and local perturbations. As novelty with respect to previous work, we focus on

the preservation of the spatial distribution and shape of the level-sets, which are useful

to characterise the function behaviour. For instance, in medicine the shape of the level-

sets is useful to discriminate between pathological and healthy cases, in Geographic

Information Systems (GIS) it characterises the terrain morphology, and in Computer

Graphics it encodes geometric properties of shape-driven functions, such as geodesic

and diffusion distances.

The meshless techniques underlying the design and approximation of scalar func-

tions with constrained critical points support the computation of the level-sets, the clas-

sification of the critical points, and the encoding of the approximations in a compact

representation that saves input/output space (Sect. 5). All these computations are per-

formed at an arbitrary resolution by locally refining the input surface and by applying

differential calculus to the meshless approximation.

2. Previous work

We briefly summarise previous work on the classification and simplification of the

critical points, and on the approximation of discrete data with implicit methods and

radial basis functions.
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Critical points. Given a C1 function f :M→ R defined on a smooth 2-manifold sur-

faceM, the critical points of f are defined as those points p∈M such that∇ f (p) = 0

and they correspond to the maxima, minima, and saddles of f . For polyhedral sur-

faces, the method described in [7] classifies a vertex according to the values of f on its

neighborhood. IfM is a triangle mesh, then the vertex p is a maximum or a minimum

if its function value is higher or lower than those ones on its 1-star, respectively. We

briefly remind that the 1-star of a vertex pi is defined as the set of vertices incident

to pi; i.e., {p j : (pi,p j) edge}. If two or more iso-curves related to the same iso-value

share a vertex p, then p is a saddle. Those points that do not fall in the previous clas-

sification are defined as regular. According to this classification, the Euler formula

χ(M) = m− s+M provides a link between the number of critical points (i.e., m min-

ima, M maxima, s saddles) of the input scalar function and the Euler characteristic

χ(M) of M. For details on the classification of critical points for piecewise linear

scalar functions on triangle meshes, we refer the reader to [11] and Sect. 3.1.

Topological simplification of critical points based on persistence. Given a scalar func-

tion f :M→ R with a large number of critical points associated with a low variation

of the corresponding f -values, previous work [11, 22] defines a topological hierar-

chy for f that is constructed by performing a progressive simplification of the Morse

complex F of f through the cancellation of pairs of critical points. Then, the critical

points are paired by visitingM with respect to the reordering of its vertices according

to increasing values of f . The importance weight associated with the pair (pi,p j) is

measured as the persistence of pi, p j, that is, | f (pi)− f (p j)|. The local updates of the

complex are performed by iteratively removing those pairs with the lowest persistence

and reconnecting the neighbours of the removed nodes. Each node removal affects the

number and configuration of the critical points of F without changing f . Therefore,

the simplification provides a hierarchy for f where each Morse complex F (k) is not

associated with a corresponding scalar function f (k) onM.

In [23], the input scalar function f is replaced with a new function f̃ that has the

same points of persistence of f higher than a given threshold ε and the L∞-error be-

tween f and f̃ is lower than ε. The ε-simplification of the structure of f and the con-
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struction of f̃ are based on an iterative process, which cancels minimum-saddle pairs

by sweeping the vertices from bottom to top and lower the saddles that belong to a pair

of persistence lower than ε.

To improve the approximation accuracy and the smoothness of the solution, topo-

logical simplification is combined with the minimisation of the L∞ error between the

input and the simplified functions [61, 59], isotropic Laplacian [20, 41, 56] or Gaus-

sian [35] filters, and least-squares approximation constrained to preserve the persistent

critical points [47, 61].

Meshless approximation with Moving-Least-Squares methods and radial basis func-

tions. Given a point set P , the moving least-squares (MLS) surfaceM underlying P

is defined by a projection operator ψP : R3→M, which maps an arbitrary point p

onto M [2, 3, 4, 34]. In particular, each point of M is a stationary point of ψP ;

i.e., p ∈M implies ψP(p) = p. Previous work on MLS surfaces assumes that the nor-

mal of the approximating tangent frame is the surface normal. Since this assumption is

generally not satisfied, [1] proposes a different expression of the implicit function g that

allows us to exactly compute the surface normals. More precisely, the surfaceM is de-

fined as the zero-set {p : g(p) = 0} of the implicit function g(p) := 〈p−b(p),n(p)〉,

where n(p) is the oriented normal at p, which is computed as previously discussed,

and b(p) is the weighted average of points at p, i.e. b(p) := ∑
n
i=1 θ(‖p−pi‖2)pi

∑
n
i=1 θ(‖p−pi‖2)

. Here, θ is

a decreasing weighting function, e.g. θ(t) := exp(−t2/h2), where h is a Gaussian scale

parameter that defines the width of the kernel. A possible choice of h is h := σ/
√

3,

where σ is the distance between pi and the points of its k-nearest neighborhood; for

more details on the choice of h, we refer the reader to [19].

In implicit modeling [10], a point set P := {pi}n
i=1 is approximated by the iso-

surface Σ := {p ∈ R3 : g(p) = 0}, where g : R3→ R is an implicit function. In this

context, implicit approximation [6, 21, 37, 53] computes g(p) := ∑
n
i=1 aiφi(p) as a lin-

ear combination of the basis elements B := {φ(‖p−pi‖2)}n
i=1, where φ is the kernel

function. Depending on the properties of φ and of the corresponding approximation

scheme, we distinguish globally- [15, 62] and compactly- [64, 39, 43] supported radial

basis functions, and the partition of unity [42, 66]. Here, the support of a function
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(a) (b)

Figure 1: (a) 1-star of a vertex used for the design and classification of the critical points; maximum achieved

by choosing the f -values such that f (p j) > f (pi), j ∈N (i). (b) Neighbour and level-set (blue, red curves)

at a saddle s and points (black dot) that define the mixed link (c.f., Eq. (1)). Here, t? is a triangle of the

neighbour of s intersected by the corresponding level-set.

g : R3→ R is defined as the set supp(g) := {p ∈ R3 : g(p) 6= 0}. If supp(g) := R3,

then g has global support. Main examples are the cubic (φ(σ,r) = σr3), Gaussian

(φ(σ,r) = exp(−σr2)), thin plate spline (φ(σ,r) = r2 log(σr)), inverse multi-quadratic

(φ(σ,r) = (r2 +σ2)−1/2), and multi-quadratic (φ(σ,r) = (r2 +σ2)1/2) kernels.

3. Designing scalar function with constrained critical points

We aim at designing a smooth function whose critical points are selected by the user

or imported from a template function, such as the Laplacian and the diffusion functions

(Sect. 3.1). The function with designed critical points is computed by applying a mesh

(Sect. 3.2) or meshless (Sect. 3.3) approximation and reduces to the solution of a linear

system. Finally (Sect. 3.4), we discuss the main properties of the designed functions

(e.g., number of critical points, selection of the type of constraints). In all the paper

examples, the values of the input scalar function belong to the interval [0,1]. In a

similar way, the coordinates of the vertices of the input surface are normalised in such

a way that the surface belongs to the unitary bounding box.

3.1. Selection of the critical points and values

Given a triangle mesh M with P := {pi}n
i=1 set of vertices, we want to design a

piecewise linear function f :M→ R by selecting the position and values of its critical

points. To define a function f with a maximum at a vertex pi (Fig. 1(a)), it is enough to
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define f (pi) greater than the f -values at the points of its 1-starN (i) := { j : (i, j) edge}.

A minimum is defined in a similar way. To design a saddle of f at pi (Fig. 1(b)), let

Lk(i) := { j1, . . . , jk ∈N (i) : ( js, js+1)
k−1
s=1 edges ofM}

be the link of i, and

Lk±(i) := { js ∈ Lk(i) : f (p js+1)> f (pi)> f (p js) or

f (p js+1)< f (pi)< f (p js)}, jk+1 := jk,
(1)

the mixed link of i. Recalling that the cardinality of the mixed link of a saddle of

multiplicity m is 2+2m, a vertex pi with a neighbouring vertices locates a saddle of

multiplicity lower than or equal to b(a−2)/2c, where b·c is the floor symbol. If this

condition is not satisfied, then we either reduce the multiplicity of the saddle according

to the previous relation, or we locally update the mesh connectivity at N (i) (e.g., by

splitting each triangle incident to i into two sub-triangles). Indeed, the f -values at pi

and at its neighbouring points are chosen in such a way that the conditions in Eq. (1)

are satisfied.

Let C be the set of critical points (i.e., maxima, minima, saddles) and let us consider

the set Ĩ := { j ∈N (i), i ∈ C} of the vertices of the 1-stars of the critical points. Then,

let I := C ∪ Ĩ be the set of designed critical points and of the corresponding 1-stars’

vertices, without repetitions; we also assume that k is the cardinality of the set I. To

define the function f : P → R at all the points of P starting from the designed critical

points and the values { f (pi)}i∈I , we propose a mesh-based (Sect. 3.2) and meshless

(Sect. 3.3) computation. To this end, we reformulate the problem as the computation

of a function that satisfies the conditions f (pi) = fi, i ∈ I, in an exact or least-squares

way. By definition, the set C̃ of critical points of f contains C.

3.2. Mesh-based design of scalar functions with constrained critical points

We introduce a mesh-based design of the scalar function with constrained critical

points by applying interpolating and least-squares constraints.

Design of scalar functions with constrained critical points. According to the previous

discussion, the smooth scalar function f :M→ R, with a set C of critical points, is
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2: (a,c,e,g) Critical points and (b,d,f,h) of the designed scalar function. Each scalar function has

been designed by applying the mesh-based approach with interpolating constraints at (a,b) 2 maxima, (c,d) 2

minima, (e,f) 2 maxima and 2 minima, (g,h) 4 saddles. Pictures in (a,c,e,g) show the constrained maxima and

minima as well as the saddles of the designed scalar function. Maxima, minima, and saddles are represented

as red, blue, and green dots, respectively.

defined as the solution of the constrained minimisation problem (Fig. 2)

min
f∈Rn
{‖Lf‖2}, f (pi) := fi, i ∈ I, (2)

where L is the Laplacian matrix with Voronoi-cotangent weights [18, 52]. We briefly

recall that the Laplacian matrix discretises the Laplace-Beltrami operator and ‖Lf‖2

represents the Dirichlet energy of f . Since this last term is null or close to zero for

constant or smooth functions, its minimisation is aimed at controlling the oscillations of

the solution to (2). To compute the solution to Eq. (2), we consider the complement IC
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(a) (b) (c)

(d) (e) (f)

Figure 3: (a,c,e) Critical points and (b,d,f) level-sets of the designed scalar function achieved with least-

squares constraints (mesh-based approach) at (a,b) 3 maxima, (c,d) 6 saddles (internal circle), (e,f) 3 maxima,

3 minima, and 6 saddles. Pictures in (a,c,e) show the constrained maxima and minima as well as the saddles

of the designed scalar function. Maxima, minima, and saddles are represented as red, blue, and green dots,

respectively.

of I and for i ∈ IC we have that

(Lf)i = lii f (pi)− ∑
j∈N (i)

li j f (p j)

= lii f (pi)− ∑
j∈N (i)∩IC

li j f (p j)− ∑
j∈N (i)∩I

li j f j.

Indicating with g := ( f (pi))i∈IC ∈ Rn−k the set of unknowns, the previous identities

can be written in matrix form as L̃g−b. Here, L̃ ∈ R(n−k)×(n−k) is the matrix achieved

by cancelling the ith-row and ith-column of L, i ∈ I, and the entries of the constant

term b ∈ Rn−k are given by ∑ j∈N (i)∩I li j f j, i ∈ IC. Therefore, the constrained least-

squares minimisation problem (2) is equivalent to minx∈Rn−k{‖L̃x−b‖2}, where the

solution x provides the f -values at the points associated with IC. Since the rank of L is

n−1, the rank of L̃ is n− k, k ≥ 1 and the vector x is the unique solution to the sparse

linear system L̃x = b. In Fig. 2(e,f), (g,h), the selection of critical points at symmetric

locations makes the behaviour of the resulting scalar function symmetric.
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Design of scalar functions with least-squares constraints on critical points. The func-

tion f :M→ R, which is the best compromise between the least-squares constraint

∑i∈I | f (pi)− fi|2 and the smoothness term ‖Lf‖2, is defined as the solution to the

problem (Fig. 3)

min
f∈Rn
{F(f)} , F(f) := ε ∑

i∈I
| f (pi)− fi|2 +‖Lf‖2

2. (3)

Then, the derivative of F with respect to the unknown f (pk) is ∑
n
i, j=1 li jlik f (p j)+ ε( f (pk)− fk), k ∈ I,

∑
n
i, j=1 li jlik f (p j), k ∈ IC,

which is re-written in matrix form as (L>L+ εΓ)f = εb, with

Γi j :=

 1 i = j ∈ I,

0 else,
bi :=

 fi i ∈ I,

0 i ∈ IC,
b ∈ Rn, Γ ∈ Rn×n.

The coefficient matrix L>L+ εΓ, ε > 0, is symmetric, sparse, and positive definite;

indeed, our problem admits a unique solution. For the selection of ε, which represents

the trade-off between approximation accuracy and smoothness of the solution, we ap-

ply the L-curve criterion [28]; an alternative is to consider statistical criteria [63]. For

surfaces with a high genus or a high number of designed saddles, it is generally prefer-

able to apply least-squares instead of interpolating constraints in order to reduce the

number of additional critical points. For instance, least-squares constraints in Fig. 3

are associated with a regular distribution of smooth level-sets, even in case of a large

number of selected critical points (Fig. 3(d)).

For the mesh-based design of a scalar function with constrained critical points,

we can also consider the Laplacian matrix L̃ := B−1L with linear FEM weights [54],

where L is the Laplacian matrix with cotangent weights and B is the mass matrix,

which encodes the variation of the triangles’ area. In this case, we select the norm

‖f‖2
B := f>Bf induced by the symmetric, positive-definite mass matrix B, instead of

the L2-norm used in Eq. (2) and Eq. (3). The B-norm generally improves the robust-

ness of the resulting scalar function with respect to an irregular sampling of the input

surface; in particular, the proposed formulation and its properties remain unchanged.
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For the design of scalar functions with interpolating constraints, the Dirichlet energy

‖Lf‖B can be re-written in terms of the L2-norm as ‖Lf‖B = ‖B1/2Lf‖2, where B1/2

is the square-root of B. Then, we can either compute B1/2 [27] (Ch. 4) or lump B to

the diagonal matrix whose entries are the areas of the Voronoi regions of the mesh ver-

tices. For the mesh-based design of scalar functions with least-squares constraints, the

normal equation becomes (L>BL+ εBΓB)f = εB>b. For our experiments, we have

selected the Voronoi-cotangent weights (c.f., Eq. (2)).

3.3. Meshless design of scalar functions with constrained critical points

Analogously to Eq. (2), we compute the function u : R3→ R that satisfies the con-

ditions u(pi) = fi, i ∈ I, and is defined as a linear combination u(p) := ∑i∈I aiφi(p) [6]

of RBFs φi(p) := φ(‖p− ci‖2) generated by the kernel φ : R+→ R. The coefficients

a := (ai)i∈I are the solution to the linear system Φa = f̃, where Φ is the Gram matrix

induced by (φ,C), and f̃ := ( f (pi))i∈I . The solution to our problem is the piecewise

linear function f whose values at the vertices are defined as f (pi) := u(pi), i = 1, . . . ,n.

An important constraint on the kernel is its global support; in fact, using only compactly-

supported RBFs would provide artefacts where the supports of the basis functions in-

tersect and a low regularity of the level-sets. Indeed, for our experiments we have

selected the Gaussian and cubic kernels (Fig. 4).

Selecting the RBFs induced by the harmonic kernel φ(t) := t−1 and centred at the

points in C := {ci}i∈I , u is harmonic in D := R3\C, as a linear combination of har-

monic functions, is the unique solution to the Laplace equation ∆u(p) = 0, with initial

conditions u(pi) = f (pi), i ∈ I, and minimises the Dirichlet energy. Since the func-

tion u is evaluated at pi and φi is not defined at ci, as centres of the RBFs we select

the offset points ci := pi +δni, δ > 0, which are obtained by translating pi along the

corresponding normal ni to the surface.

3.4. Properties of the designed scalar functions

We discuss how the selected critical points affect the overall number of critical

points of the designed function and the main criteria for the selection of interpolating

or least-squares constraints.
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(a) (b) φ(σ,r) = exp(−σr2) (c) φ(r) = r3

Figure 4: (a) Selected critical points: 1 maximum (red dot), 1 minimum (blue dot), 6 saddles (green dots)

and level-sets of the scalar function designed with the meshless approach and (b,c) two generating kernels.

Critical points of the designed function. Recalling the Euler formula (Sect. 2), the

number of saddles of the designed scalar function is s = 2(g−1)+m+M, where g

is the genus of the input domain. Combining this relation with the smoothness of

the approximation due to the minimisation of the Laplacian energy, we expect a low

number of additional critical points according to the Euler formula, the smoothness

and regular distribution of the level-sets on the input surface. Choosing 1 maximum

and 1 minimum, the minimal number of saddles is s = 2g. The selection of up-to 2g

saddles and interpolating constraints, together with the minimisation of the L2-norm

(mesh design) or the Dirichlet energy (meshless design), provide the smoothest scalar

function that satisfies the selected conditions on the number and location of the critical

points. Selecting more than 2g saddles induces additional extrema, which are neces-

sary to guarantee the validity of the Euler formula. Assuming that the input scalar

function is general (i.e., f (pi) 6= f (p j), (i, j) edge), from the Euler formula we get that

the additional critical points m̃, M̃, s̃, satisfy the “nullity relation” m̃− s̃+ M̃ = 0.

Constraints’ selection. Least-squares constraints are preferable to interpolating con-

straints in case of a large number of selected critical points, in order to minimise the
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number of additional critical points that are necessary to satisfy the Euler formula. Re-

ducing the trade-off ε in the mesh-based design with least-squares constraints (c.f., Eq.

(3)) will remove low persistent critical points.

An alternative to the user selection of the f -values at the designed critical points is

to apply pre-defined templates of the f -values for maxima, minima, and saddles, which

can be defined only once (e.g., on a 6-neighbourhood stencil) or imported from the

critical points of template functions (e.g., Laplacian eigenfunctions, diffusion maps).

In fact, any template can be adapted to a different configuration of a neighbour of a

critical point by applying a local simplification/subdivision to the corresponding 1-star

and a piecewise linear approximation to extend the f -values to the updated neighbours.

4. Adaptive approximation of scalar functions

Given a scalar function f : P → R, we tackle the problem of computing a smooth

and meshless approximation g :M→ R of f , which preserves its persistent critical

points and its local behaviour, as encoded by the level-sets. As novelty with respect

to previous work, we focus on the preservation of the spatial distribution and shape of

the level-sets, which are useful to correctly represent and analyse the behaviour of f .

In order to preserve the persistent critical points and the distribution of the level-sets,

the proposed approach combines the techniques introduced in Sect. 3 with descriptors

of the local behaviour of functions on surfaces. The resulting approximation is in-

dependent of the domain discretisation and provides a compact representation of the

input function, which saves input/output space. To characterise the distribution of the

level-sets and guide the meshless and adaptive approximation of the input function, we

introduce the global coverage value, which measures the surface area covered by the

level-sets, and the distortion map, which measures their spatial distribution.

Discrete and global coverage value. Given a sampling Ik of the image of f with k

iso-values, we define the coverage value of (M, f ) with respect to Ik as

ck :=
∑α∈Ik

area(γα)

area(M)
∈ [0,1],
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(a) Omotondo (b) Lucy

(c) (d)

Figure 5: (a,b) Coverage values (y-axis) with respect to different samplings (x-axis) of the image of f .

(c,d) Distortion values (y-axis) with respect to the partitioning (x-axis) of the image [0,1] of the input scalar

function. In (b), the global coverage is lower than 1; in fact, the scalar function has a number of irregularly-

distributed level-sets higher than (c). This aspect is further stressed by the spikes of the distribution map.

where γα := f−1(α) = {p ∈M : f (p) = α} is the level-set of f associated with the

iso-value α, area(γα) = ∑t∩γα 6=∅ area(t) is the sum of the areas of the triangles t inter-

sected by γα, and each intersected triangle is counted only once. For its evaluation,

we identify the triangles t intersected by γα in linear time; i.e., at least one edge (i, j)

of t satisfies the relation ( f (pi)≤ α& f (p j)≥ α) or vice-versa. To make the cover-

age value independent of the selected sampling, we apply a dihcotomic subdivision

of the image of the input function into 2k samples and define the global coverage as

c := limk→+∞ ck. In Fig. 5(a,b), we report the coverage values ck (y-axis) with respect

to a sampling of the image of the input scalar function f with k samples (x-axis). The
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subdivision stops when ck becomes stationary; i.e., the difference between two con-

secutive coverage values is lower than a given threshold (e.g., 10−4, in our implemen-

tation). The corresponding image partitioning is called uniform optimal partitioning;

here, the optimality refers to the fact that the level-sets induced by the optimal parti-

tioning accurately represent the behaviour of the input function. On the one hand, a

uniform partitioning of the image of f with a number of parts lower than the optimal

partitioning will provide a less accurate representation of the behaviour of f in terms

of the corresponding level-sets. On the other hand, a uniform partitioning of f with a

number of parts higher than the optimal partitioning will provide a redundant represen-

tation of the behaviour of f . If the global coverage is close to 1, then the level-sets are

distributed on the whole surface; as far as it becomes close to 0, larger regions ofM

do not contain level-sets.

Distortion map. Given the optimal partitioning I, we further characterise the distribu-

tion of the level-sets by defining the distortion map d : I → R+ at αi as the Hausdorff

distance between two consecutive level-sets f−1(αi), f−1(αi+1), where [αi,αi+1] does

not contain iso-values associated with saddles (Fig. 5(c,d)). Removing these critical

iso-values, the Hausdorff distance is evaluated between two level-sets with the same

topology. To this end, each level-set is discretised as a poly-line, which is computed

as the intersection between the mesh edges and the level-set; then, the Hausdorff dis-

tance between two consecutive poly-lines is evaluated among these intersection points.

If the distortion map is constant, then the level-sets are uniformly distributed on M;

otherwise, a local irregularity of the map at αi indicates that the interval [αi,αi+1] is

distorted when it is mapped on the input surface and this distortion is measured by

the Hausdorff distance between f−1(αi) and f−1(αi+1). Alternatively, we can replace

the Hausdorff distance with the geodesic distance [32], which is more appropriate to

take into account the geometry of the surface. We notice that the Hausdorff distance

between two consecutive level-sets becomes closer to their geodesic distance as we

proceed with the dichotomic sub-division of the image of the input scalar function.

Meshless approximation. We define the approximation g := u|M :M→ R of the in-

put scalar function as the piecewise linear function that interpolates the values of u
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(a) Coverage value (b) Distortion map

(c) (d)

Figure 6: (a) Coverage values (y-axis) of a noisy input scalar function f :M→ [0,1] over the surfaceM

(28 minima, 22 maxima, 54 saddles) with respect to different samplings (x-axis) of the image [0,1] of f and

(b) distortion map (y-axis) with respect to the optimal partitioning of the image of f (x-axis). Since the global

coverage converges to 1, the level-sets are distributed on the whole surface and spikes of the distribution map

locates irregular distribution of the level-sets (due to noise). (c) Level-sets and (d) Morse-Smale complex of

the meshless approximations of f with interpolating constraint at a different set of persistent critical points

(12 minima, 10 maxima, 26 saddles) and least-squares constraints at the level-sets. The L∞ approximation

error is lower than 2.3×10−4. The colours begin with red, pass through yellow, green, cyan, blue, and

magenta, and return to red. See also Fig. 7.

at the vertices of M. Here, the function u : R3→ R, which is a linear combination

u(p) := ∑i∈I aiφi(p) of the RBFs φi(p) := φ(‖p− ci‖2), generated by the globally-

supported kernel φ : R+→ R and centered C := {ci}i∈I [6]. To define C, we consider

the behavior of the input scalar function, as encoded by the coverage value and the

distortion map.

Firstly, we select Cint := Ccp∪Ciso, where Ccp is the set of persistent critical points [11,

22, 23], together with their 1-star vertices, and Ciso is a sub-sampling (e.g., 1% of initial

resolution, in our experiments) of the level-sets associated with the optimal sampling
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(a) (b)

Figure 7: With reference to Fig. 6, (a) level-sets and (b) Morse-Smale complex of the meshless approxi-

mations of f with interpolating constraint at a different set of persistent critical points (6 minima, 8 max-

ima, 18 saddles) and least-squares constraints at the level-sets. The L∞ approximation error is lower than

4.2×10−4.

of the coverage value. Then, we consider Cint as centres and { f (p)}p∈C as interpolating

constraints. If the global coverage value is close to zero (e.g., in [0,0.25), in our experi-

ments), then the level-sets are uniformly distributed on the input surface and we do not

select additional constraints. Otherwise, we identify the consecutive iso-values α, β

such that the values d(α), d(β) of the distortion map have an abrupt variation. The

set C?iso of the points of the surface strip S := f−1([α,β]) that is not covered by the

level-sets are clustered, thus providing the centres Cls and the corresponding f -values

are used as least-squares constraints. For the computation of the final approximation,

we combine the interpolating and least-squares conditions associated with the centres

Cint := Ccp∪Ciso and Cls, respectively (Fig. 6, Fig. 7).

The coefficients a := (ai)
k
i=1 solve the linear system

Φa = f⇐⇒

 Φint

Φls

 a1

a2

=

 f1

f2

 , (4)

where k is the number of points in C, Φint := (φi(c j))i, j, ci ∈ C, c j ∈ Cint (int stands for

interpolation sub-matrix), is the Gram matrix associated with the set of interpolating

constraints, Φls := (φi(c j))i, j, ci ∈ C, c j ∈ Cls (ls stands for least-squares sub-matrix),

is the Gram matrix associated with the set of least-squares constraints, and f1, f2 are

the f -values at the points in Cint and Cls, respectively. Among the possible kernels [21,
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(a) (b)

Figure 8: (Right) Level-sets of two noisy scalar functions (a,b, right) with degenerate critical points: (a)

(m = 123, M = 98, s = 221) and (b) (m = 149, M = 121, s = 270). Approximation with (a, left) (m = 12,

M = 10, s = 22, ε∞ = 2.3×10−4) and (b, left) (m = 15, M = 13, s = 28, ε∞ = 4.9×10−5) persistent

critical points with least-squares constraints at the level-sets.

37, 64], for our tests we have selected the Gaussian kernel φ(r) := exp(−σr2) with

support σ, which is selected according to the local behaviour ofM [19, 38].

Assuming that the f -values have been increasingly sorted in O(n logn)-time, the

samples of the s level-sets associated with the uniform optimal partitioning are com-

puted in O(s logn)-time. Selecting k sub-samples, the computation of u requires to

solve a k× k linear system with full coefficient matrix in O(k3) time. Finally, the clas-

sification of the critical points is linear in the number of selected centres (Table 1).

Limitations and generalisation to d-dimensional data. The adaptive approximation

of scalar functions (Sect. 4) is generally more time-consuming than those methods

(e.g., [9, 14, 23, 61]) that simplify and locally update the input scalar function; in fact,

we need to firstly identity the critical points to be preserved and then apply the meshless

approximation. However, we are able to handle non-general functions without perturb-

ing their values, to achieve smoother level-sets by imposing least-squares constraints

on the f -values, and to support a meshless classification of the critical points (Sect. 5)
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Input Approximation accuracy

f :M→ R Case (i) Case (ii) Case (iii)

(a)

(b)

(c)

Figure 9: Level-sets and point-wise variation ε∞i (y-axis) of the differences between the input and approxi-

mated functions at the vertices (x-axis) ofM, ε∞i := | f (pi)−u(pi)| is the approximation error at pi between

the input scalar function and its approximation u. For the approximation, we have imposed interpolating con-

straints at all the critical points and (i) at the level-sets, or (ii) least-squares constraints at the level-sets, or

(iii) at the regular vertices not belonging to the 1-stars of critical points. Statistics are reported in Table 2.

and a meshless iso-contouring (Sect. 6.1). The proposed approach can be applied to

scalar functions defined on volumes (e.g., tetrahedral, voxel grids) and more generally

to d-dimensional data. In this case, the intersection between the level-set and a given

voxel or tetrahedron is computed analogously to the surface case and by linearly inter-

polating the function values at the mesh vertices. For more details, we refer the reader

to the look-up table used by the Marching Cubes algorithm [36]. Then, the coverage

value is generalised by considering the percentage of volume contained by the selected

level-sets. As done for the surface case, the distribution map is defined as the Hausdorff

distance between consecutive level-sets. For the classification of the critical points of
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Table 1: Timings (in sec.) for the computation of the meshless approximation, where n is the number of

samples.

Test n Time Test n Time Test n Time

Fig. 5(c) 120K 5.34 Fig. 9(c) 60K 2.12 Fig. 11(a) 3K 0.21

Fig. 5(d) 500K 17.21 Fig. 14 2.8M 145.35 Fig. 11(b) 4K 0.36

Fig. 8(a) 80K 3.17 Fig. 16 3K 0.12 Fig. 11(c) 2K 0.12

Fig. 8(b) 80K 2.98 Fig. 16 9K 0.25 Fig. 11(d) 21K 0.64

Fig. 9(a) 3K 0.08 Fig. 16 27K 0.75 Fig. 10 120K 5.87

Fig. 9(b) 15K 0.57 Fig. 16 71K 2.67 Fig. 17 210 12.01

a scalar function defined on a volumetric domain, we apply previous work [60], which

reflects the classification presented in Sect. 3.1. Finally, the approximation with RBFs

remains unchanged, as a matter of its meshless and dimension-independent definition.

Examples and discussion. In Fig. 8, the selection of interpolating constraints on per-

sistent critical points and least-squares constraints on the iso-level provides a high ap-

proximation accuracy, which is measured as the L∞ norm between the approximated

and ground-truth functions. Applying interpolating constraints on the f -values at all

the critical points and interpolating or least-squares constraints at the level-sets (Fig. 9),

the corresponding difference between the input and the approximated scalar functions

is between 10−3 and 10−4. The highest approximation accuracy is achieved by apply-

ing interpolating conditions at the critical points and at the level-sets. Introducing a

Gaussian noise (10%) and applying the proposed approximation (Table 2), the selec-

tion of interpolating conditions at persistent critical points and least-squares constraints

at the level-sets provides an accuracy higher than applying least-squares constraints at

the f -values.

If the critical points were simplified by preserving the mutual relation among ex-

trema and saddles in the Euler formula, then the interpolating constraints and the

smoothness of the kernel generally guarantee that additional/spurious critical points

will not be added. If the input scalar function f is not general (i.e., it is constant along

edges), then the smoothness of the kernel guarantees that the number of the additional

critical points is minimal to restore the validity of the Euler formula. An analogous
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Table 2: Statistics on the critical points (m minima, M maxina, s saddles) and L∞ approximation error (ε∞)

with constraints at the f -values (M), at the critical points (Ccp), and at the level-sets (Ciso) for a noisy version

of the scalar function in Fig. 9.

Approx. Critical points Approx. error, ε∞

m M s M Ccp Ciso

Input 2 4 9 Fig. 9(a)

Case (i) 2 4 10 0.000026 0.000000 0.000000

Case (ii) 2 4 10 0.000073 0.000043 0.000040

Case (iii) 2 4 10 0.000576 0.000331 0.000331

Input 38 23 65 Fig. 9(b)

Case (i) 38 23 65 0.000036 0.000000 0.000000

Case (ii) 38 23 65 0.000124 0.000029 0.000022

Case (iii) 38 23 65 0.000136 0.000331 0.000021

Input 10 16 26 Fig. 9(c)

Case (i) 10 16 26 0.000016 0.000000 0.000000

Case (ii) 10 16 26 0.000144 0.000153 0.000075

Case (iii) 10 16 26 0.000239 0.000120 0.000080

discussion applies in case of degenerate critical points or critical points that have been

simplified without preserving the Euler formula. Indeed, we avoid the local pertur-

bation of the f -values to remove degenerate cases, as done by previous work. For

instance, the scalar function in Fig. 9(a) is not general but the meshless approximation

is general and its additional saddle guarantees that the Morse-Euler formula is satisfied.

5. Meshless classification and computation of critical points

Starting from the meshless design (Sect. 3.2) and approximation of scalar functions

(Sect. 4) previously introduced, we discuss the classification of their critical points,

by combining the differential properties of the meshless function u : R3→ R with the

geometric properties of the underlying surface, as encoded by the first and second

fundamental form. More precisely, let g := u|M be the restriction of u to M and let

us consider a parameterisation r(s, t) := (x1(s, t),x2(s, t),x3(s, t)) ofM at p = r(s0, t0),
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r : Ω⊂ R2→ R3, r ∈ C2(Ω). Then, g(s, t) := u(r(s, t)) and p is a critical point of g if

and only if ∇g(s0, t0) = 0. Applying the derivative of composite functions; i.e.,

∂sg = ∂su(r(s, t)) = ∂su((xi(s, t))3
i=1) =

3

∑
i=1

∂xiu∂sxi = 〈∇u,∂sr〉2,

and analogously for ∂ug, we express∇g in terms of∇u as

∇g(s, t) = 〈∂sg,∂tg〉2 = [〈∇u,∂sr〉2,〈∇u,∂tr〉2] .

From the following identities

∇g(s0, t0) =∇u(p)∧∇r(s0, t0), n(p) = ∂sr(s0, t0)∧∂tr(s0, t0),

we have that p is a critical point if and only if∇u(p) is parallel to n(p).

For the computation of the entries of the Hessian matrix Hu, we differentiate ∂sg

with respect to s and t, thus obtaining the following identities

∂
2
ssg =

3

∑
i=1

∂s(∂xig∂sxi)

=
3

∑
i, j=1

∂
2
xix j

u∂sxi∂sx j +
3

∑
i=1

∂xiu∂
2
ssxi

= ∂sr>Hu∂sr+ 〈∇u,∂2
ssr〉2,

where ∂sr is a 3×1 vector and Hu is a 3×3 matrix. For the computation of ∂stg and

∂ttg, we proceed in an analogous way; indeed, the Hessian matrix is

Hg = [∂sr,∂tr]
>Hu [∂sr,∂tr]+

 〈∇u,∂2
ssr〉2 〈∇u,∂2

str〉2
〈∇u,∂2

str〉2 〈∇u,∂2
ttr〉2

 ,

[∂sr,∂tr] =


∂sx1 ∂tx1

∂sx2 ∂tx2

∂sx3 ∂tx3


(5)

and its entries are evaluated at r(s, t). For the computation of the first and second order

derivatives of the parameterisation r(s, t), we consider a local polynomial approxima-

tion of the surface as discussed in [31]. If p is a critical point of u (i.e., ∇u(p) = 0),

then the matrix in the second part of the previous relation vanishes. Assuming that p
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Figure 10: Computation of the saddle s and level-set Σs∩M at s achieved by intersecting the (red) iso-

surface Σs := u−1( f (s)) with the input surfaceM.

is a critical point of g only, we have that ∇u(p) is parallel to the normal n(p) to the

surface at p and it can be written as ∇u(p) = α(p)n(p). Then, Eq. (5) is expressed in

terms of the second fundamental form F2 = Ld2s+2Mdsdt +Nd2t as

Hg = [∂sr,∂tr]
>Hu [∂sr,∂vr]+α(p)

 L M

M N

 ,
where the terms of the second fundamental form are L := 〈n(p),∂2

ssr〉2, M := 〈n(p),∂2
str〉2,

N := 〈n(p),∂2
ttr〉2.

Computation of the critical points. Assuming a unitary gradient and normal,

π(p) := |〈∇u(p),n(p)〉2|= |cosωp|

is the probability that p is critical. Evaluating π(·) at the input points, p? ∈M is classi-

fied as a candidate critical point if π(p?)≈ 1. Then, we refine this first classification by

solving the system of non-linear equations 〈∇u(q),n(q)〉2 = 0 and h(q) = 0, where h

is a local representation of the MLS surface [2, 33] underlyingM at p?. To this end, we

apply an interval analysis [29, 65] and a trust-region solver [17], whose starting point
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p j1 := p? of the iterative scheme is the candidate critical point. The search direction of

the iterative solver is along the gradient ∇u(p js) at the current approximation p js . If

the sequence (p js)s, generated by iterative solver, converges then the initial guess p j1

is replaced with the critical point p := p jr such that ‖∇u(p jr)‖2 ≤ δ (e.g., δ := 10−10,

in our tests), with δ accuracy threshold. Otherwise, p j1 is discarded. To ensure the

convergence of the iterative scheme, we assume that u and ∇u are defined at all the

points ofM; to this end, it is enough to consider the Gaussian φ(r) := exp(−r2) or a

polynomial kernel. Fig. 10, Fig. 11 show the saddle, the corresponding level-set and

iso-surface computed with the meshless classification. If the input domain is repre-

sented as a smooth surface instead of a triangle mesh, then we can apply geometric

well-constrained [24] or univariate [8] solvers.

The meshless classification of the critical points disambiguates the behaviour of

the input scalar function/potential, which is represented in terms of the gradient and

Hessian of its meshless approximation, from the geometry of the input domain, which

is represented in terms of its normal, first and second fundamental form. This result

is also interesting for the design of scalar functions on a surface M defined as the

restriction of an implicit function from R3 to M (Sects. 3.3, 4). For the meshless

classification and computation of the critical points, we have locally represented the

input surface with a MLS approximation, which can be replaced with any other smooth

representation, such as Non-Uniform Rational B-Splines [51].

Meshless classification of the critical points. Fig. 12 and Fig. 13 show the computa-

tion of the critical points of a noisy function u and its stability with respect to noise;

the convergence of the iterative scheme is not affected by a random choice of the ini-

tial guesses. Furthermore, these points have been placed far from the critical points of

the function g : R2→ R, which has been sampled to generate u. Note how the critical

points that belong to the upper and lower part of the boundary have been identified

in spite of their partial neighbours. Statistics related to the iterative scheme used to

solve the equation ∇u = 0 are reported in Table 3. For all these examples, each crit-

ical point p of the approximating function u has been computed with an error lower

than 10−5 and the order of convergence of ∇u(p) to zero is equal to or lower than
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(a) (b) (c)

Figure 11: Meshless classification of saddles and iso-contouring of the input scalar functions. The behaviour

of the approximation is also visualised on a cutting plane at saddle points and through the iso-surface of the

meshless approximation at each saddle.

10−16.

6. Applications

We now discuss further applications of the proposed approximation scheme to

meshless iso-contouring (Sect. 6.1), space saving (Sect. 6.2), the approximation of rain-

falls (Sect. 6.3), the generation of molecular surfaces (Sect. 6.4) and super-resolution

images (Sect. 6.5).

6.1. Meshless iso-contouring

The meshless approximation of the input scalar function is useful to compute its

level-set at an arbitrary resolution, through a local refinement of the mesh connec-

tivity. To this end, let us consider a triangle t intersected by γα := u−1(α) and let

split t into 4 sub-triangles by joining the mid-points of its edges. To re-sample γα in t,

we compute the intersection between u−1(α) and the edges of the four sub-triangles.

Then, we evaluate u at the new vertices and identify the edges (i, j) intersected by
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Ω := [−2π,2π]2, h(x,y) := sinxcosy,A := {(πi,π j)}i, j∈Z

(a) (b) (c)

Ω := [−1,1]2, h(x,y) := x2− y2,A := {(0,0)

(d) (e) (f)

Figure 12: (a,d) Level-sets of a noisy sampling f : P → R of the function h on Ω, with A set of critical

points. (b,e) Level-sets of its approximation u : R2→ R; the yellow dots have been randomly selected and

used as starting guesses of the iterative scheme that computes the critical points (black dots) of u, which

approximates A with an error lower than 10−5. (c,f) Paths that join the initial guesses and the computed

critical points. Statistics are reported in Table 3.

u−1(α) by checking the intersection condition u(pi)≤ α, u(p j)≥ α. If it is satis-

fied, the intersection point between u−1(α) and this edge is computed by (i) lineariz-

ing u(p) := λu(pi)+(1−λ)u(p j) along the edge or (ii) computing the solution to the

non-linear equation u(λpi +(1−λ)p j) = 0, λ ∈ [0,1], which is solved through a trust-

region method [17], whose starting value is the solution λ0 := [α−u(pi)]/[u(p j)−u(pi)]

to the linearised equation (Fig. 14). Then, the triangle t is marked as visited and we

proceed with the triangle t′ adjacent to t and intersected by γα; i.e, there exists an edge

of t′ different from (i, j) and that satisfies the intersection condition.

The refinement of the iso-contour stops when the area of the split triangle is lower
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Table 3: Statistics for the computation of the critical points (black dots) of u in Fig. 12(c), ’It’ is the itera-

tion step, ’Ev’ is the number of function evaluations of the of the iterative trust region technique [17], and

‖∇u(p)‖2 is the order of convergence of∇u to zero.

It. Ev. ‖∇u(p)‖2 It. Ev. ‖∇u(p)‖2

0 4 0.018528 0 4 0.165408

1 8 0.007241 1 8 0.021796

2 12 0.000812 2 12 0.002461

3 16 3.3485 e−05 3 16 0.000427

4 20 9.6943 e−08 4 20 0.000128

5 24 2.5456 e−10 5 24 3.8085 e−05

6 28 1.0703 e−12
...

...
...

7 32 4.5536 e−15 25 104 3.8681 e−15

8 36 1.7921 e−17 26 108 1.2274 e−15

9 40 6.9600 e−20 27 112 3.8881 e−16

It. Ev. ‖∇u(p)‖2 It. Ev. ‖∇u(p)‖2

0 4 0.0494952 0 4 0.172086

1 8 0.0400076 1 8 0.015144

2 12 0.0231691 2 12 0.002548

3 16 0.0005562 3 16 5.0169 e−05
...

...
...

...
...

...

27 112 3.53052 e−16 17 72 2.9415 e−16

28 116 1.1088 e−16 18 76 4.7386 e−17

than a given threshold (e.g., 1% of the minimum triangle area) or the maximum dis-

tance between two consecutive refinements of an arc is not significantly reduced. Once

the arc of γα has been approximated inside the triangle t and within the selected accu-

racy, the resampling of the level-set considers the adjacent triangles and the procedure

stops when we come back to the first visited triangle and the whole level-set has been

re-sampled. If there is a non-visited triangle whose edges satisfy the intersection con-

dition, then we apply the previous procedure and extract the second connected compo-

nent of the level-set. The meshless iso-contouring stops when all the triangles whose

edges satisfy the intersection condition have been visited, thus guaranteeing that we
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(a) (b)

(c)

Ω := [−2,2]2, g(x,y) := xexp
[
−(x2 + y2)

]
, A := {(±

√
2/2)}

Figure 13: (a) Level-sets of a map achieved by adding a Gaussian noise to h in Ω, with A set of critical

points. (b) Approximation and (c) critical points (black dots) with paths computed by the iterative scheme

from random guesses (yellow dots).

have extracted all the connected components of the level-set.

For a regular level-set (i.e., not associated with a critical point), the previous proce-

dure will draw all its connected components at a given resolution. For a non-degenerate

saddle pi, we notice that the connected component β of f−1(α) that contains pi is the

union of m+1 closed curves β1, . . . ,βm+1 that intersect at pi, i.e. β := ∪m+1
l=1 βl 3 pi. As

discussed in [50], the classification of a saddle point of multiplicity m (c.f., Sect. 3.1

and Eq. (1)) implies that the cardinality of the mixed link is equal to 2+2m and pro-

vides the directions that originate at pi and that are used to trace all the loops βl at pi.

Finally, for dense surfaces the iso-contouring is applied to the map u that approxi-

mates the f -values only at the vertices {pi}i∈I of the edges intersected by γα (Fig. 15,

Fig. 16).
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Figure 14: Local iso-contouring of a terrain model with 2.8M points and zoom on the extracted level-sets.

Table 4: Space saving achieved by the meshless approximation and comparison among the original mesh

size, the size of the meshless approximation, and the corresponding error.

Test n L∞ approx. accuracy Num. centres Space saving

Fig. 10 150K 10−4 1251 99,99%

Fig. 11(a) 8K 10−5 934 99,88%

Fig. 11(b) 9K 10−5 589 99,93%

Fig. 11(c) 12K 10−6 446 99,96%

6.2. Space saving

Working only with the discrete f -values, the classification and simplification of the

critical points depend on the discretisation and samples of the input surface, thus being

affected by local perturbations of the surface connectivity/sampling and of the f -values.

While a discrete function on different resolutions of the same surface is represented by

an array whose dimension depends on the number of vertices, the meshless approx-

imation is represented as a set of coefficients and centres, and depends only on the

behaviour of the input scalar function. Decoupling the representation of the function

from the discretisation of the input domain is important for space saving (Table 4) and

to distinguish the complexity of the geometry ofM from the complexity of the input

scalar function.

6.3. Approximation and analysis of rainfalls

As GIS application, we consider the analysis of terrains and rainfalls. Interpret-

ing rainfall measurements on a terrain M as a scalar function f : P → R at the rain

29



Figure 15: Noisy level-sets (white level-sets) and their meshless approximation (green line) with a local split

of the triangles, according to the local approximation error and the reduction of the triangle area.

gauge network P := {pi}n
i=1, we compute an approximation g := u|M :M→ R that

preserves its maxima. In fact, preserving rainfall maxima is crucial to support real-

time monitoring and historical data analysis. Sampling u on a terrain model with a

resolution higher than the initial sparse network of rainfall station allows us to extrap-

olate and analyse the rainfall behaviour at different scales and with a higher accuracy.

The level-sets close to maxima/minima also locate dangerous/safe regions and saddles

identify where main changes of the rainfall happen. Furthermore, the approximation

of time-varying rainfalls is easily updated; in fact, the coefficient matrix and the 1-star

of each vertex are computed once and only the right-hand side of the linear system and

the critical points (c.f., Eq. (4)) are updated at each time step.

For our analysis (Fig. 17, Table 5), we consider the SRTM (Shuttle Radar Topog-
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Figure 16: Meshless approximation of a level-set on different resolutions of the same surface. The maximum

variation of the resampled level-set with respect to the ground-truth is lower than 0.2%.

Table 5: L∞ accuracy (%) between the ground-truth rainfalls and three approximations. For the meshless

approximation with RBFs, we have selected the Gaussian kernel. Approximation results with RBFs are

shown in Fig. 17.

Approximation scheme L∞ Approximation error

Piecewise Linear approx. 0.31 0.23 0.27 0.38 0.45 0.57 0.25 1.2

Inverse weight distance 0.21 0.17 0.22 0.32 0.22 0.17 0.11 0.37

Radial Basis Funct. (Fig. 17) 0.12 0.09 0.10 0.11 0.21 0.17 0.07 0.32

raphy Mission [25]) digital terrain model with 100K vertices and a set of time-varying

rainfall data measured at 148 rainfall stations. During the whole temporal interval (48

hours), two local thunderstorms occurred and only localized weather stations recorded

this heavy event (samples every 30 minutes). We compare our approach with previ-

ous work; i.e., the piecewise linear approximation based on Voronoi regions [58] and

the meshless approximation based on weighted inverse distances [57], with no con-

straints on the preservation of their maxima [46, 49]. To this end, each rain gauge

has been turned off and the approximating function has been sampled at this position.

Comparing the input value at the turned-off station with the approximated value at the

same location, we have evaluated the extrapolation capability as the resulting L∞ error.

These three techniques provide analogous results but the proposed approach shows a

lower approximation error, which is mainly due to the presentation of local extrema
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Figure 17: Meshless approximation of rainfalls with preserved maxima: heavy rains are localised in pink

areas and drizzles in the remaining green parts. Statistics are reported in Table 5.

and to the capability of the radial basis functions to adapt to the rainfalls’ behaviour.

6.4. Molecular surfaces and simulation

As a bioinformatic application, we discuss the re-sampling of the electron den-

sity map computed from the centers and radii of a set of atoms, as solution of the

Poisson-Boltzmann equation [26] on a low-resolution grid. Since the iterative solver

is time-consuming and takes O(kn3)-time, where n is the number of voxels and k is

the number of atoms, the resampling at a higher resolution allows us to improve the

quality of the molecular surface. Furthermore, the interpolation of the maxima and

minima guarantees that the behavior of the charge is correctly extrapolated, also in
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(a) (b) (c)

(d) (e)

Figure 18: (a) Input atoms and radii, (b) corresponding molecular surface associated with the scalar function

f :M→ R, which represents a local property (i.e., hydrophobicity) of the surface. (c) Morse complex

and critical points of f computed through the meshless approximation constrained to the maxima (red),

minima (blue), and saddles (green) points of f . (d,e) Level-sets of f and colour-coding of the volumetric

approximation at the nodes of a tetrahedral mesh.

terms of preserved local details and small cavities, which are particularly useful for

molecular docking (Fig. 18). For details on the application of meshless approximation

to the representation and analysis of molecular surfaces, we refer the reader to [48].

6.5. Super-resolution images

For sampling an image at a different resolution, we compute an interpolation of

the image pixels, which is then evaluated at the new pixels. In this case, the critical

points represent features of the input images, such as corners, intensities’ extrema, etc.

State-of-the-art methods include the nearest neighborhood [55], linear [16], and cu-

bic [5] interpolations and wavelets [13], meshless approximations [40]. To compare
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Table 6: 2× and 4× down-sampling followed by up-samplings; bold text identifies the best results with

RBFs generated by the Hardy kernel with respect to previous work. The Gaussian kernel provides results

analogous to the Hardy’s kernel.

(a) (b) (c)

Fig. Error Linear Spline Spline Spline RBF RBF

r = 1 r = 3 r = 4 r = 5 Hardy Gauss

2× down-sampling and up-sampling

MRE 284.34 277.52 277.64 278.12 131.28 136.43

(a) PSNR 23.59 23.70 23.70 23.69 26.95 26.78

SSIM 0.80 0.81 0.81 0.81 0.85 0.83

MRE 454.40 448.72 450.54 451.98 294.37 308.73

(b) PSNR 21.56 21.61 21.59 21.58 23.44 23.24

SSIM 0.59 0.62 0.62 0.62 0.69 0.62

MRE 284.00 276.51 276.49 276.69 104.75 107.89

(c) PSNR 23.60 23.71 23.71 23.71 27.93 27.80

SSIM 0.84 0.85 0.85 0.85 0.88 0.87

4× down-sampling and up-sampling

MRE 494.41 469.56 470.05 470.80 201.38 213.25

(a) PSNR 21.19 21.41 21.41 21.40 25.09 24.84

SSIM 0.70 0.72 0.71 0.71 0.74 0.73

MRE 698.67 694.52 697.62 699.82 430.78 442.22

(b) PSNR 19.69 19.71 19.69 19.68 21.79 21.67

SSIM 0.41 0.43 0.43 0.43 0.45 0.44

MRE 519.14 487.00 486.59 486.99 180.45 197.53

(c) PSNR 20.98 21.26 21.26 21.26 25.57 25.17

SSIM 0.75 0.77 0.76 0.76 0.79 0.77

the accuracy of our approach with previous work, an input image (ground-truth) is ini-

tially down-sampled and then resampled back to the initial resolution. The two images

are then compared with respect to the mean square error (MRE); the peak signal-

to-noise ratio (PSNR) PSNRAB := 10log10(λ
2/MREAB), and the structural similarity

index (SSIM). The MRE takes values in [0,λ2], where λ is the maximum intensity value

and lower values correspond to a higher similarity between images; PSNR returns val-

ues in [10,+∞), which increases as the compared images become similar; SSIM re-

turns a value in [−1,1], where 1 corresponds to the case of two identical images. With

respect to these metrics and previous work, Table 6 shows a better performance for the

meshless approximation with the Hardy’s and Gauss kernels.
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7. Conclusions and future work

This paper has tacked the design of scalar functions with constrained critical points

and the computation of a smooth approximation of an arbitrary function by preserving

its (persistent) critical points and the distribution and shape of the level-sets, and by

minimising the approximation error. Both problems have been addressed by applying

mesh-based or meshless approximation techniques with interpolating or least-squares

constraints on the critical points and their 1-star neighbours.

Through the meshless approximation, which is mainly based on radial basis func-

tions, we have addressed the computation of the level-sets and the classification of the

critical points, which can be performed at an arbitrary resolution by applying differen-

tial calculus. In this way, our approach is oblivious of any discretisation of differen-

tial operators and any assumption on the sampling of the discrete scalar function, the

domain connectivity and parameterisation. The underlying meshless approximation

allows us to easily extend it to scalar function on Rd .

Future work will be mainly focused on the extension of the proposed approach to

the approximation and analysis of vectorial fields defined on surfaces and volumes; in

fact, several results introduced for the meshless approximation and classification of the

critical points of scalar functions can be extended to vectorial fields.
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