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Abstract

This paper proposes an accurate and computationally efficient solver of the heat equation (∂t +D)F(·, t) = 0,
F(·,0) = f , on a volumetric domain, through the (r,r)-degree Padé-Chebyshev rational approximation of the ex-
ponential representation F(·, t) = exp(�tD) f of the solution. To this end, the heat diffusion problem is converted to
a set of r differential equations, which involve only the Laplace-Beltrami operator, and whose solution converges to
F(·, t), as r!+1. The discrete heat equation is equivalent to r sparse, symmetric linear systems and is independent
of the volume discretization as a tetrahedral mesh or a regular grid, the evaluation of the Laplacian spectrum, and
the selection of a subset of eigenpairs. Our approach has a super-linear computational cost, is free of user-defined
parameters, and has an approximation accuracy lower than 10�r. Finally, we propose a simple criterion to select the
time value that provides the best compromise between approximation accuracy and smoothness of the solution.
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1. Introduction

The heat kernel plays a central role in several applica-
tions, such as surface [3, 16] and image [34, 40] smooth-
ing, shape segmentation [12] and comparison [5, 6, 14,
25, 26, 35]. Furthermore, the wavelet operator [17],
the geodesic [11] and diffusion [4, 10, 27] distances
have been recently rewritten in terms of the heat ker-
nel. Among its main properties, we mention the intrin-
sic and multi-scale encoding of the input shape, the in-
variance to isometries, the shape-awareness, the robust-
ness to noise and tessellation.

In several applications, volumetric representations
and descriptors are more suited than a two-dimensional
manifold to model the shape invariance under rigid
and elastic transformations. Furthermore, tetrahedral
meshes are efficiently generated from surfaces [2, 33]
and are a standard volumetric representation for the dis-
cretization of differential equations. Due to the high
computational cost for the solution to the heat equation,
previous work has been mainly focused on the diffusion
kernel and distance on surfaces rather than on volumes.

Given the complexity of volumetric computation,
several alternatives to the heat kernel were proposed in
the literature. FEM discretizations [1] of the heat equa-
tion tessellate the volume with a voxel grid or cuboid
voxels [30] and apply a 6-neighborhood stencil [23,

29] or a geometry-driven approximation field [22, 36].
These approximations provide a low accuracy of the
solution in a neighbor of the volume boundary, which
is generally represented as a triangle mesh. Even
though multi-resolution prolongation operators [39] and
Chebyshev polynomials [27, 28] can be extended to vol-
umes, they have not been applied to the computation of
the volumetric heat kernel or to the selection of the opti-
mal time value. Additionally, the multi-resolution sim-
plification of the input volume is time-consuming and
the selection of the volume resolution with respect to the
expected approximation accuracy is generally guided by
heuristics. Further approaches extend the solution to the
heat equation computed on the input surface to its inte-
rior through barycentric coordinates or a non-linear ap-
proximation, as done for the Laplacian [31, 32] and har-
monic [21, 24] maps. Note that these methods do not
intend to approximate the heat kernel quantitatively, but
provide alternative approaches that qualitatively behave
like the heat kernel on volumes.

Overview and contribution. We propose an accurate
and computationally efficient solver of the heat equation
(∂t +D)F(·, t) = 0, F(·,0) = f , on a closed and con-
nected manifold M of R3, such that its boundary ∂M
is a smooth and closed two-dimensional manifold. We
also introduce a simple criterion to select the time value
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Figure 1: Volumetric heat kernel. Color map of the solution to the volumetric heat equation at two time values and computed with the Padé-
Chebyshev approximation of degree r = 7; the initial condition takes value 1 at a point of the lips and 0 at the other vertices of the tetrahedralization.
The color map varies the hue component of the hue-saturation-value color model; the colors begin with red, pass through yellow, green, cyan, blue,
and magenta, and return to red. At scale t = 1, the level-sets on the volume boundary correspond to iso-values uniformly sampled in the range of
the solution restricted to the points of the volume boundary.

(or scale) that provides the best compromise between
approximation accuracy and smoothness of the solution.

The idea behind our approach (Sect. 2) is to
apply the (r,r)-degree Padé-Chebyshev rational
approximation to the exponential representation
F(·, t) = exp(�tD) f of the solution to the heat equation.
Then, the diffusion problem is converted to a set of r
differential equations, which involve only the Laplace-
Beltrami operator, and the resulting solution converges
to F(·, t), as r!+1. Through the proposed approach,
the solution to the heat equation is approximated in a
low-dimensional space generated by r+1 functions,
which are induced by the input volume, the initial
condition f , and the selected time value. Furthermore,
the approximation accuracy is lower than 10�r (e.g.,
r = 5,7). In comparison, the Laplacian eigenfunctions
only encode the domain geometry and it is difficult to
select the number of eigenpairs necessary to achieve a
given approximation of F(·, t) with respect to t and f .

While a discretization of the heat kernel on a voxel
grid is accurate enough for the evaluation of diffusion
descriptors [23, 29], which are quantized and clustered
in bags-of-features, we focus on the computation of the
heat kernel on tetrahedral meshes (Fig. 1). Our dis-
cretization (Sect. 3) is equivalent to a set of r sparse,
symmetric linear systems and is applied to any represen-
tation of the input domain and of the Laplace-Beltrami
operator. Furthermore, it properly encodes the local and
global features in the heat kernel and bypasses the com-
putation of the Laplacian spectrum. For a given time
value, the overall computational cost of the r-degree
Padé-Chebyshev rational polynomial is O(rn), where n
is the number of volume vertices. Indeed, our approx-

imation is competitive with respect to multi-resolutive
simplification/prolongation operators, the Euler back-
ward method, and the truncated spectral approximation.

As main novelties with respect to previous work [27],
we apply the Padé-Chebyschev approximation to the
more complex case of the heat kernel on volumes,
also addressing the convergence of the approximation
scheme and the selection of the time value.

For our experiments (Sect. 4), we consider volumet-
ric diffusion smoothing, which is typically applied to
thin film evolution [19], to the analysis of multi-material
volume grids and their interfaces [20], and to volumet-
ric shape deformation [22]. Other possible applications,
which are not addressed in this paper, include volume-
based approximation and the evaluation of volumetric
descriptors.

2. Volumetric heat equation

Let us consider the heat equation (∂t +D)F(·, t) = 0,
F(·,0) = f , on a closed, connected manifold M
of R3, with f :M! R and ∂M smooth, closed two-
dimensional boundary of M. Then, the solution
F(p, t) = Kt(p, ·)? f is the convolution between the heat
kernel Kt(p,q) := (4pt)�3/2 exp(�kp�qk22/4t) and f .

Our approach applies the Padé-Chebyshev ratio-
nal approximation to the exponential representation
F(·, t) = exp(�tD) f of the solution to the heat equation.
According to [15], on R+ the best (r,r)-degree ratio-
nal polynomial approximation of exp(�x) with respect
to the L1 norm is crr(x) = a0 +Âr

i=1 ai(x�qi)�1, with
poles {qi}ri=1 and coefficients {ai}ri=1. These values are
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Figure 2: Volumetric diffusion smoothing of noisy data. (a) In-
put tetrahedral mesh and L-curve of the approximation accuracy (y-
axis) versus the solution smoothness (x-axis). (b) Data set achieved
by adding a Gaussian noise to the tetrahedra mesh (a). (c) Diffu-
sion smoothing computed with the Padé-Chebyshev approximation of
degree r = 7. The `1 error between the volumetric ground-truth (a)
and the smooth approximation of (b) is lower than 1% for the Padé-
Chebyshev method (c) and varies from 12% (k = 100) up to 13%
(k = 1K) for the truncated spectral approximation.

precomputed for any degree through standard numeri-
cal routines; for more details, we refer the reader to [8].
Indicating with id(·) the identity operator, the function

F(·, t) = exp(�tD) f ⇡ a0 f �
r

Â
i=1

ai(D+qiid)�1 f

= a0 f +
r

Â
i=1

aigi, (tD+qiid)gi = � f ,
(1)

is approximated by a linear combination of the solutions
to r equations induced by the Laplace-Beltrami opera-
tor. The resulting approximation of F(·, t) belongs to
the linear space H generated by f and {gi}ri=1, which
depend on the input volume, the initial condition f , and
the selected time value t. In comparison, the Laplacian
eigenfunctions {(ln,fn)}+1n=0, Dfn = lnfn, encode only
the domain geometry and it is difficult to select the num-
ber k of eigenpairs that are necessary to achieve an accu-
rate approximation of F(·, t) through the truncated spec-
tral representation F(·, t) ⇡ Âk

n=1 exp(�lnt)h f ,fni2fn.
Furthermore, a larger number of eigenpairs is necessary
to accurately recover the solution at small time values.

Convergence of the approximation. Introducing the ap-
proximate solution Fr(·, t) := Â+1

n=0 crr(ln)h f ,fni2fn to
the (volumetric) heat equation induced by the r-degree
Padé-Chebyshev polynomial crr, we show that the se-
quence (Fr(·, t))+1r=0 converges to F(·, t). First of all,

Figure 3: L-curve and volumetric heat kernel. Selection of the op-
timal scale and corresponding volumetric diffusion smoothing (upper
part, right), Padé-Chebyshev approximation of degree r = 7) on the
noisy volumetric model of the teeth (upper part, left).

we notice that the approximation Fr(·, t) is well-posed;
in fact, kcrrk1  1 and kFr(·, t)k2  k f k2. According
to [38], the L1 error between the exponential map and
its rational polynomial approximation is bounded by the
uniform rational Chebyshev constant srr, which is in-
dependent of the evaluation point, and lower than 10�r.
Applying the upper bound

��Fr(·, t)�F(·, t)
��2

2  kcrr(·t)� exp(�t·)k21
+1
Â
n=0
|h f ,fni2|2

 s2
rr

+1
Â
n=0
|h f ,fni2|2  10�2rk f k22,

we deduce that limr!+1Fr(·, t) = F(·, t).
While the selection of a fixed number of eigenpairs

does not allow us to estimate the resulting approxi-
mation accuracy, the projection of F(·, t) on the linear
space generated by { f ,f1, . . . ,fr} guarantees an accu-
racy lower than 10�r. Finally, this approximation is sta-
ble to a perturbation f + e of the initial condition; in
fact, the variation of the corresponding solutions F̃r(·, t),
Fr(·, t) is bounded by the norm of the perturbation; i.e.,��F̃r(·, t)�Fr(·, t)

��
2  kcrrk1kek2  kek2.

Optimal time value. As optimal time value, we se-
lect the scale that provides a small residual error

3



(a) n = 50K (b) n = 150K

Figure 4: Robustness to sampling. Robustness of the Padé-Chebyshev approximation (r = 7) of the volumetric heat kernel with respect to volume
sampling; n is the number of vertices of the input tetrahedral mesh. The `1 discrepancy between the maps in (a) and (b) is lower than 1.4% (r = 5).

kF(·, t)� f k2 and a low energy kF(·, t)k2, which con-
trols the solution smoothness. Through the Lapla-
cian spectrum {(ln,fn)}+1n=0, the orthonormality of the
Laplacian eigenfunctions, and the spectral represen-
tation f = Â+1

n=0h f ,fni2fn of the initial condition, we
rewrite these terms as
⇢
kF(·, t)� f k22 = Â+1

n=0 |1� exp(�2lnt)|2|h f ,fni2|2,
kF(·, t)k22 = Â+1

n=0 exp(�2lnt)|h f ,fni2|2;

indeed, the residual and penalty terms are increas-
ing and decreasing maps with respect to t, respec-
tively. If t tends to zero, then the residual becomes
null and the energy converges to k f k2. If t be-
comes large, then the residual tends to |h f ,f0i2| and
the solution norm converges to (k f k22� |h f ,f0i2|2)1/2.
According to these properties, the plot (L-curve) of
e(t) := (kF(·, t)� f k2,kF(·, t)k2) is L-shaped [18] and
its minimum provides the optimal time value; i.e., the
best compromise between approximation accuracy and
smoothness. For the computation of the optimal time
value (Figs. 2, 3), we apply the corner detection based
on cubic B-splines approximation [18]; alternatives are
the evaluation of the curvature of the graph of e(t) or its
adaptive pruning [18].

3. Computational aspects

Representing the input domain as a tetrahedral
meshM with vertices P := {pi}ni=1, any scalar function
on M is defined as g = Ân

j=1 g jj j, where g j := g(p j)
and j j is the piecewise linear basis function that takes
value 1 at p j and 0 otherwise. To discretize the heat
equation onM, we recall that [22, 36]

hDg,jii2 =
1
Vi

Â
j2N(i)

 
1
6

n

Â
k=1

lk cotak

!

(gi�g j), (2)

where Vi is the tetrahedral volume at i, N(i) is the
set of vertices incident to i, lk is the length of the
edge to which (i, j) is opposite. Then, the weak for-
mulation hrg,rjii2 +qhg,jii2 = h f ,jii2 of Eq. (1)
is rewritten as (L̃+qI)g = f, f := ( f (pi))n

i=1. Here,
the Laplacian matrix L̃ := B

�1
L (c.f., Eq. (2)) is de-

fined as the product between the diagonal matrix B,
which encodes the tetrahedral volume Vi at each ver-
tex i, and L is the Laplacian matrix with entries
L(i, j) := wi j := 1

6 Ân
k=1 lk cotak for each edge (i, j),

L(i, i) := �Â j2N(i) wi j, and zero otherwise. Indeed,
the solution F(t) = a0f+Âr

i=1 gi to the heat equation
(∂t + L̃)F(t) = 0, F(0) = f, is the sum of the solutions
of r sparse linear systems

(tL+qiB)gi = �aiBf, i = 1, . . . ,r. (3)

Since the r-degree Padé-Chebyshev rational polynomial
of the exponential map is a-priori known, for a given t
the vectors in Eq. (3) are calculated as a minimum norm
residual solution [15]. Our solver is free of user-defined
parameters, and works with sparse, well-conditioned
matrices [27]. It also regularizes noisy data while pre-
serving local details (Fig. 2), which are over-smoothed
by the truncated spectral approximation, and provides
an efficient way to estimate the optimal scale (Fig. 3) by
evaluating the map e(·) for several values of t.

4. Discussion and future work

We discuss the stability of the proposed computation
to volume sampling and noise through a comparison
with previous work on surfaces and adapted to the vol-
umetric heat kernel. For the paper examples, the values
of the initial condition f and the solution F(·, t) have
been normalized in [0,1]. The level-sets on ∂M are as-
sociated with iso-values uniformly sampled in the range
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(a)

(b)

Figure 5: Diffusion process with different initial conditions. Dif-
fusion process (r = 7) generated by a seed point belonging to (a) the
internal part and (b) the volume boundary.

of f or to the restriction of F(·, t) on the boundary ofM;
in this case, the color map varies from blue (minimum)
to red (maximum). For the visualization of F(·, t) on a
tetrahedral mesh, the color map varies the hue compo-
nent of the hue-saturation-value color model; the col-
ors begin with red, pass through yellow, green, cyan,
blue, and magenta, and return to red. Finally, the initial
condition F(·,0) = f and the solution F(·, t) of the cor-
responding diffusion equation are always defined on the
input tetrahedral mesh. In a similar way, the noise of the
synthetic examples is added to the vertices of the tetra-
hedral mesh or to the function values at these points.

Robustness to volume discretization. We consider the
solution F(t) = Ktei to the volumetric heat equation,
whose initial condition takes value 1 at the anchor
point pi (black dot) and 0 otherwise. The spectrum-
free computation of the volumetric heat kernel is stable
with respect to the volume density; a lower volume sam-
pling (Fig. 4) does not affect the shape and distribution
of the level sets and a higher resolution ofM improves
the sampling of the level-sets, which remain smooth and
uniformly distributed around the anchor.

To discuss the capability of the diffusion smoothing
to recover the function underlying a noise signal f and
its local details onM, let f be the initial condition of the

(a)

(b)

Figure 6: Diffusion smoothing. (a) Noisy volumetric map f on a
tetrahedral mesh and (b) its diffusion smoothing (r = 7) achieved by
solving the heat equation with initial condition F(·,0) = f .

volumetric heat equation and f := f̃ + e the perturbed
initial condition, where e is a Gaussian noise. Indi-
cating with e1 := kF(·, t)� f̃ k1 the `1 error between
the ground-truth map f and the solution F(·, t), we get
that e1 = 2.5⇥10�6 (r = 5) for the proposed approach;
e1 = 8.9⇥10�3, 1.9⇥10�4 for the spectral representa-
tion, with k = 130 and k = 487 eigenpairs, respectively;
e1 = 2.7⇥10�2 for the Euler backward method; and
e1 = 4.1⇥10�3 for the power method.

Our approximation scheme handles any map f de-
fined on the vertices ofM or its boundary; for instance,
Fig. 5(a) shows the diffusion process starting from a
seed point pi belonging to the internal part of M. In
Figs. 5(b), 6, the seed point and the initial condition
F(·,0) = f are defined on ∂M.

Comparison with ground-truth volumes. For the evalu-
ation of the approximation accuracy, we compare the
computed (volumetric) diffusion distances, with cor-
rect results on the cylinder and sphere. We briefly
recall that the diffusion distances are defined as [7]
d2(p,q) = Â+1

n=0 exp(�2lnt)|fn(p)�fn(q)|2, p,q 2M.
According to [30], we consider analytic solutions for the
Laplacian eigenvalues and eigenfunctions of the (volu-
metric) sphere and cylinder. Since we have an infinite
number of eigenpairs, we select k such that the approx-
imation dk of the diffusion distance with k eigenpairs
becomes stationary; i.e., |dk+1(p,q)�dk(p,q)|< e,
where e is equal to the 1%. Once the exact Lapla-
cian eigenpairs have been computed, we compare the
ground-truth diffusion distance and the approximation
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(a) (b)

Figure 7: Padé-Chebyshev and truncated spectral approximations of the diffusion distances. `1 error (y-axis) between the diffusion distance
computed with the truncated spectral approximation with k (x-axis) Laplacian eigenpairs on a tetrahedralization of (a) the sphere and (b) the
cylinder. For the Padé-Chebychev method (r = 5) and all the time values, the `1 error with respect to the ground-truth is lower than 8.9⇥10�6.

Figure 8: Comparison of the accuracy of different approximations

of the diffusion distances. `1 error (y-axis) between the ground-
truth volumetric diffusion distances on the cylinder, with a different
sampling (x-axis) and scales, and their computation with the Padé-
Chebyshev (r = 5), Euler backward (green line), power (black line)
methods, and the truncated spectral approximation with 100 and 200
eigenpairs (red, blue line).

provided by previous work.
For small scales (Fig. 7, t = 10�2, 10�3), the `1 dis-

crepancy (y-axis) between the approximation of the
diffusion distance computed with the Padé-Chebyshev
method and k eigenpairs remains higher than 10�2, with
k  280. For large scales (e.g., t = 1, 10�1), increasing k
reduces the approximation error until it becomes almost
constant and close to zero. In fact, local shape features
encoded by the heat kernel are recovered for a small t
using the eigenvectors associated with high frequencies,
thus requiring the computation of a large part of the
Laplacian spectrum and without achieving the approx-

Figure 9: Numerical stability of the Padé-Chebyshev approxima-

tion. With reference to Fig. 5, conditioning number k2 (y-axis) of the
matrices {(tL+qiB)}7i=1, for different time values t; the indices of the
coefficients {qi}7i=1 are reported on the x-axis.

imation accuracy of the spectrum-free approach, which
remains lower than 8.9⇥10�6 for all the scales.

Comparison with previous work. We briefly recall that
the “power” method applies the identity (Kt/m)

m = Kt ,
where m is chosen in such a way that t/m is suf-
ficiently small to guarantee that the approximation
Kt/m ⇡ (I� t

m L̃) is accurate. However, the selection
of m and its effect on the approximation accuracy can-
not be estimated a-priori. In [9, 13], the solution to
the heat equation is computed through the Euler back-
ward method (tL̃+ I)Fk+1(t) = Fk(t), F0 = f. The re-
sulting functions are over-smoothed and converge to a
constant map, as k!+1. Fig. 8 compares the accuracy
of the diffusion distances computed with (i) the pro-
posed approach; (ii) the spectral representation of the
heat kernel, with k eigenpairs; (iii) the Euler backward
method; and (iv) the power method. The approximation
accuracy of the Padé-Chebyshev method is higher than
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Figure 10: Computational cost. Timings (in seconds) for the evaluation of the heat kernel on tetrahedral meshes with n points, approximated
with k eigenpairs (Eigs) and the Padé-Chebyshev method. Tests have been performed on a 2.7 GHz Intel Core i7 Processor, with 8 GB memory.

Teeth (Figs. 4)
n Cheb. k = 50 ⇥ k = 100 ⇥ k = 500 ⇥
10K 12.45 12.24 0.98 26.31 2.11 118.34 9.50

50K 37.02 33.25 0.89 68.23 1.84 289.73 7,82

80K 56.57 51.23 0.90 99.44 1.75 512.67 9,06

100K 0.54 0.48 0.88 1.17 2.16 5.10 9.44

Bimba (Figs. 6)
5K 0.11 0.07 0.63 0.10 0.90 0.53 4.81

25K 3.45 0.71 0.20 1.56 0.45 8.23 2.38

35K 7.01 1.23 0.17 2.50 0.35 0.91 0.12

50K 14.01 2.45 0.17 5.32 0.37 0.98 0.06

Max Planck (Figs. 8)
70K 28.56 27.32 0.95 57.78 2.02 131.23 4.59

100K 68.23 52.34 0.76 110.32 1.61 557.13 8.16

120K 99.21 75.23 0.75 156.78 1.58 698.23 7.03

150K 155.23 114.01 0.73 231.23 1.48 893.78 5.75

Table 1: Timings (in seconds) for the evaluation of the heat dif-
fusion kernels on 3D volumes with n points, approximated with
k = 50, 100500 eigenpairs (Eigs) and the Padé-Chebyshev approxi-
mation (Cheb., r = 7). Column ’⇥’ indicates the number of times the
computational cost is reduced. Tests have been performed on a 2.7
GHz Intel Core i7 Processor, with 8 GB memory.

the truncated Laplacian spectrum with k eigenpairs,
k = 1, . . . ,103, the Euler backward method, and the
power method. Reducing the scale, the accuracy of the
Padé-Chebyshev remains almost unchanged while the
other methods are affected by a larger discrepancy and
tend to have an analogous behavior (t = 10�4). Finally,
the coefficient matrices in Eq. (3) are well-conditioned,
as also confirmed by our experiments (Fig. 9).

Computational cost. The spectrum-free approach re-
duces the heat equation to solve r sparse, symmetric,
linear systems (c.f., Eq. (3)), whose coefficient matrices
have the same structure and sparsity of the connectivity
matrix of the grid underlying the discrete volume. Ap-
plying an iterative and sparse linear solver (e.g., Gauss-
Seidel method, conjugate gradient) [15] (Ch. 10), the
computational cost for the evaluation of the heat ker-
nel and the diffusion distance between two points is
O(rt(n)), where O(t(n)) is the computational cost of

the selected solver (Fig. 10, Table 1). Here, the function
t(n), which depends on the number n of samples and the
sparsity of the coefficient matrix, typically varies from
t(n) = n to t(n) = n logn. In fact, O(n logn) is the aver-
age computational cost of the aforementioned iterative
solvers of sparse linear systems.

Finally, the spectrum-free computation of the one-to-
all (volumetric) distances d(pi,p j), j = 1, . . . ,n, takes
O(rnt(n)) time; in fact, we solve the linear sys-
tem (3) with n different right-hand vectors f := ei� e j,
j = 1, . . . ,n. Computing a fixed number k of eigen-
pairs in O(kn2) time, the one-to-all distance is evalu-
ated in super liner time [37]; indeed, the computational
cost of the spectrum-free computation is lower than the
truncated spectral approximation with k(n) � rt(n)/n
eigenpairs. The truncated spectral approximation is ac-
curate only if the exponential filter decays fast (e.g.,
large values of time). Otherwise, a lager number of
eigenpairs is needed and the resulting computational
cost varies from O(kn2) to O(n3) time, according to the
sparsity of the Laplacian matrix. Furthermore, the effect
of the selected eigenpairs on the approximation accu-
racy cannot be estimated without computing the whole
spectrum. A similar discussion applies to convolutions
with heat kernels for several time values.

As future work, we plan to apply the proposed ap-
proach to volumetric mesh fairing and to the evaluation
of volume-based descriptors in shape analysis.
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