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Abstract

This paper presents a method of shape chartification seifabkurface approximation. The innovation of this appholies on
the definition of an iterative refinement of the shape intotaopatches that are automatically tiled and used to appraté the
original shape up to a prescribed error. The coding of thehastis supported by the Reeb graph and contains the rulesgerty
tile, stitch them, and reconstruct the original shape wpikeserving its topology, using a technique which is alsdaitqrl for
reconstructing an object from non-planar contours. Thehotkts geometry-aware by definition, as the nodes of the Reslihg
are representative of the main shape features, which bédotite approximated shape already at the initial iteratteps The
points of the reconstructed shape belong to the originésey their total number is highly reduced, and the origawainectivity
is replaced by a set of patches that preserves the globdbgppof the input shape.

Key words: Shape chartification, Morse theory, shape approximatloape reconstruction.

1. Introduction The method, therefore, can be exploited to compress theeshap

o of 3D objects: the points in the reconstructed model belong
Reeb graphs have been proven to fieative in shape anal- 5 the original object surface, their total number is higtey

ysis, as they provide a very compact and synthetic desenipti gy ced, and the original connectivity is replaced by a tibhihe
points of f identify changes in the topology of the contours of hoges of the Reeb graph are representative of relevant shape

the functionf: saddles correspond to splitting or merging of theeatures and belong to the approximated shape already at the
contours off, while minima or maxima correspond to contour frst iteration.

creation or termination. The topological structure codgthe . . o L )
Reeb graph is often associated to its geometric embedding, o 1h€ idea of resorting to tiling for the approximation phase |
topological skeleton, which is an iconic representationhef ~ Motivated by the low computational cost that this technigue
shape. Usually, the nodes are placed at the critical pofnts o pl|es. Note, however, 'Fhat the contours associated to t.Uesno
and the edges, which store their correspondence through topIn the_Reeb graph are in general neither planar nor parade) (
logical evolution of the level sets df, are drawn in the interior N0t Iving on the parallel planes). Indeed, the level sets afe
of the shape as a kind of a centerline. planar only for particular choices df(e.g., the height function)
When drawing the level sets dfbefore and after the saddle and a straightforward trlar_lgulatlon of the level setd ahight _
points, the iconic representation provided by the ReeblgrapU'n out to be awkward, if not properly approached. While
sketches the original shape. Imagine further that we téseh tiling two parallel contours is relatively trivial, to thesbt of our
level sets by joining their vertices while respecting thatoor ~ Knowledge, tiling a set of non-planar contours has nevenbee

correspondence stored in the graph: even if approximated b@,ddressed in the I|ter§1ture in its general formulation. im o
a highly sparse set of contours, we immediately have a rough?Se: the Reeb graph induces correspondences among sontour
idea of the object shape [9]. which solve one of the big issues of the problem in its general
This observation led us to code a surface by means of gettings. Moreover, we refine the contour decompositioh suc
set of patches that are automatically tiled and used to appro that the approximation phase can work automatically using a
mate the original shape up to a prescribed error. The way thgl@ssical contour-to-contour tiling algorithms [15, 28, 34].
patches are stored contains the rules to properly tile atthst ~ The intuition behind the refinement strategy is the follow-
the patches while preserving the topology of the originapgh  ing. First of all, we insert on the surface the so-caleiddle
contours which are placed between pairs of adjacent critical
_ — o o points (Figure 1(a,b)). The tiling of the middle contoursyma
Email addressessilviatge. imati.cnr. it (Silvia Biasott), cause problems in the portion of the shape delimited by sevel
patane@ge.imati.cnr.it (Giuseppe Patan@)ichi@ge.imati.cnr.it . . .
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Figure 2: (a) Original model and (b) its approximation. (BeTReeb graph that
Figure 1: (a) Reeb graph, (b) set of middle contours, (dpinthartification and  led to the shape approximation.
(d) after one refinement step. fRrent colors correspond toffirent charts.

original model.

struction. The refinement of the tiling is based on the spitt  The paper is organized as follows. Section 2 presents a brief
of these branching sites into two patches obtained by d@winoverview of previous work relevant to the proposed approach
the flow paths from the saddle point to the upper or lower conto shape coding and decoding. In Section 3 we describe the
tours, as depicted in Figure 1(c). The surface is decomposasbvel shape chartification, and in Section 4 we show how the
into charts delimited by flow paths and level sets paind hav-  chartification is used to adaptively encode and decode &pe.

ing in general an irregular connectivity. During the approx proximate) the input shape. Section 5 discusses sevenai-exa
mation phase, the patches that contain a maximum, or a minples, and Section 6 summarizes the main contribution of our

mum, of f are handled as generalized cones, while the patchegproach and outlines a few future research directions.
that arise from the split of branching sites will be handlsd a

generalized cylinders. At the end of the first refinement,step ,
the shape is approximated by a highly sparse set of contourg; Previous work
whose cardinality is given by the number of the critical gsin

of f. These contours are ficient to approximate the original (chartification) and decoding (reconstruction from consu

shape from the perspective of its global topology, and aie p ¢ ,sing on methods that address issues that resemble dhe tw
vide a rough approximation of its geometry. To gain accuracyy-in'stens of our approach

during the reconstruction phase, each patch is iteratredityed

by the insertion of new level sets until the original shapefis  Shape chartification There are several methods in the litera-
proximated to a given accuracy (Figure 1(d)). ture for partitioning an arbitrary surface into a set of ¢har
Note that the decomposition is not equivalent to the one inof simpler topology and geometry, which are then used for
duced by the Morse-Smale decomposition, where the boundemeshing, texture mapping, compression, and approimati
aries of the patches are all delineated by flow paths. Onlyeatt Shape segmentation generally provides a set of basic it
first iteration, the decomposition may be regarded as tieg-int (e.g., planes, spheres, cylinders, tori) or identifies/sieparts,
section between the Reeb graph decomposition induced by thghich are delimited by lines of concave discontinuity of the
middle contours and the Morse-Smale one, where only some @éngent plane [46]. For local parameterization and textap-
the flow paths are kept in the intersection. ping [24, 41, 48, 53], a chartification into disk-like patstigof-
Using the proposed coding, the information about the origiten computed by converting the input surfafinto a base do-
nal shape can be highly reduced: for instance, in Figure 2 theain with the same topology @1 through simplification. Sur-
original model was represented by a triangle mesh having 35ace partitioning into quadrilateral patches [44, 49] isdiso
vertices and 69K triangles and whose VRML file was 2.6Mb.support approximation schemes with tensor-product Basgli
The file produced to store the refined Reeb graph contains juitecent techniques use Morse theory and Laplacian eigenfunc
3.8K vertices which, together with the information reqdiie  tions [12, 20, 30], holomorphic discrete 1-forms [28, 29%-d
the reconstruction phase, accounts only for 138K bytesonf st crete harmonic functions [49], variational techniques, [38],
age needed to approximate the original shape within a Hausind discrete exterior calculus [18]. Finally, geometryassv
dort distance of 3.7% of the diagonal of the bounding box.  maps [47], whose behavior is guided by the selection of an-
Our main contributions are (i) an iterative shape chartifica chor points, have beerfeiently used for shape compression.
tion into a set of patches that are automatically refineddtil
and used to approximate the original shape; (ii) the pdggibi The method proposed in [21] uses a network of flow paths,
to drive both the decomposition and reconstruction usifigdi  related to two orthogonal vector fields, and provides a guadr
ent criteria such as approximation accuracy, topologicasis-  lateral remeshing oM whose number of patches is driven by
tency, geometry-awareness through the chosen functioms; athe target approximation accuracy. In [20], the Morse caxpl
(i) the capability of concisely encoding the shape withea s of the Laplacian eigenfunctions is used to define a quadrangu
of surface samples whose original connectivity is repldned  lation of the shape. Such spectral quadrilateral remeghiog
set of contours and tiling rules that allow us to approxintaége  duces good results but needs Laplacian eigenfunctionsawith
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We briefly review the existing literature on shape encoding



number of critical points dficiently high to provide the cor-
ner vertices of the quad patches (i.e., two opposite saddles

The critical points off are located at the vertices g¥1
and classified by analyzing the distribution of the functiait

maximum and minimum as corners). Furthermore, a filteringues on a neighborhood of each vertex [2]. More precisely, let

of the critical points with low persistence values and a stimoo

N(@):={j: (i, ) edge be the istarofi, i.e., the set of vertices

ing of the arcs of the Morse complex are necessary to improvincident toi. According to [38], let

the geometric quality of the patches. In fact, a small pbgur

tion of the input scalar function makes the two ascending flow
paths miss the associated saddles and approach a maximumbor

minimum without meeting each other [20].

Shape reconstruction from contouré\ surface connectintyvo
polygons contained within parallel planes can be constdioy
triangulating between the contour lines and finding theroaki
triangulation by using graph theory [34]. This algorithrmca
handle only the simple one-to-one case and implicitly agsum

LK() = {j1,- .-,k € N() : (js js+1)"C] edges ofP)

e thelink of i, then theupper linkis the set
LK™ (i) == {js € LK() = f(p;,) > F(pi)},
and themixed linkis given by

Lk*(i) := {js € Lk() : f(pj...) > f(pi) > f(pj,) or
f(Pje.) < F(Pi) < T(Pj)),

a high degree of resemblance between the contours. Suczessi . . . . . ]
methods [25, 26, 51] interpolate the surface between twe coWherejk.1 := ji. Thelower link Lk (i) is defined by replacing

tours and dter by whether a local or global “advancing rule”
is used for the tiling, which tiling measure is optimizeddan
which algorithm is used to find this optimum.

the inequality =" with “ <” in the upper link. IfLk*(i) = 0 or
Lk=(i) = 0, thenp; is amaximumor a minimum respectively.
If the cardinality of the setk*(i) is 2+ 2m, m > 1, thenp; is

One further step was taken in [14, 15]—the handling of sim-classified as aaddleof multiplicity m o
ple branching cases through the use of an intermediate slice FOT Simplicity, we assume that each saddle has multiplicity

which resembles the original slices; the insertion of “gad”
between the multiple contours of one slice; and the spdjttih
the single contour into several contours. More generaldiran
ing cases [1, 3, 31] are solved using a Delaunay-like trilmgu
tion of the contour vertices, slice projection, partiahtj, and
a straight-skeleton analysis of the symmetriffetience of the
slices. Finally, the Delaunay-meshing strategy in [31] ib@sn
recently extended to surface reconstruction from nonieara
planes[11, 35].

3. Reeb graph refinement

In the following, we outline the discretization we adopt for
the computation of the critical points and flow paths, which a

one (i.e., it is avlorsesaddle) and the function 8mple(i.e., it
is injective over the critical points). Degenerate casesassi-
ble extensions of these hypotheses are discussed in S8ction
An integral line of f is defined as the line of steepest as-
cenfdescent values df f, and it is discretized on a mesh as a
flow path Each flow pathy of f is a piecewise linear curve over
the surface that follows the variation Bff and consists of a se-
quence of nodes, which are the intersection pointswith the
edges ofM. If a node ofy is a vertexp; of M, then we trace
using the direction oV f|; on the triangle of the 1-star ofp;
such that the intersection gfwith t is the pointq € M with
the highest persistence valligp;) — f(q)|. If the flow path
is aligned with an edge, then we follow the edge along with
the value off that does not decreaserease. For more de-
tails on the algorithm for tracing flow paths, we refer thedera

needed to define the shape decomposition. Then, we descrig[20, 37]. Note that flow paths on meshes never cross, but can

the chartification and its iterative refinement through teei-
tion of level sets, subject to accuracy requirements. Binak

discuss degenerate cases, the computational complexdtisa
sues related to the selection of the function.

3.1. Theoretical background

We assume that the input surface is a 2-manifold closed tr
angle meshM; the functionf : M — R is a piecewise linear
function defined on the vertices @t and extended by linear
interpolation across the edges and faces. Assuming that f
any edge 6i, pj), f(pi) # f(p;), the gradient off is constant,
non-zero and well defined across the interiors of triangheks a
edges. In particular, we discreti&f on a trianglet with ver-
tices @i, pj, px) and unit norman as the solutiorV f|; of the

3 x 3 linear system
]Vf't i [ ].

|

F(pj) - f(pi)
f(pk)a f(p;)

Pj — Pi
Pk — Pj
n

merge; in any case, once merged they do not separate.

3.2. Initial shape chartification

The shape chartification builds on the Reeb graph [45] as a
supportstructure. The Reeb graph\dfwith respect to a Morse
and simple mag : M — R is defined as the one-dimensional
finite and connected simplicial complex whose nodes corre-
spond to the critical points of and whose arcs join pairs of
critical points when the contours evolve from one criticair

4o the other without changing their topology type [8, 42].

Given the Reeb grapRg of (M, f), we consider its geomet-
ric embedding by associating to each nodbe coordinates of
the critical point and the iso-valugn). An orientation can be
given to the arcs oRg conforming with the growing directions
of the values off.

If e=(n1,ny) is an arc ofRg, then we denoteM, the por-
tion of M that corresponds to the aec The iso-contour off
defined byf -1 ({022 10%)) A is called themiddle contounf
the arce. The set of all the middle contours is indicated&s
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Figure 3: Types of charts in the initial decomposition: figst and 2-strips. In
(c), boundary of the two 2-strips when the flow paths merge. Figure 4: The refinement of a 1-strip (a), and (b,c) the twesiims refinements
of a 2 strip.

(©)

By definition of S, we have thaldS| = |E|, where|E]| is the

number of edges oRg. Figure 1(b) shows an example of con- all flow paths from the saddiec S to 81, if the corresponding

tours of f traced in the middle of the arcs of the Reeb graphnode has in-degree 1, orffg otherwise.

with respect to the values assumedfbfFigure 1(a)). Note that the flow paths split the 3-strip into two 2-stripsev
The set of middle contourkS induces a mesh decomposition if the flow paths merge. In this latter case, the two popmts

into regions. A regior$ of M delimited byasS satisfies one of ~andq in Figure 3(b) overlap. Figure 3(c) details the two 2-strips
the following properties (Figure 3): we obtain: the boundary of one strip is made of one contour

and the portions of the flow paths that do not overlap, whige th
1. Sis a cap (Istrip) that includes only one minimum or boundary of the other one contains two contours and the whole
maximum and has only one connected boundary compdfow paths, eventually duplicated in the portions mergede Th
nent corresponding to an iso-valuefof small arrows in the picture highlight the boundary orieiotat
2. Sis abranch (3trip) that includes one saddle posand  in correspondence of the flow paths.
with 3 connected boundary components corresponding to Applying this step to all the 3-strips o¥1, we get the initial
iso-values off. Note thatf assumes dierent values on at chart decomposition into 1-strips and 2-strips, which havly
least two boundary components 8f beside symmetries two maximally connected boundary components. Note that no
in f, these three values are alwayfelient. surface patch includes saddle points in their interior.

This chart decomposition defines the initial step of the Ree
graph refinement that is used to approximate the surface.
used the middle contour of the edgén Rg instead of its ge-  The chart decomposition drives the approximation scheme
ometric medial section to give more weightftan the decom-  py adding more and more contours to the initial decompasitio
position step. This choice emphasizes the role of the fandti  yntil the approximation error is below a given value. The re-
as the key to identify and measure the shape propertieshwhiginement process is independently applied to single chads a
will be kept as anchors for the shape-approximation phase.  driven by the approximation error (Section 4), so that thalfin

To ease the reconstruction via tiling, we split each 3-s¥ip segmentation will be adapted locally to the shape complexit
into two 2-strips, i.e., charts with two boundary composent Let.S be a chart selected for refinement as it does not match
the initial stage, each chart, has a number of connecteddounthe target approximation error. We insert a new contourat th
ary components that corresponds to the degree of the Reghjye (fsmax+ fsmin)/2, Wherefsmaxand fsmin are the maximum
graphRg that the strip contains. For a 3-stidf) its bound-  and minimum values, respectively, bfover the charsS. If S
ary componentsg;, i = 1,2,3, can be ordered according to the js a cap region that contains a critical pomt it is split into
value off: sincef is constant os;, we refer to the correspond- one new 1-strip that still contains the critical pomtand one
ing iso-value ag (i), = 1,2, 3, and order them with respectto new 2-strip (Figure 4(a)). Similarly, a 2-stripis split into two
increasing values of aspi, 52, andBs. Reasoning on the pos- charts by the insertion of a new contour, which may give rise t
sible evolution of the contours across the sadgifee have only  one of the following cases:
the following two cases: eithdr evolves througls with a con-

.3. Refinement of the chartification

tour splitting B:1 splits intoB, andps), or f evolves througls e if the inserted contour does not intersect any boundary
with a contour mergingd; andgz merge intgBs). In the first component ofS, the chart is refined into two 2-strips, the

case, the node correspondingia Rg has in-degree 1 while in first with its two boundary components both on level sets
the second case it has out-degree 1. To split a 3<Stnge draw of f, and the second with one boundary component on the
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Figure 6: A 4-strip, with two saddles having the same valué,a$ split into
three 2-strips. To ease the visualization, the funcfias the height function.

Figure 5: Three refinements of the chartification.

level set off and one that alternates flow paths and level
sets (Figure 4(b)); ()

o if the inserted contour intersects a boundary component Figure 7: (a) Level sets, (b) 3-strip, and (c) its split int@t2-strips.
of S, the chart is refined into one 2-strip and one 1-strip

(Figure 4(c)). ) . .
into (m + 1) 2-strips by following all the flow paths that con-

In the second case, the 1-strip is a quadrilateral patch evhoshect the saddle to the boundary comporgeritinally, note that
boundaries alternately composed of pieces of contoursawd fl our technique allows us to split a 3-strip in case the flow path
paths. This kind of 1-strip does not contain any criticalpan ~ do not intersect transversally; i.e., the scalar funct®lorse
its interior and dfifers from the cap 1-strip because the valuebut not Morse-Smale; see for example the result on a function
of f is not constant on its boundary. If we refine a region whosewith a strangulationin Figure 7.
boundaries are parts of flow paths that partially overlegn tlie
again obtain either two 2 strips or one 1-strip and one 2-stri
In the latter case, the 1-strip is a triangular region bodrge

two portions of flow paths without overlapping and the ineért |, the worst case, the combinatorial complexity of the Reeb

contour. graph extraction i©)(nlogn), wheren is the number of ver-

Figure 5 shows three iterations on the same model of the rgj g of M; efficient algorithms for its computation were pro-

finement of th.e charts. In_this example_, the functfaa the h_ar- osed in [17, 39]. Denoting| the number of edges of the Reeb
monic map with the maxima of Gaussian curvature as D|r|chlegrathg a8 is computed by insertintE| contours inM with

boundary conditions. Note that not all patches are subelitid e operations. During this phase, the complexity of the
in fact, the refinement criteria depend on the approximaen g qe| increases with the possible insertion of new verticas

ror. belong to contours iAS. Since each 3-strip split operation acts
only on a single chax$;, it takesO(S;|) operations, whergS;|
3.4. Degenerate cases denotes the number of elements®f Assuming that the inser-
Degenerate case are usually associated to a mapping furigen of 4S; into M addsw new elements ta\, the overall cost
tion f that is not simple and not Morse. If the functidnis  of the 3-strip splits i<O(n + w), which is O(|E[n). Therefore,
not simple, then there exist some critical points that hénee t the combinatorial complexity of the initial shape chartition
same value of. While this fact is not particularly significant is O(maxlogn, |[E[n)).
for minima and maxima, if two or more saddles share the same For every step of the adaptive refinement, the operations
value f(s), then the corresponding level set induces a segmemeeded to split a single chart are limited by the number of el-
tation into a complex strip. This strip is no longer a 3-sbig  ements of the chart even if the refinement might involve all
a (2+ I)-strip, wherd represents the number of saddles havingcharts. Since each chart is split into at most two new charts,
the same valué(s). However, these (2 |)-strips may be split the spatial complexity of the charts increases and the nuofbe
into (I + 1) 2-strips by applying the technique proposed in Secelements of the single chart is at most duplicated. In summar
tion 3.2. Figure 6 shows two saddles having the same valfie of the worst case complexity of the adaptive chart refinement af
and how the corresponding 4-strip is split into three 2tspli terk steps iO(2XE|n). However, even if the spatial complexity
If fis not Morse for the presence wkfold saddles, the pro- of the model increases with the insertion of the contours, we
cedure described in [22] can be used to split tikéold sad- have experimented that the number of steps required torpbtai
dle into m simple saddles. The corresponding chart is splita satisfactory chartification is generally lower than seven

5
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Figure 8: lterative approximation of a contour. The whiteleis highlight the
contour samples.

(d)

4. Surface approximation

Figure 9: (a) Contour sampling and (b,c) some corresporedeasong bound-

. . . ary components. The 1-strips are colored in red while blg@ns represent
This section describes the procedure that allowed us to LISfstrips. Red points represent the samples the closese toditiespondence.

the chart refinement as a surface approximation techniquey) Example of correspondences that flow towards the sanmé @od generate
which also enables simple yeffective surface coding. Intu- ageneralized triangular region.
itively, the approximation is devised to work as a surface re
construction from non-planar and non-parallel contoutsene
P P : fe Correspondences between boundary componeBigen a

the contours correspond now to the boundaries of the patchesS . : .

) oo : Strip S with two boundary componengs andg,, we determine
We proceed first by approximating the boundaries of the shart ;
b . a set of correspondences among pointg;oindg,, so-called
y a sampling process. Then, we extract correspondences be-

tween vertices of the contours to be tiled to improve theigual ?rt;ifg dmbe ntfoTn:Ieuaiit:‘acthhrgeﬂl:) T/J(v qzia){hptiheatﬁ ﬁow:?riofnﬁ 2 'I[f) ex
of the reconstruction and minimize self-intersections @visit- y puting pay Pi 10 B2,

ing effects. In this process, each chart is tiled separately, anBurlng th-e f|r§t |tera_t|qps, the cqrrespondences are coeaput
. or all points in the initial sampling of the contours. Due to
all the approximated patches are concatenated so as tolierm t

final surface. Since the configurations of the boundariesiof o the SParseness of _the S"?‘mp"”g at t_he first stage, the_flovs path
; ; S drawn from points ifB; will not flow, in general, to a point be-
charts do not include branching cases, the approximatiat: st . :
: . . . . longing to the samples @h. Therefore, the attachment will be
egy is easily turned into a surface coding and decoding psce

Then, the decoding works as an automatic tiling of the chargmclneOI by selecting the sampjeof 5, that is the nearest ta.

boundaries, or contours, coded appropriately with thejiicit or this reason or becguse twp flow paths merge, it is pos_S|bIe
: that more than one point gy is attached to the same point
reconstruction rules.

in ﬁl-

The union of all the attachments between every pair of con-
Contour sampling.During this step, the boundaries of each toursg; andp, forms a set of guiding lines for the tiling, mean-
patch are approximated using a progressive sampling, whiciag that they are constraints for approximating the siif heir
stops when the local approximation error is below a giverrole is to prevent self-intersecting triangles as much asipte.
threshold. We proceed by first sampling the boundary of the 1The attachments are re-computed every time the strip iseckfin
strip caps, and then sampling the other kind of strips. Gaven In our experiments, every boundary component is initizaiys
boundary componerft of ak-strip S, 1 < k < 2, sincef is  pled with three points, which are uniformly sampled. Howeve
shared by another strifi;, we distinguish between two situa- the bigger the number of attachments betwgeandg; is, the
tions: (i) 8 has not yet been sampled and fiiivas sampled more accurate the reconstruction of the flow paths in the ap-
for approximatingS;. In the first case, the initial sampling of proximation is. Figures 9(b,c) show some examples of cantou
the boundary consists of three points that are regularly spacedtorrespondence between the boundary components of 2:strip

over the contour. In the second case, we count the number @i‘ange lines represent the flow paths that connect poings on

existing samples (note th&tandS; may share only a portion andg,.

of a boundary component), and start to approxirgaig using

the existing samples (i.e., those induced by the approimat Contour tiling. At each step of the chart refinement, the re-

of S1) until we identify the required three points. If the initial sulting approximation is matched against the requiredrehno

sampling already has more than three points, these poiets aprder to compute this error, the approximation is applied lo

set as the initial boundary sampling. cally. This process resembles the reconstruction of a stirfa
At each step, we add new samples to the boungamp-  from non-planar and non-parallel contours, where the agsto

til the approximation erroe falls below a given threshold, correspond now to the boundaries of the patches, sampled as

or it becomes stationary (ceasing to change significantly)explained above. Therefore, we linearly and locally approx

Then, the error induced over the segmexnig) that approx- mate M through the creation of a triangle mesh between the

imates the portion,pj,,...,Pj.S) of B is computed as sampling of the contours enclosing each chart.

e = max-1__{ld((s.. ), pj)I}, whered is the distance in space  Concerning the tiling phase, triangulating a single naampt

between a segment and a point. In practiges specified by contour was used in the context of repairing defective mesh d

the user as a percentage error of the lengthg, dbr exam-  scriptions (by means of triangulating the gaps in the mgshes

ple, 002% means that = 0.028], where|g| is the length of the or as a tool in the reconstruction of an object from a series of

curvep (Figures 8 and 9(a)). cross sections. Some methods, e.g. [10, 33], triangul&te th
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Figure 10: The four types of charts.

u
(©)

contour in a greedy manner, while other methods, e.g., [4, 5]

seek a triangulation optimal with respect to some merit func

tion, e.g., the total area of the triangles. In the followinge

use any of the classical contour-to-contour tiling aldornis

(e.g., [15, 25, 26, 34]), bearing the remote chance to obtain (d) (e)

self-intersecting tiling in cases in which the two origimain-

tours are extremely twisted andfigirent in shape. For more Figure 11: Reconstruction of a pseudo-cone: (a) samplintgeariginal model

details on the best triangulation of non-planar contoussrey and (b) approximated patch. (c) Tiling algorithm and (d)orestruction of a
2-strip. (e) Tiling of a 1-strip whose boundary is made upegraents of two
fer the reader to [4, 10].

. contours and two flow paths. This case corresponds to then=giepicted in
We recall that the charts can be only of the following typesrigure 4(c). .

(Figure 10).

e Type 1 patches with only one boundary component thating any suitable edge optimization criterion, until anathe
corresponds to an iso-contourfofin this case, the surface tachment is reached @ andg, are completely traversed. In
is approximated by a generalized cone having the innegur approach, the contours are progressively visited diogr
critical point as the apex and the boundary sampling as thgy the method described in [5]. More precisely, denoting
base. andv the two current vertices o; and3,, a new triangle

« Type 2 patches with only one boundary component com—t :=(u,v,w) is added if it satisfies an optimization criterion

posed by iso-contour segments alternating with flow pathgven as a comblnatfon .Of. the foIIO\{vmg criteria. edge Idfn_gt_
: . . “édge dihedral angle; minimal area; and percentage of disite
In general, the patch is approximated by a generalize

. ) : contour. In the current implementation, the weights of ¢hes
open cylinder. Since the boundary Sfalternates pieces P g e

of contours and flow paths, we connect the two portions of;rlterla are chosen as 0.5, 0.25, 0.125, and 0.125 (which sum

. . : .~ = "upto 1), and normalized so that they provide values in the uni
contours as in the tiling algorithm, and close the strip W'thinterval Figures 11(c,d) shows an example of this method
the vertices that belong to the flow paths. If the flow paths -9 ' P ’

merge, then the region becomes a triangoloid, as discussg;o;  evaluation. The symmetric  Hausdéir  dis-

in Section 3.3. In this case, we connect the points of thg;,ce 4(S,S) := maxd(S, S),d(S, S)) with

iso-contour to those ones in the flow paths and create agg ') .= sup, S,{infq < lp- q||2’} measures  the  error
’ . €. €.

open cone that has the first point of the merge between thﬁetween a char§ on M and its approximatios’. This error
flow paths as vertex. is evaluated by computing thke-nearest neighbor grapi

e Type 3, 4 patches with two boundary components. Eachof the vertices ofS in O(S|loglS]) time, and using7™ to
boundary of a patch of type 3 corresponds to an iso£omputed,(S,S) for each updated approximatiafi. In
contour of f. Otherwise (type 4), one boundary corre- casedx(S,S) is greater than a user-defined threshipldthe
sponds to an iso-contour and the other one is composeRRtchS is refined untild(S, S') becomes smaller thap

by iso-contour segments alternating with flow paths. In L . . . .
both cases, the surface is approximated by a generaﬁpproxmatmn coding and decodinghll the information (con-

ized closed cylinder: we invoke any classical a|gorithmtoursamples, attachments between strip boundary comgmnen
(e.g., [15, 25, 26, 34]) for tiling between two contours and tiling rules) needed to compute the approximated sarrfac

subject to the constraints imposed by the attachments. is opportunely stored in a file. First of all, we list the Carte
sian coordinates of the contour samples and the criticaitpoi

Starting from any attachment between two contour samef f: generally, these data are largely less than the originmal ve
plings, the triangulation algorithm tilgl andB, locally, adopt-  tex count. Then, every chart is stored in the file as a set of two

7



Time (seconds)
Rg 1-step all

or four lines each coding the sequence of the indices of sam size %
ples that form the chart boundary, interleaved with the syisb o
“” that indicate attachments and “.” to denote the end of the 8

boundary. L')

We distinguish between three tiling rules, which also impli
itly encode the rules themselves. R\

1. Rule 1 The first line of the chart coding contains only ¥ 1515 | 254 | 0.035) 0035 0028 | 013 | 108
the indices of the vertex corresponding to the inner cilitica \f
point; the second line contains the sequence of indices t¢ 1515 | 57 | 0027 0035 0029 | 028 | 262
the vertices of its boundary samples.

2. Rule 2 The chart is stored using four lines, the first
and third lines contains the indices of the samples of thg ./
boundary segments lying on the contours, while the sec W

M IM] dy

12,286 762 0.033 | 0.029 | 0.032 | 0.273 4.2

9,111 620 0.039 | 0.087 | 0.034 | 0.289 4.6

I 5,510 647 0.027 | 0.047 | 0.037 0.55 7.8

136,650 723 0.032 | 0.857 | 0.62 3.76 0.3

ond and fourth lines code the boundary segment on the
flow paths. The sequences of indices may be interleaved &
with the attachment indicators. If the boundary segments W
on the flow paths or on the contours do not contain any| I
sample, the corresponding lines are left empty. ol 26,358 | 1,243 | 0031 | 031 | 015 | 1.42 | 315
3. Rule 3 The first and second lines of the chart coding con- 4&\

tain the indices of the samples of the two boundary com- J

ponentg3; andp,; the sequences of indices may be inter- %
leaved with the attachment indicators. The two lines con-——
tain the same number of attachments and in case a point 57‘
on one contour is attached to more points on the othe =
contour, the symbol “;" is repeated as many times as theg M/

26,789 680 0.034 | 0.209 | 0.17 0.71 1.7

26,789 1,287 | 0.029 | 0.209 0.17 1.298 3.2

45,705 1,238 | 0.086 | 0.08 0.12 1.281 1.8

10,005 885 0.031 | 0.078 0.13 1.29 5.9

41,160 1,816 | 0.054 | 0.129 | 0.095 | 0.78 3

34,025 4,461 | 0.016 | 0.315 | 0.74 | 5.296 8.7

points. m

The orientation of the boundaries of each cluit stored = 91863 | 10448 | 0,062 | 062 | 092 | 163 | 78
consistently with the original surfac&l. Choosing aype 1 é

. . . . . . . . . 31,994 7,932 0.018 0.29 0.22 3.78 17.3
strip S and indicating withm the critical point contained i,
we orient its boundary in a counterclockwise or clockwise é/%‘* 12386 | 3966 | 0.014 | 011 | 013 | 0.883| 224
manner iff(8) < f(m) or f(8) > f(m), respectively. In cas8 4 :
is atype 3 and 4strip with boundary componeng andg., e 35474 | 8477 | 0013 | 032 | 0.27 | 4.86 | 164
such thatf(B1) < f(82), we codeB; (resp.,32) in a counter- 2
clockwise (resp., clockwise) orientation. Similarly, weler in ~ 5201 | 958 | 0.035| 0.045| 0.029 | 1.776 | 123

counterclockwise or clockwise manner the portions of beund R A .

. . . Table 1: Statistics of the approximation. The Hausitlenrordy, is expressed as
ary of atype 2strip lying on contours while the flow paths are he percentage of the diagonal of the bounding box of thermignodel. Time
ordered according to the increasing valueg of is evaluated on an AMD Atlon, 64 Processor 350@ving 2GB of RAM. The

The role of the decoder is to load the data and to recontghtmost column represents the size of our coding systetim rggpect to the
struct the tiles according to the rules embedded in the filg29inal size of the triangle mesh (in VRML 1.0 format).
Once the tiles have been built, they are glued together in a
unique mesbM’ by identifying the edges that are shared by two _ _ _
patches. Once the surface has been reconstructed, a laaplacPercentage of the diagonal of the bounding boxAdf This
fairing [35] and a curvature optimization along the edgey ma implies that both the contour sampling and the error evalua-
be applied to obtain a smoother continuity along the boundtion are independent of the original tesselation. In Figil),

ary patches and guarantee tiMdt interpolates all contourgs @ first rough yet #ective approximation of the original model
with G regularity. in Figure 12(a) is obtained using only 254 vertices and a har-

monic map whose Dirichlet boundary conditions are placed on
the finger tips. Similarly, the model in Figure 12(d) approxi
mates with 1287 vertices the model in Figure 12(b).

We tested our method on several models witffiedent types Table 1 shows the performance of our method over a set of
of features and scalar functions. In general, we noticettteat models; in particular, we emphasize that the achieved simpl
number of vertices oM is quite independent of the number fication is almost independent of the number of vertices ef th
of elements oM while it is influenced by the number of shape original mesh. In particular, Figure 13 represents thewevol
characteristics, i.e., number of critical points fof In the ex-  tion of the maximum errody, over all the approximated charts
periments, the sampling threshajdvaries on the contours be- when the strips are adaptively refined with threshtjds 0.07
tween 001 and 005, and the thresholt for the patches is a andt, = 0.01. The time of the decoding phase for the camel

8
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Figure 12: (a,b) Input and (c,d) reconstructed models ofttauad models using harmonic maps, whose Dirichlet boundangitions are placed on the finger tips.
Reconstructed model (e) with and (f) without a tiny handle.

Mausdorf Error dy

octopus

camel

twirl
hand
5t "3 buddha H

Error percentage
o

(a) 29 Eig. (b) 29 Eig

(c) Harm.

Steps

Figure 13: Error evolution with respect to the strip refinatse Considering
only the initial chartification, the reconstructed octopaamel, twirl, hand,
and Buddha models contain 393, 208, 127, 254, and 700 \&rtiespectively.
After seven steps the models are respectively made of 6128, 1776, 3123,
and 10356 vertices. (e) Harm. () 29 Eig. (g) Auto-dif.

Figure 14: (a,b) Surfaces approximated using two refinersteps. (c) Recon-
model varies from 0.0013 seconds (208 vertices) to 0.057 seétruction of the bitorus model using three refinement sté{pmroxirr_lati(_)n of
onds (7028 vertices), while for the Buddha model it varies!® () Buddha, (€) dragon, () feline, and (g) octopus modéter five itera-
from 0.012 seconds (700 vertices) to 0.085 seconds (10,3§'§ns'
vertices). The approximation rate obtained in our expenise
is comparable with the analogous test shown in [47], see alsteriori polishing of the reconstructed mesh would be the bes
the approximation of the feline model in Figure 14(f). Figal way to handle these situations. If the measure of the handle,
Figure 15 depicts the Reeb graph of a twisted model obtainedhich is defined as the persistence of the corresponding mini
with respect to the first Laplace-Beltrami eigenfunctiod #ilre . mum non-separating graph cut of the Reeb gr&phis smaller
shape approximation that we obtained after four refinenats than a user-chosen threshold, we apply a topology simplifica
the strips. In this case, as shown in the last row of Table lion strategy tRg [52]. In this latter case, our system provides
the reconstruction error is 0.035. As shown in Figure 12(e)a simplified model (in term of through holes) by discarding th
our contouring detects and preserves the tiny handles of theontours related to the loops Ry that we want to eliminate.
original model. However, tiny handles can be easily detkecte For instance, in Figure 12(f) we have reconstructed thagiea
and discarded in the construction of the approximationkBan mesh without considering the contours related to the saddle
again to the use of the Reeb graph. This is guaranteed by tlmn the small handle of the hand model. In this example, the
use of the Reeb graph as driving topological structure fer th approximated shapeM'| has 786 vertices and the error with
chartification: the Reeb graph indeed preserves the topologespect to the original model is 0.08. Our approach is robust
of the original surface. However, the reconstruction pssce with respectto perturbations of the vertex coordinatesvthe
is not guaranteed to be self-intersection free and watdrtig scalar functionf is robust to noise. The chartification of the
even if the refinement process highly reduces the occurrenaeisy surface in Figure 16(a) was obtained in two refinement
of these artifacts as demonstrated by the examples. An a posteps fixingt; = 0.05 andt, = 10%. Using a harmonic func-
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’fs ——
(a) (b) (c)

Figure 15: (a) Reeb graph with respect to the first non-trivéglacian eigen- ’
function, (b) strips after four refinements and (c) shape@pmation with 958 ]

vertices. ?

Figure 17: Stability of the chartification against noises ttorresponding char-
tifications on the smooth surface are shown in Figure 5.

Figure 16: (a) Chartification of a noisy model induced by ari@ic map and
after two iterations; (b) sampled points. Reconstructib(cpthe input shape
with 247 vertices and (d) the analogous result on the orignwel. (a) (b) (C)

Figure 18: (a) Isocontours and flow paths, (b) reconstruotiedel using [35]

. . . with 458 vertices, (c) our reconstruction with 192 verticéd) Surface refine-
tion, the number and types of charts remain stable in sptteeof ment and smoothing using [35] with 536 vertices and (e) otfasa refinement

perturbations to the surface geometry. Finally, the reitooted  and smoothing with 873 vertices.

model (¢) was obtained by decoding the points selected glurin

the coding; diferently from the approximated model in (d) ob-

tained from the original bitorus model with comparable siwe ~ described [35]. A comparison of the two techniques, theesfo
olds, we note that the perturbation of vertices marginaflgas ~ can be done using our framework withas the height function,

the reconstruction. Also, the chartifications in Figuresatg  Which produces planar contours. An example of reconstrcti
obtained with a harmonic function computed on a noisy modelysing our method and [35] is shown in Figure 18.

while Figure 5 depict their analogues on the original model.

The previous examples show that the spirit of our chartifica<Choice of the scalar function fThe scheme used to compute
tion resembles the quadrilateral remeshing discusse®ir2[]  the chartification can be applied to any scalar functionsthu
even in the presence of the substantiffletence that we admit providing diferent options that mainly depend on the number
2-strips. In fact, the boundaries of our charts are compo$ed of critical points and their significance for shape chandazie
iso-contours and flow paths of the inpiut In [21] the bound-  tion [6, 7]. If the scalar functiorf is not given as input, then we
aries are instead the iso-contoursfofind the flow paths of a can selectf among several classes of functions, each of them
scalar function whose gradient is orthogonaM®é. In [20],  providing an approximation that emphasizefeatent charac-
the patch boundaries are the flow pathsfdbut they do not teristics of the input shape. For instance, if we aim at agipro
include the corresponding level sets. Furthermore, using o mating the surface with a minimal number of patches, then we
one scalar function, instead of two orthogonal maps, pexa  adopt a harmonic map with a minimal number of critical points
relation between the number of patches and the criticaltpoin (i.e., 1 minimum, 1 maximum, andgzaddles) [38]. The har-
of f. Combining level sets and flow paths provides a number ofnonic maps may be also forced to explicitly code geometric
patches which is lower than that of [20]. feature points (e.g., vertices with high Gaussian curegthy

Our tiling method is able to approximate shapes by using theelecting them as Dirichlet boundary conditions [19, 24, 43
level sets of generic functions, therefore it is not limitedhe  In a more general setting, geometric features are well ifigeht
use of planar contours. In this sense, our method genesalizéy Laplacian eigenfunctions [20, 50], and the autfitdiion
the work proposed in [35] that is able to process only planamaps [27]. In fact, these functions automatically locatetths
contours. In this latter case, both the iso-contours of fflowd ~ of the shape features as maxima and minima and provide an ini-
paths lie on planes, and therefore it is possible to recocistie  tial chartification with smooth boundaries and a low number o
shape by applying the Delaunay triangulation on the plane agatches.
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noise, the number and configuration of the charts depengs onl
on the smoothness of the functidérused to decompose.

Despite the generality of the choice of the functigrin our
experiments we have found that the harmonics maps, eventu-
ally selecting points of high Gaussian curvature as Digthl
boundary conditions, the first Laplacian eigenfunctiors te

i . - auto-difusion maps usually give better results. Although this
Harm. ([38]) 29 Eig. Distance barycenter calls for further investigation, these functions gengrptovide

€) a shape chartification suitable for shape approximatioarse
they are able to identify significant shape characteristics

6. Conclusions and future work

This paper has proposed a method to approximate the shape
of a 3D object surfaceM that readily defines a shape coding
and decoding mechanism. The method is based on a shape
chartification and reconstruction from the level sets and flo
paths of a scalar function defined a. In practice, the encod-
ing provided by our approach idfeient (memory-wise) and
accurate, thus allowing the approximate reconstructiothef
original object with a relatively small error. We highligttitat
our approximation approach is driven by error and not vertex
count and, dierently from [35] where the topology of the re-

. \\\ \ .y \ constructed surface is sensitive to changes in the configara
N el b - a ol ow b of the cross-sections, our use of the Reeb graph during the co
IM |d_ 3‘83K7’02_ 4 |Md| h 6'§’9|f%_ 5 lMd| h gljr’Blf)/; 6 ing process enables us to dominate the topology of the shape
H = O H = O H = 4

© approximation. Moreover, one strength of our chartifioai®
the fact that the contours of the initial chartification ataced
Figure 19: (a) Reeb graphs, (b) contour samples, and (c)rcahstruction  far from critical points (which can be unstable).
of the same model with respect to (from left to right) a harraanap with The proposed approach is suitable for progressive simplifi-
Dirichlet boundary conditions placed at the maxima of theién curvature,  c4tion and reconstruction: in fact, the reconstructioruescy
the first non-trivial Laplacian eigenfunction, and the Edean distance from . di | ided by th | d . h
the barycenter. HereéM |, k, anddy represent the number of vertices f , 1S 'reCt_y guige y the tolerances use . to approximate the
the refinement steps, and approximation error, respegtivel boundaries of the charts. Future work mainly concerns the op
timization of the details needed for the encoding and deandi
) ) so that the method can be fully extended to a lossy compres-
Figure 19(last row) shows the reconstruction of the same sjon technique. Also, we are evaluating the adoption ofragtil
surface using three ierent scalar functions. In all these cases,strategy that builds directly on the computation of all tttaeh-

mal diagonal of the bounding box. We observe that the ap-

proximation using the Euclidean distance from the barysent
(rightmost column)onverges more slowly than the harmonic Acknowledgments
map (leftmost column@nd the second Laplacian eigenfunction

(middle column)In particular, this happens on the camel bOdyM
and the anterior legs, where the shape is almost spheridal arg
sparsely sampled. The choice of this Laplacian eigenfancti
correctly recognizes the protrusions of the model and tsrge
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