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Abstract

This paper presents a method of shape chartification suitable for surface approximation. The innovation of this approach lies on
the definition of an iterative refinement of the shape into a set of patches that are automatically tiled and used to approximate the
original shape up to a prescribed error. The coding of the patches is supported by the Reeb graph and contains the rules to properly
tile, stitch them, and reconstruct the original shape whilepreserving its topology, using a technique which is also exploited for
reconstructing an object from non-planar contours. The method is geometry-aware by definition, as the nodes of the Reeb graph
are representative of the main shape features, which belongto the approximated shape already at the initial iteration steps. The
points of the reconstructed shape belong to the original surface, their total number is highly reduced, and the originalconnectivity
is replaced by a set of patches that preserves the global topology of the input shape.
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1. Introduction

Reeb graphs have been proven to be effective in shape anal-
ysis, as they provide a very compact and synthetic description
of a surface embedded inR3 via the characterization of its main
features by the critical points of a real functionf . The critical
points of f identify changes in the topology of the contours of
the functionf : saddles correspond to splitting or merging of the
contours off , while minima or maxima correspond to contour
creation or termination. The topological structure coded by the
Reeb graph is often associated to its geometric embedding, or
topological skeleton, which is an iconic representation ofthe
shape. Usually, the nodes are placed at the critical points of f ,
and the edges, which store their correspondence through topo-
logical evolution of the level sets off , are drawn in the interior
of the shape as a kind of a centerline.

When drawing the level sets off before and after the saddle
points, the iconic representation provided by the Reeb graph
sketches the original shape. Imagine further that we tile these
level sets by joining their vertices while respecting the contour
correspondence stored in the graph: even if approximated by
a highly sparse set of contours, we immediately have a rough
idea of the object shape [9].

This observation led us to code a surface by means of a
set of patches that are automatically tiled and used to approxi-
mate the original shape up to a prescribed error. The way the
patches are stored contains the rules to properly tile and stitch
the patches while preserving the topology of the original shape.
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The method, therefore, can be exploited to compress the shape
of 3D objects: the points in the reconstructed model belong
to the original object surface, their total number is highlyre-
duced, and the original connectivity is replaced by a tilingof the
patches that preserves the global topology of the input shape.
Moreover, the method is geometry-aware by definition, as the
nodes of the Reeb graph are representative of relevant shape
features and belong to the approximated shape already at the
first iteration.

The idea of resorting to tiling for the approximation phase is
motivated by the low computational cost that this techniqueim-
plies. Note, however, that the contours associated to the nodes
in the Reeb graph are in general neither planar nor parallel (i.e.,
not lying on the parallel planes). Indeed, the level sets off are
planar only for particular choices off (e.g., the height function)
and a straightforward triangulation of the level sets off might
turn out to be awkward, if not properly approached. While
tiling two parallel contours is relatively trivial, to the best of our
knowledge, tiling a set of non-planar contours has never been
addressed in the literature in its general formulation. In our
case, the Reeb graph induces correspondences among contours,
which solve one of the big issues of the problem in its general
settings. Moreover, we refine the contour decomposition such
that the approximation phase can work automatically using any
classical contour-to-contour tiling algorithms [15, 25, 26, 34].

The intuition behind the refinement strategy is the follow-
ing. First of all, we insert on the surface the so-calledmiddle
contours, which are placed between pairs of adjacent critical
points (Figure 1(a,b)). The tiling of the middle contours may
cause problems in the portion of the shape delimited by levels
sets that include a saddle point: here, the branching of the shape
might cause self-intersections and twisting effects in the recon-
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Figure 1: (a) Reeb graph, (b) set of middle contours, (c) initial chartification and
(d) after one refinement step. Different colors correspond to different charts.

struction. The refinement of the tiling is based on the splitting
of these branching sites into two patches obtained by drawing
the flow paths from the saddle point to the upper or lower con-
tours, as depicted in Figure 1(c). The surface is decomposed
into charts delimited by flow paths and level sets off , and hav-
ing in general an irregular connectivity. During the approxi-
mation phase, the patches that contain a maximum, or a mini-
mum, of f are handled as generalized cones, while the patches
that arise from the split of branching sites will be handled as
generalized cylinders. At the end of the first refinement step,
the shape is approximated by a highly sparse set of contours,
whose cardinality is given by the number of the critical points
of f . These contours are sufficient to approximate the original
shape from the perspective of its global topology, and also pro-
vide a rough approximation of its geometry. To gain accuracy
during the reconstruction phase, each patch is iterativelyrefined
by the insertion of new level sets until the original shape isap-
proximated to a given accuracy (Figure 1(d)).

Note that the decomposition is not equivalent to the one in-
duced by the Morse-Smale decomposition, where the bound-
aries of the patches are all delineated by flow paths. Only at the
first iteration, the decomposition may be regarded as the inter-
section between the Reeb graph decomposition induced by the
middle contours and the Morse-Smale one, where only some of
the flow paths are kept in the intersection.

Using the proposed coding, the information about the origi-
nal shape can be highly reduced: for instance, in Figure 2 the
original model was represented by a triangle mesh having 35K
vertices and 69K triangles and whose VRML file was 2.6Mb.
The file produced to store the refined Reeb graph contains just
3.8K vertices which, together with the information required in
the reconstruction phase, accounts only for 138K bytes of stor-
age needed to approximate the original shape within a Haus-
dorff distance of 3.7% of the diagonal of the bounding box.

Our main contributions are (i) an iterative shape chartifica-
tion into a set of patches that are automatically refined, tiled,
and used to approximate the original shape; (ii) the possibility
to drive both the decomposition and reconstruction using differ-
ent criteria such as approximation accuracy, topological consis-
tency, geometry-awareness through the chosen functions; and
(iii) the capability of concisely encoding the shape with a set
of surface samples whose original connectivity is replacedby a
set of contours and tiling rules that allow us to approximatethe

(a) (b) (c)

Figure 2: (a) Original model and (b) its approximation. (c) The Reeb graph that
led to the shape approximation.

original model.
The paper is organized as follows. Section 2 presents a brief

overview of previous work relevant to the proposed approach
to shape coding and decoding. In Section 3 we describe the
novel shape chartification, and in Section 4 we show how the
chartification is used to adaptively encode and decode (i.e., ap-
proximate) the input shape. Section 5 discusses several exam-
ples, and Section 6 summarizes the main contribution of our
approach and outlines a few future research directions.

2. Previous work

We briefly review the existing literature on shape encoding
(chartification) and decoding (reconstruction from contours),
focusing on methods that address issues that resemble the two
main steps of our approach.

Shape chartification.There are several methods in the litera-
ture for partitioning an arbitrary surface into a set of charts
of simpler topology and geometry, which are then used for
remeshing, texture mapping, compression, and approximation.
Shape segmentation generally provides a set of basic primitives
(e.g., planes, spheres, cylinders, tori) or identifies relevant parts,
which are delimited by lines of concave discontinuity of the
tangent plane [46]. For local parameterization and texturemap-
ping [24, 41, 48, 53], a chartification into disk-like patches is of-
ten computed by converting the input surfaceM into a base do-
main with the same topology ofM through simplification. Sur-
face partitioning into quadrilateral patches [44, 49] is used to
support approximation schemes with tensor-product B-splines.
Recent techniques use Morse theory and Laplacian eigenfunc-
tions [12, 20, 30], holomorphic discrete 1-forms [28, 29], dis-
crete harmonic functions [49], variational techniques [16, 32],
and discrete exterior calculus [18]. Finally, geometry-aware
maps [47], whose behavior is guided by the selection of an-
chor points, have been efficiently used for shape compression.

The method proposed in [21] uses a network of flow paths,
related to two orthogonal vector fields, and provides a quadri-
lateral remeshing ofM whose number of patches is driven by
the target approximation accuracy. In [20], the Morse complex
of the Laplacian eigenfunctions is used to define a quadrangu-
lation of the shape. Such spectral quadrilateral remeshingpro-
duces good results but needs Laplacian eigenfunctions witha
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number of critical points sufficiently high to provide the cor-
ner vertices of the quad patches (i.e., two opposite saddles, a
maximum and minimum as corners). Furthermore, a filtering
of the critical points with low persistence values and a smooth-
ing of the arcs of the Morse complex are necessary to improve
the geometric quality of the patches. In fact, a small perturba-
tion of the input scalar function makes the two ascending flow
paths miss the associated saddles and approach a maximum or
minimum without meeting each other [20].

Shape reconstruction from contours.A surface connectingtwo
polygons contained within parallel planes can be constructed by
triangulating between the contour lines and finding the optimal
triangulation by using graph theory [34]. This algorithm can
handle only the simple one-to-one case and implicitly assumes
a high degree of resemblance between the contours. Successive
methods [25, 26, 51] interpolate the surface between two con-
tours and differ by whether a local or global “advancing rule”
is used for the tiling, which tiling measure is optimized, and
which algorithm is used to find this optimum.

One further step was taken in [14, 15]—the handling of sim-
ple branching cases through the use of an intermediate slice,
which resembles the original slices; the insertion of “bridges”
between the multiple contours of one slice; and the splitting of
the single contour into several contours. More general branch-
ing cases [1, 3, 31] are solved using a Delaunay-like triangula-
tion of the contour vertices, slice projection, partial tiling, and
a straight-skeleton analysis of the symmetric difference of the
slices. Finally, the Delaunay-meshing strategy in [31] hasbeen
recently extended to surface reconstruction from non-parallel
planes [11, 35].

3. Reeb graph refinement

In the following, we outline the discretization we adopt for
the computation of the critical points and flow paths, which are
needed to define the shape decomposition. Then, we describe
the chartification and its iterative refinement through the inser-
tion of level sets, subject to accuracy requirements. Finally, we
discuss degenerate cases, the computational complexity, and is-
sues related to the selection of the function.

3.1. Theoretical background

We assume that the input surface is a 2-manifold closed tri-
angle meshM; the function f :M→ R is a piecewise linear
function defined on the vertices ofM and extended by linear
interpolation across the edges and faces. Assuming that for
any edge (pi , p j), f (pi) , f (p j), the gradient off is constant,
non-zero and well defined across the interiors of triangles and
edges. In particular, we discretize∇ f on a trianglet with ver-
tices (pi , p j, pk) and unit normaln as the solution∇ f |t of the
3× 3 linear system
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The critical points of f are located at the vertices ofM
and classified by analyzing the distribution of the functionval-
ues on a neighborhood of each vertex [2]. More precisely, let
N(i) := { j : (i, j) edge} be the 1-starof i, i.e., the set of vertices
incident toi. According to [38], let

Lk(i) := { j1, . . . , jk ∈ N(i) : ( js, js+1)k−1
s=1 edges ofP}

be thelink of i, then theupper linkis the set

Lk+(i) := { js ∈ Lk(i) : f (p js) > f (pi)},

and themixed linkis given by

Lk±(i) := { js ∈ Lk(i) : f (p js+1) > f (pi) > f (p js) or

f (p js+1) < f (pi) < f (p js)},

where jk+1 := j1. Thelower link Lk−(i) is defined by replacing
the inequality “>” with “ <” in the upper link. IfLk+(i) = ∅ or
Lk−(i) = ∅, thenpi is a maximumor a minimum, respectively.
If the cardinality of the setLk±(i) is 2+ 2m, m≥ 1, thenpi is
classified as asaddleof multiplicity m.

For simplicity, we assume that each saddle has multiplicity
one (i.e., it is aMorsesaddle) and the function issimple(i.e., it
is injective over the critical points). Degenerate cases and possi-
ble extensions of these hypotheses are discussed in Section3.4.

An integral line of f is defined as the line of steepest as-
cent/descent values of∇ f , and it is discretized on a mesh as a
flow path. Each flow pathγ of f is a piecewise linear curve over
the surface that follows the variation of∇ f and consists of a se-
quence of nodes, which are the intersection points ofγ with the
edges ofM. If a node ofγ is a vertexpi ofM, then we traceγ
using the direction of∇ f |t on the trianglet of the 1-star ofpi

such that the intersection ofγ with t is the pointq ∈ M with
the highest persistence value| f (pi) − f (q)|. If the flow path
is aligned with an edge, then we follow the edge along with
the value of f that does not decrease/increase. For more de-
tails on the algorithm for tracing flow paths, we refer the reader
to [20, 37]. Note that flow paths on meshes never cross, but can
merge; in any case, once merged they do not separate.

3.2. Initial shape chartification

The shape chartification builds on the Reeb graph [45] as a
support structure. The Reeb graph ofMwith respect to a Morse
and simple mapf :M→ R is defined as the one-dimensional
finite and connected simplicial complex whose nodes corre-
spond to the critical points off and whose arcs join pairs of
critical points when the contours evolve from one critical point
to the other without changing their topology type [8, 42].

Given the Reeb graphRG of (M, f ), we consider its geomet-
ric embedding by associating to each noden the coordinates of
the critical point and the iso-valuef (n). An orientation can be
given to the arcs ofRG conforming with the growing directions
of the values off .

If e= (n1, n2) is an arc ofRG, then we denoteM|e the por-
tion ofM that corresponds to the arce. The iso-contour off
defined byf −1

(

f (n1)+ f (n2)
2

)

∩M|e is called themiddle contourof
the arce. The set of all the middle contours is indicated as∂S.
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(a) (b)

(c)

Figure 3: Types of charts in the initial decomposition: 1-strips and 2-strips. In
(c), boundary of the two 2-strips when the flow paths merge.

By definition of∂S, we have that|∂S| = |E|, where|E| is the
number of edges ofRG. Figure 1(b) shows an example of con-
tours of f traced in the middle of the arcs of the Reeb graph
with respect to the values assumed byf (Figure 1(a)).

The set of middle contours∂S induces a mesh decomposition
into regions. A regionS ofM delimited by∂S satisfies one of
the following properties (Figure 3):

1. S is a cap (1-strip) that includes only one minimum or
maximum and has only one connected boundary compo-
nent corresponding to an iso-value off ;

2. S is a branch (3-strip) that includes one saddle pointsand
with 3 connected boundary components corresponding to
iso-values off . Note thatf assumes different values on at
least two boundary components ofS; beside symmetries
in f , these three values are always different.

This chart decomposition defines the initial step of the Reeb
graph refinement that is used to approximate the surface. We
used the middle contour of the edgee in RG instead of its ge-
ometric medial section to give more weight tof in the decom-
position step. This choice emphasizes the role of the function f
as the key to identify and measure the shape properties, which
will be kept as anchors for the shape-approximation phase.

To ease the reconstruction via tiling, we split each 3-stripS
into two 2-strips, i.e., charts with two boundary components. At
the initial stage, each chart, has a number of connected bound-
ary components that corresponds to the degree of the Reeb
graphRG that the strip contains. For a 3-stripS, its bound-
ary componentsβi , i = 1, 2, 3, can be ordered according to the
value of f : sincef is constant onβi , we refer to the correspond-
ing iso-value asf (βi), i = 1, 2, 3, and order them with respect to
increasing values off asβ1, β2, andβ3. Reasoning on the pos-
sible evolution of the contours across the saddles, we have only
the following two cases: eitherf evolves throughs with a con-
tour splitting (β1 splits intoβ2 andβ3), or f evolves throughs
with a contour merging (β1 andβ2 merge intoβ3). In the first
case, the node corresponding tos in RG has in-degree 1 while in
the second case it has out-degree 1. To split a 3-stripS, we draw

(a)

m

(b)

s

(c)

s

Figure 4: The refinement of a 1-strip (a), and (b,c) the two possible refinements
of a 2 strip.

all flow paths from the saddles ∈ S to β1, if the corresponding
node has in-degree 1, or toβ3 otherwise.

Note that the flow paths split the 3-strip into two 2-strips even
if the flow paths merge. In this latter case, the two pointsp
andq in Figure 3(b) overlap. Figure 3(c) details the two 2-strips
we obtain: the boundary of one strip is made of one contour
and the portions of the flow paths that do not overlap, while the
boundary of the other one contains two contours and the whole
flow paths, eventually duplicated in the portions merged. The
small arrows in the picture highlight the boundary orientation
in correspondence of the flow paths.

Applying this step to all the 3-strips ofM, we get the initial
chart decomposition into 1-strips and 2-strips, which haveonly
two maximally connected boundary components. Note that no
surface patch includes saddle points in their interior.

3.3. Refinement of the chartification

The chart decomposition drives the approximation scheme
by adding more and more contours to the initial decomposition
until the approximation error is below a given value. The re-
finement process is independently applied to single charts and
driven by the approximation error (Section 4), so that the final
segmentation will be adapted locally to the shape complexity.

Let S be a chart selected for refinement as it does not match
the target approximation error. We insert a new contour at the
value (fSmax+ fSmin)/2, wherefSmaxand fSmin are the maximum
and minimum values, respectively, off over the chartS. If S
is a cap region that contains a critical pointm, it is split into
one new 1-strip that still contains the critical pointm and one
new 2-strip (Figure 4(a)). Similarly, a 2-stripS is split into two
charts by the insertion of a new contour, which may give rise to
one of the following cases:

• if the inserted contour does not intersect any boundary
component ofS, the chart is refined into two 2-strips, the
first with its two boundary components both on level sets
of f , and the second with one boundary component on the
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Figure 5: Three refinements of the chartification.

level set of f and one that alternates flow paths and level
sets (Figure 4(b));

• if the inserted contour intersects a boundary component
of S, the chart is refined into one 2-strip and one 1-strip
(Figure 4(c)).

In the second case, the 1-strip is a quadrilateral patch whose
boundaries alternately composed of pieces of contours and flow
paths. This kind of 1-strip does not contain any critical point in
its interior and differs from the cap 1-strip because the value
of f is not constant on its boundary. If we refine a region whose
boundaries are parts of flow paths that partially overlap, then we
again obtain either two 2 strips or one 1-strip and one 2-strip.
In the latter case, the 1-strip is a triangular region bounded by
two portions of flow paths without overlapping and the inserted
contour.

Figure 5 shows three iterations on the same model of the re-
finement of the charts. In this example, the functionf is the har-
monic map with the maxima of Gaussian curvature as Dirichlet
boundary conditions. Note that not all patches are subdivided:
in fact, the refinement criteria depend on the approximationer-
ror.

3.4. Degenerate cases

Degenerate case are usually associated to a mapping func-
tion f that is not simple and not Morse. If the functionf is
not simple, then there exist some critical points that have the
same value off . While this fact is not particularly significant
for minima and maxima, if two or more saddles share the same
value f (s), then the corresponding level set induces a segmen-
tation into a complex strip. This strip is no longer a 3-stripbut
a (2+ l)-strip, wherel represents the number of saddles having
the same valuef (s). However, these (2+ l)-strips may be split
into (l + 1) 2-strips by applying the technique proposed in Sec-
tion 3.2. Figure 6 shows two saddles having the same value off
and how the corresponding 4-strip is split into three 2-splits.

If f is not Morse for the presence ofm-fold saddles, the pro-
cedure described in [22] can be used to split them-fold sad-
dle into m simple saddles. The corresponding chart is split

Figure 6: A 4-strip, with two saddles having the same value off , is split into
three 2-strips. To ease the visualization, the functionf is the height function.

(a) (b) (c)

Figure 7: (a) Level sets, (b) 3-strip, and (c) its split into two 2-strips.

into (m+ 1) 2-strips by following all the flow paths that con-
nect the saddle to the boundary componentβ. Finally, note that
our technique allows us to split a 3-strip in case the flow paths
do not intersect transversally; i.e., the scalar function is Morse
but not Morse-Smale; see for example the result on a function
with a strangulationin Figure 7.

3.5. Computational cost

In the worst case, the combinatorial complexity of the Reeb
graph extraction isO(n logn), wheren is the number of ver-
tices ofM; efficient algorithms for its computation were pro-
posed in [17, 39]. Denoting|E| the number of edges of the Reeb
graphRG, ∂S is computed by inserting|E| contours inM with
O(|E|n) operations. During this phase, the complexity of the
model increases with the possible insertion of new verticesthat
belong to contours in∂S. Since each 3-strip split operation acts
only on a single chartSi , it takesO(|Si |) operations, where|Si |

denotes the number of elements ofSi . Assuming that the inser-
tion of ∂Si intoM addsw new elements toM, the overall cost
of the 3-strip splits isO(n + w), which isO(|E|n). Therefore,
the combinatorial complexity of the initial shape chartification
is O(max(n logn, |E|n)).

For every step of the adaptive refinement, the operations
needed to split a single chart are limited by the number of el-
ements of the chart even if the refinement might involve all
charts. Since each chart is split into at most two new charts,
the spatial complexity of the charts increases and the number of
elements of the single chart is at most duplicated. In summary,
the worst case complexity of the adaptive chart refinement af-
terk steps isO(2k|E|n). However, even if the spatial complexity
of the model increases with the insertion of the contours, we
have experimented that the number of steps required to obtain
a satisfactory chartification is generally lower than seven.
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Figure 8: Iterative approximation of a contour. The white circles highlight the
contour samples.

4. Surface approximation

This section describes the procedure that allowed us to use
the chart refinement as a surface approximation technique,
which also enables simple yet effective surface coding. Intu-
itively, the approximation is devised to work as a surface re-
construction from non-planar and non-parallel contours, where
the contours correspond now to the boundaries of the patches.
We proceed first by approximating the boundaries of the charts
by a sampling process. Then, we extract correspondences be-
tween vertices of the contours to be tiled to improve the quality
of the reconstruction and minimize self-intersections andtwist-
ing effects. In this process, each chart is tiled separately, and
all the approximated patches are concatenated so as to form the
final surface. Since the configurations of the boundaries of our
charts do not include branching cases, the approximation strat-
egy is easily turned into a surface coding and decoding process.
Then, the decoding works as an automatic tiling of the chart
boundaries, or contours, coded appropriately with their implicit
reconstruction rules.

Contour sampling.During this step, the boundaries of each
patch are approximated using a progressive sampling, which
stops when the local approximation error is below a given
threshold. We proceed by first sampling the boundary of the 1-
strip caps, and then sampling the other kind of strips. Givena
boundary componentβ of a k-strip S, 1 ≤ k ≤ 2, sinceβ is
shared by another stripS1, we distinguish between two situa-
tions: (i) β has not yet been sampled and (ii)β was sampled
for approximatingS1. In the first case, the initial sampling of
the boundaryβ consists of three points that are regularly spaced
over the contour. In the second case, we count the number of
existing samples (note thatS andS1 may share only a portion
of a boundary component), and start to approximateβ by using
the existing samples (i.e., those induced by the approximation
of S1) until we identify the required three points. If the initial
sampling already has more than three points, these points are
set as the initial boundary sampling.

At each step, we add new samples to the boundaryβ un-
til the approximation errorǫ falls below a given thresholdt1,
or it becomes stationary (ceasing to change significantly).
Then, the error induced over the segment (s1, s2) that approx-
imates the portion (s1, p j1, . . . , p jk , s2) of β is computed as
ǫ = maxi=1,...,k{|d((s1, s2), p j i )|}, whered is the distance in space
between a segment and a point. In practice,t1 is specified by
the user as a percentage error of the lengths ofβ, for exam-
ple, 0.02% means thatt1 = 0.02|β|, where|β| is the length of the
curveβ (Figures 8 and 9(a)).

2
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(a) (b) (c) (d)

Figure 9: (a) Contour sampling and (b,c) some correspondences among bound-
ary components. The 1-strips are colored in red while blue regions represent
2-strips. Red points represent the samples the closest to the correspondence.
(d) Example of correspondences that flow towards the same point and generate
a generalized triangular region.

Correspondences between boundary components.Given a
stripSwith two boundary componentsβ1 andβ2, we determine
a set of correspondences among points ofβ1 andβ2, so-called
attachments. The attachment (pi , qi), pi ∈ β1 andqi ∈ β2 is ex-
tracted by computing the flow pathγi that flows frompi to β2.
During the first iterations, the correspondences are computed
for all points in the initial sampling of the contours. Due to
the sparseness of the sampling at the first stage, the flow paths
drawn from points inβ1 will not flow, in general, to a point be-
longing to the samples ofβ2. Therefore, the attachment will be
defined by selecting the sampleqi of β2 that is the nearest toγi .
For this reason or because two flow paths merge, it is possible
that more than one point onβ2 is attached to the same point
in β1.

The union of all the attachments between every pair of con-
toursβ1 andβ2 forms a set of guiding lines for the tiling, mean-
ing that they are constraints for approximating the stripS. Their
role is to prevent self-intersecting triangles as much as possible.
The attachments are re-computed every time the strip is refined.
In our experiments, every boundary component is initially sam-
pled with three points, which are uniformly sampled. However,
the bigger the number of attachments betweenβ1 andβ2 is, the
more accurate the reconstruction of the flow paths in the ap-
proximation is. Figures 9(b,c) show some examples of contour
correspondence between the boundary components of 2-strips:
orange lines represent the flow paths that connect points onβ1

andβ2.

Contour tiling. At each step of the chart refinement, the re-
sulting approximation is matched against the required error. In
order to compute this error, the approximation is applied lo-
cally. This process resembles the reconstruction of a surface
from non-planar and non-parallel contours, where the contours
correspond now to the boundaries of the patches, sampled as
explained above. Therefore, we linearly and locally approxi-
mateM through the creation of a triangle mesh between the
sampling of the contours enclosing each chart.

Concerning the tiling phase, triangulating a single non-planar
contour was used in the context of repairing defective mesh de-
scriptions (by means of triangulating the gaps in the meshes)
or as a tool in the reconstruction of an object from a series of
cross sections. Some methods, e.g. [10, 33], triangulate the
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Figure 10: The four types of charts.

contour in a greedy manner, while other methods, e.g., [4, 5],
seek a triangulation optimal with respect to some merit func-
tion, e.g., the total area of the triangles. In the following, we
use any of the classical contour-to-contour tiling algorithms
(e.g., [15, 25, 26, 34]), bearing the remote chance to obtain
self-intersecting tiling in cases in which the two originalcon-
tours are extremely twisted and different in shape. For more
details on the best triangulation of non-planar contours, we re-
fer the reader to [4, 10].

We recall that the charts can be only of the following types
(Figure 10).

• Type 1: patches with only one boundary component that
corresponds to an iso-contour off . In this case, the surface
is approximated by a generalized cone having the inner
critical point as the apex and the boundary sampling as the
base.

• Type 2: patches with only one boundary component com-
posed by iso-contour segments alternating with flow paths.
In general, the patch is approximated by a generalized
open cylinder. Since the boundary ofS alternates pieces
of contours and flow paths, we connect the two portions of
contours as in the tiling algorithm, and close the strip with
the vertices that belong to the flow paths. If the flow paths
merge, then the region becomes a triangoloid, as discussed
in Section 3.3. In this case, we connect the points of the
iso-contour to those ones in the flow paths and create an
open cone that has the first point of the merge between the
flow paths as vertex.

• Type 3, 4: patches with two boundary components. Each
boundary of a patch of type 3 corresponds to an iso-
contour of f . Otherwise (type 4), one boundary corre-
sponds to an iso-contour and the other one is composed
by iso-contour segments alternating with flow paths. In
both cases, the surface is approximated by a general-
ized closed cylinder: we invoke any classical algorithm
(e.g., [15, 25, 26, 34]) for tiling between two contours,
subject to the constraints imposed by the attachments.

Starting from any attachment between two contour sam-
plings, the triangulation algorithm tilesβ1 andβ2 locally, adopt-

(a) (b)

β

β

1

2

u

v

u

v w

(c)

(d) (e)

Figure 11: Reconstruction of a pseudo-cone: (a) sampling onthe original model
and (b) approximated patch. (c) Tiling algorithm and (d) reconstruction of a
2-strip. (e) Tiling of a 1-strip whose boundary is made up of segments of two
contours and two flow paths. This case corresponds to the regions depicted in
Figure 4(c). .

ing any suitable edge optimization criterion, until another at-
tachment is reached orβ1 andβ2 are completely traversed. In
our approach, the contours are progressively visited according
to the method described in [5]. More precisely, denotingu
and v the two current vertices onβ1 and β2, a new triangle
t := (u, v,w) is added if it satisfies an optimization criterion
given as a combination of the following criteria: edge length;
edge dihedral angle; minimal area; and percentage of visited
contour. In the current implementation, the weights of these
criteria are chosen as 0.5, 0.25, 0.125, and 0.125 (which sum
up to 1), and normalized so that they provide values in the unit
interval. Figures 11(c,d) shows an example of this method.

Error evaluation. The symmetric Hausdorff dis-
tance dH (S,S

′

) := max{d(S,S
′

), d(S
′

,S)}, with
d(S,S

′

) := supp∈S{infq∈S′ ‖p − q‖2} measures the error
between a chartS onM and its approximationS

′

. This error
is evaluated by computing thek-nearest neighbor graphT
of the vertices ofS in O(|S| log |S|) time, and usingT to
computedH (S,S

′

) for each updated approximationS
′

. In
casedH(S,S

′

) is greater than a user-defined thresholdt2, the
patchS is refined untild(S,S

′

) becomes smaller thant2.

Approximation coding and decoding.All the information (con-
tour samples, attachments between strip boundary components,
and tiling rules) needed to compute the approximated surface
is opportunely stored in a file. First of all, we list the Carte-
sian coordinates of the contour samples and the critical points
of f : generally, these data are largely less than the original ver-
tex count. Then, every chart is stored in the file as a set of two
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or four lines each coding the sequence of the indices of sam-
ples that form the chart boundary, interleaved with the symbols
“;” that indicate attachments and “.” to denote the end of the
boundary.

We distinguish between three tiling rules, which also implic-
itly encode the rules themselves.

1. Rule 1: The first line of the chart coding contains only
the indices of the vertex corresponding to the inner critical
point; the second line contains the sequence of indices to
the vertices of its boundary samples.

2. Rule 2: The chart is stored using four lines, the first
and third lines contains the indices of the samples of the
boundary segments lying on the contours, while the sec-
ond and fourth lines code the boundary segment on the
flow paths. The sequences of indices may be interleaved
with the attachment indicators. If the boundary segments
on the flow paths or on the contours do not contain any
sample, the corresponding lines are left empty.

3. Rule 3: The first and second lines of the chart coding con-
tain the indices of the samples of the two boundary com-
ponentsβ1 andβ2; the sequences of indices may be inter-
leaved with the attachment indicators. The two lines con-
tain the same number of attachments and in case a point
on one contour is attached to more points on the other
contour, the symbol “;” is repeated as many times as the
points.

The orientation of the boundaries of each chartS is stored
consistently with the original surfaceM. Choosing atype 1
stripS and indicating withm the critical point contained inS,
we orient its boundaryβ in a counterclockwise or clockwise
manner if f (β) < f (m) or f (β) > f (m), respectively. In caseS
is a type 3 and 4strip with boundary componentsβ1 andβ2,
such thatf (β1) < f (β2), we codeβ1 (resp.,β2) in a counter-
clockwise (resp., clockwise) orientation. Similarly, we order in
counterclockwise or clockwise manner the portions of bound-
ary of atype 2strip lying on contours while the flow paths are
ordered according to the increasing values off .

The role of the decoder is to load the data and to recon-
struct the tiles according to the rules embedded in the file.
Once the tiles have been built, they are glued together in a
unique meshM

′

by identifying the edges that are shared by two
patches. Once the surface has been reconstructed, a Laplacian
fairing [35] and a curvature optimization along the edges may
be applied to obtain a smoother continuity along the bound-
ary patches and guarantee thatM

′

interpolates all contours∂S
with G1 regularity.

5. Examples and discussion

We tested our method on several models with different types
of features and scalar functions. In general, we notice thatthe
number of vertices ofM

′

is quite independent of the number
of elements ofM while it is influenced by the number of shape
characteristics, i.e., number of critical points off . In the ex-
periments, the sampling thresholdt1 varies on the contours be-
tween 0.01 and 0.05, and the thresholdt2 for the patches is a

|M| |M
′
| dH

Time (seconds)
size %

RG 1-step all

12,286 762 0.033 0.029 0.032 0.273 4.2

9,111 620 0.039 0.087 0.034 0.289 4.6

1,515 254 0.035 0.035 0.028 0.13 10.8

1,515 571 0.027 0.035 0.029 0.28 26.2

5,510 647 0.027 0.047 0.037 0.55 7.8

136,650 723 0.032 0.857 0.62 3.76 0.3

26,789 680 0.034 0.209 0.17 0.71 1.7

26,789 1,287 0.029 0.209 0.17 1.298 3.2

26,358 1,243 0.031 0.31 0.15 1.42 3.15

45,705 1,238 0.086 0.08 0.12 1.281 1.8

10,005 885 0.031 0.078 0.13 1.29 5.9

41,160 1,816 0.054 0.129 0.095 0.78 3

34,025 4,461 0.016 0.315 0.74 5.296 8.7

91,863 10,448 0.062 0.62 0.92 16.3 7.8

31,994 7,932 0.018 0.29 0.22 3.78 17.3

12,386 3,966 0.014 0.11 0.13 0.883 22.4

35,474 8,477 0.013 0.32 0.27 4.86 16.4

5,201 958 0.035 0.045 0.029 1.776 12.3

Table 1: Statistics of the approximation. The Hausdorff errordH is expressed as
the percentage of the diagonal of the bounding box of the original model. Time
is evaluated on an AMD Atlon, 64 Processor 3500+ having 2GB of RAM. The
rightmost column represents the size of our coding system with respect to the
original size of the triangle mesh (in VRML 1.0 format).

percentage of the diagonal of the bounding box ofM. This
implies that both the contour sampling and the error evalua-
tion are independent of the original tesselation. In Figure12(c),
a first rough yet effective approximation of the original model
in Figure 12(a) is obtained using only 254 vertices and a har-
monic map whose Dirichlet boundary conditions are placed on
the finger tips. Similarly, the model in Figure 12(d) approxi-
mates with 1287 vertices the model in Figure 12(b).

Table 1 shows the performance of our method over a set of
models; in particular, we emphasize that the achieved simpli-
fication is almost independent of the number of vertices of the
original mesh. In particular, Figure 13 represents the evolu-
tion of the maximum errordH over all the approximated charts
when the strips are adaptively refined with thresholdst1 = 0.07
and t2 = 0.01. The time of the decoding phase for the camel
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(a) (b) (c) (d) (e) (f)

Figure 12: (a,b) Input and (c,d) reconstructed models of twohand models using harmonic maps, whose Dirichlet boundary conditions are placed on the finger tips.
Reconstructed model (e) with and (f) without a tiny handle.

Figure 13: Error evolution with respect to the strip refinements. Considering
only the initial chartification, the reconstructed octopus, camel, twirl, hand,
and Buddha models contain 393, 208, 127, 254, and 700 vertices, respectively.
After seven steps the models are respectively made of 6732, 7028, 1776, 3123,
and 10356 vertices.

model varies from 0.0013 seconds (208 vertices) to 0.057 sec-
onds (7028 vertices), while for the Buddha model it varies
from 0.012 seconds (700 vertices) to 0.085 seconds (10,356
vertices). The approximation rate obtained in our experiments
is comparable with the analogous test shown in [47], see also
the approximation of the feline model in Figure 14(f). Finally,
Figure 15 depicts the Reeb graph of a twisted model obtained
with respect to the first Laplace-Beltrami eigenfunction and the
shape approximation that we obtained after four refinementsof
the strips. In this case, as shown in the last row of Table 1
the reconstruction error is 0.035. As shown in Figure 12(e),
our contouring detects and preserves the tiny handles of the
original model. However, tiny handles can be easily detected
and discarded in the construction of the approximation thanks
again to the use of the Reeb graph. This is guaranteed by the
use of the Reeb graph as driving topological structure for the
chartification: the Reeb graph indeed preserves the topology
of the original surface. However, the reconstruction process
is not guaranteed to be self-intersection free and watertight,
even if the refinement process highly reduces the occurrence
of these artifacts as demonstrated by the examples. An a pos-

(a) 2nd Eig. (b) 2nd Eig. (c) Harm. (d) Harm.

(e) Harm. (f) 2nd Eig. (g) Auto-diff.

Figure 14: (a,b) Surfaces approximated using two refinementsteps. (c) Recon-
struction of the bitorus model using three refinement steps.Approximation of
the (d) Buddha, (e) dragon, (f) feline, and (g) octopus models after five itera-
tions.

teriori polishing of the reconstructed mesh would be the best
way to handle these situations. If the measure of the handle,
which is defined as the persistence of the corresponding mini-
mum non-separating graph cut of the Reeb graphRG, is smaller
than a user-chosen threshold, we apply a topology simplifica-
tion strategy toRG [52]. In this latter case, our system provides
a simplified model (in term of through holes) by discarding the
contours related to the loops inRG that we want to eliminate.
For instance, in Figure 12(f) we have reconstructed the triangle
mesh without considering the contours related to the saddles
on the small handle of the hand model. In this example, the
approximated shape|M

′

| has 786 vertices and the error with
respect to the original model is 0.08. Our approach is robust
with respect to perturbations of the vertex coordinates when the
scalar functionf is robust to noise. The chartification of the
noisy surface in Figure 16(a) was obtained in two refinement
steps fixingt1 = 0.05 andt2 = 10%. Using a harmonic func-
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(a) (b) (c)

Figure 15: (a) Reeb graph with respect to the first non-trivial Laplacian eigen-
function, (b) strips after four refinements and (c) shape approximation with 958
vertices.

(a) (b) (c) (d)

Figure 16: (a) Chartification of a noisy model induced by a harmonic map and
after two iterations; (b) sampled points. Reconstruction of (c) the input shape
with 247 vertices and (d) the analogous result on the original model.

tion, the number and types of charts remain stable in spite ofthe
perturbations to the surface geometry. Finally, the reconstructed
model (c) was obtained by decoding the points selected during
the coding; differently from the approximated model in (d) ob-
tained from the original bitorus model with comparable thresh-
olds, we note that the perturbation of vertices marginally affects
the reconstruction. Also, the chartifications in Figures 17are
obtained with a harmonic function computed on a noisy model,
while Figure 5 depict their analogues on the original model.

The previous examples show that the spirit of our chartifica-
tion resembles the quadrilateral remeshing discussed in [20, 21]
even in the presence of the substantial difference that we admit
2-strips. In fact, the boundaries of our charts are composedof
iso-contours and flow paths of the inputf . In [21] the bound-
aries are instead the iso-contours off and the flow paths of a
scalar function whose gradient is orthogonal to∇ f . In [20],
the patch boundaries are the flow paths off but they do not
include the corresponding level sets. Furthermore, using only
one scalar function, instead of two orthogonal maps, provides a
relation between the number of patches and the critical points
of f . Combining level sets and flow paths provides a number of
patches which is lower than that of [20].

Our tiling method is able to approximate shapes by using the
level sets of generic functions, therefore it is not limitedto the
use of planar contours. In this sense, our method generalizes
the work proposed in [35] that is able to process only planar
contours. In this latter case, both the iso-contours of f andflow
paths lie on planes, and therefore it is possible to reconstruct the
shape by applying the Delaunay triangulation on the plane as

Figure 17: Stability of the chartification against noise; the corresponding char-
tifications on the smooth surface are shown in Figure 5.

(a) (b) (c) (d) (e)

Figure 18: (a) Isocontours and flow paths, (b) reconstructedmodel using [35]
with 458 vertices, (c) our reconstruction with 192 vertices. (d) Surface refine-
ment and smoothing using [35] with 536 vertices and (e) our surface refinement
and smoothing with 873 vertices.

described [35]. A comparison of the two techniques, therefore,
can be done using our framework withf as the height function,
which produces planar contours. An example of reconstruction
using our method and [35] is shown in Figure 18.

Choice of the scalar function f .The scheme used to compute
the chartification can be applied to any scalar function, thus
providing different options that mainly depend on the number
of critical points and their significance for shape characteriza-
tion [6, 7]. If the scalar functionf is not given as input, then we
can selectf among several classes of functions, each of them
providing an approximation that emphasizes different charac-
teristics of the input shape. For instance, if we aim at approxi-
mating the surface with a minimal number of patches, then we
adopt a harmonic map with a minimal number of critical points
(i.e., 1 minimum, 1 maximum, and 2g saddles) [38]. The har-
monic maps may be also forced to explicitly code geometric
feature points (e.g., vertices with high Gaussian curvature) by
selecting them as Dirichlet boundary conditions [19, 24, 43].
In a more general setting, geometric features are well identified
by Laplacian eigenfunctions [20, 50], and the auto-diffusion
maps [27]. In fact, these functions automatically locate the tips
of the shape features as maxima and minima and provide an ini-
tial chartification with smooth boundaries and a low number of
patches.
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Harm. ([38]) 2nd Eig. Distance barycenter
(a)

(b)

|M
′

| = 3.8K, k = 4 |M
′

| = 6K, k = 5 |M
′

| = 9K, k = 6
dH = 3.7% dH = 3.9% dH = 4.3%

(c)

Figure 19: (a) Reeb graphs, (b) contour samples, and (c) finalreconstruction
of the same model with respect to (from left to right) a harmonic map with
Dirichlet boundary conditions placed at the maxima of the Gaussian curvature,
the first non-trivial Laplacian eigenfunction, and the Euclidean distance from
the barycenter. Here,|M

′
|, k, anddH represent the number of vertices ofM

′
,

the refinement steps, and approximation error, respectively.

Figure 19(last row) shows the reconstruction of the same
surface using three different scalar functions. In all these cases,
the reconstruction error is lower than the 4.5% of the maxi-
mal diagonal of the bounding box. We observe that the ap-
proximation using the Euclidean distance from the barycenter
(rightmost column)converges more slowly than the harmonic
map(leftmost column)and the second Laplacian eigenfunction
(middle column). In particular, this happens on the camel body
and the anterior legs, where the shape is almost spherical and
sparsely sampled. The choice of this Laplacian eigenfunction
correctly recognizes the protrusions of the model and forgets
only the camel’s hump: in this case, we need one more refine-
ment step to achieve an approximation rate similar to the one
provided by the harmonic map.

Since a high number of irrelevant critical points would make
the framework less effective in terms of compression, noisy
scalar functions are smoothed by removing critical points with
low persistence values. Any approach for canceling pairs of
critical points can be used [13, 23]. An alternative solution is
to work in the function space and apply isotropic Laplacian fil-
ters [20, 38] or bilateral smoothing operators to the function
itself [36], eventually with constraints [40]. Even for geometric

noise, the number and configuration of the charts depends only
on the smoothness of the functionf used to decomposeM.

Despite the generality of the choice of the functionf , in our
experiments we have found that the harmonics maps, eventu-
ally selecting points of high Gaussian curvature as Dirichlet
boundary conditions, the first Laplacian eigenfunctions and the
auto-diffusion maps usually give better results. Although this
calls for further investigation, these functions generally provide
a shape chartification suitable for shape approximation because
they are able to identify significant shape characteristics.

6. Conclusions and future work

This paper has proposed a method to approximate the shape
of a 3D object surfaceM that readily defines a shape coding
and decoding mechanism. The method is based on a shape
chartification and reconstruction from the level sets and flow
paths of a scalar function defined onM. In practice, the encod-
ing provided by our approach is efficient (memory-wise) and
accurate, thus allowing the approximate reconstruction ofthe
original object with a relatively small error. We highlightthat
our approximation approach is driven by error and not vertex
count and, differently from [35] where the topology of the re-
constructed surface is sensitive to changes in the configuration
of the cross-sections, our use of the Reeb graph during the cod-
ing process enables us to dominate the topology of the shape
approximation. Moreover, one strength of our chartification is
the fact that the contours of the initial chartification are placed
far from critical points (which can be unstable).

The proposed approach is suitable for progressive simplifi-
cation and reconstruction: in fact, the reconstruction accuracy
is directly guided by the tolerances used to approximate the
boundaries of the charts. Future work mainly concerns the op-
timization of the details needed for the encoding and decoding,
so that the method can be fully extended to a lossy compres-
sion technique. Also, we are evaluating the adoption of a tiling
strategy that builds directly on the computation of all the attach-
ments for all the vertices during thes sampling of the contours.
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