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Abstract

In medicine, anatomy is considered as the most discussed field and results in
a huge amount of knowledge, which is heterogeneous and covers aspects that
are mostly independent in nature. Visual and symbolic modalities are mainly
adopted for exemplifying knowledge about human anatomy and are crucial
for the evolution of computational anatomy. In particular, a tight integration
of visual and symbolic modalities is beneficial to support knowledge-driven
methods for biomedical investigation. In this paper, we review previous work
on the presentation and sharing of anatomical knowledge, and the develop-
ment of advanced methods for computational anatomy, also focusing on the
key research challenges for harmonizing symbolic knowledge and spatial 3D
data.

Keywords: Computer-aided medical decision support systems, knowledge
in medicine, information systems, medical informatics, IT applications in
health care.

1. Introduction

Anatomical knowledge covers diverse perspectives and the correlation
among them is at the basis of a true understanding of the functioning of
the human body and related pathologies. On the one side, huge amounts of
spatial data about the human body are available in digital form; on the other
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side, symbolic anatomical knowledge could also support automated reason-
ing. Coupling these two aspects is likely to open new frontiers to support
experts in complex correlation tasks and to express medical knowledge in
such a way that it can be effectively used by domain experts via a unified
access.

Studying anatomy by looking physically inside the human body has evolved
over the centuries: nowadays, medical imaging allows us to understand the
human organ structure and its functionalities without dissection. In the cur-
rent scenario, “anatomy” is regarded as a science that addresses the investi-
gation of the human body structure with the final aim of understanding the
functioning of the body parts. Accordingly, we will discuss anatomy as the
hinge around which clinical studies, formalized biomedical knowledge, and
digital data of the human body can be integrated in a complex knowledge
management and visualization system.

The foreseen integration requires the harmonization of several aspects
(e.g., terminology, communication praxis, approaches) of medicine and com-
puter science, which are quite distinct. Hence, there are still large gaps to fill
between clinical concepts and quantitative data/information extracted from
the digital data. Addressing these gaps is crucial to develop the next genera-
tion of Computer Aided Diagnosis (CAD) systems, which will allow doctors
to use computer output as a “second opinion” to derive the final diagnosis. A
fundamental requirement of such systems is to support a smooth transition
from the reasoning on conceptual/knowledge-related issues to the reasoning
on quantitative information/data.

Motivation. Starting from the beginning of medical history, two conceptu-
ally different modalities have been adopted in parallel for representing the
human anatomy: spatial data depicting the appearance of anatomical parts
(e.g., 2D/3D images, 3D models) and symbolic information producing a de-
scriptive documentation of anatomy (e.g., taxonomies, ontologies, reports,
clinical notes, electronic patient-records). In the age of digitalization, the
massive explosion of spatial data along with symbolic information outstrips
the manual ability to correlate and comprehend the entire source of anatom-
ical knowledge. As a result, a large portion of accessible medical data and
information is under-exploited (IBM report April 2013 [1]) and medical di-
agnosis in practice follows a “trial-and-error” policy [2], by analyzing and
correlating recently acquired spatial data with patient’s symptoms.

An important trend for the future of healthcare technology is the in-
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creasing use of intelligent software agents, which can access the available
information about patient history and symptoms, interpret the content of
spatial data, and simultaneously parse the relevant knowledge about diseases,
diagnostics, drugs, and treatments. The final goal is to support the medi-
cal doctors in clinical decision by finding and supplying the relevant clues.
Following the human cognition, the next-generation clinical software agents
should be guided by a formal symbolic knowledge to automate the analysis
of spatial data (e.g., image segmentation), to structure medical data bases
(e.g., platforms for collaborative sharing and manipulation), to search and
visualize medical data and information (e.g., knowledge-driven profiling of
search). However, a primary hurdle for the development of knowledge-driven
healthcare solutions is that the knowledge underlying the input spatial data
is rarely linked or embedded within them, and the correlation between spatial
data and symbolic information is not yet completely comprehended. These
aspects become even more challenging when visual 3D data are included in
the analysis of a given pathology (Sect. 6).

Scope. Starting from 1970s, several surveys have addressed separately the
developments in clinical data visualization and symbolic knowledge repre-
sentation. The same trend is also present in the recently published reviews
on visualization [3],[4] and symbolic representations [5],[6]. In contrast to
previous work, our report takes a different perspective and focuses mainly
on the integration between spatial data and symbolic information to identify
the feasible path in which their combination can be best applied to support
the development of knowledge-driven clinical methods. Despite the signif-
icant amount of research contributions in the integration aspect, there is
no comprehensive review that analyses the existing tools/systems for under-
standing the remaining “gaps”. Given the growing interests and changing
trends, we believe many researchers with background in computer science
and in medicine would benefit from this survey, and it can stimulate new
research directions.

We start with a discussion of the state-of-the-art on spatial data vi-
sualization and symbolic representations independently; then, we focus on
the integration aspect from various perspectives. Due to the large num-
ber of publications on visual and symbolic modalities, the review of existing
methods/tools will be focused on the main achievements in each field, thus
supporting the reader in the understanding of the trend of next-generation
medicine. Indeed, our objective is not to dig into detail of each approach,
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but rather give the reader a feeling of the two complementary anatomical
knowledge representation schemes (i.e., visual and symbolic) and highlight
how the latest methods in each scheme are going in the direction of integra-
tion. In particular, we discuss the literature in both domains to answer the
following questions: what are popular tools/methods to depict canonical and
patient-specific anatomy? To what extent the existing methods can sustain
the next-generation knowledge-guided clinical services, and which are the re-
straints? What are the ways to exploit the full potentiality of patients’ data
and information in the next-generation clinical framework?

Organization. The survey begins by exploring the evolution that computer
science and digitization technologies brought in the field of anatomical knowl-
edge illustration (Sect. 2). In the following (Sects. 3, 4), we highlight the
changing trends in anatomical knowledge representation concentrating on
the modality, clarity in conveying knowledge, practical and prospective us-
ages. The second part of the survey is centered around integration aspects via
annotation and discuss the existing tools in medicine (2005 - 2015) that com-
bines the symbolic knowledge with spatial data, thus supporting an enhanced
understanding of anatomy (Sect. 5). A discussion is given as a bottom-line
clarifying the limitations of existing techniques. Finally (Sect. 6), we under-
line the key challenges towards the realization of a comprehensive integra-
tion between 3D patient-specific model of anatomy and formalized domain
knowledge for conceiving the “Digital patient” - a computational framework
for understanding patient-specific anatomy.

2. Historical background

In this section, we give an overview on the representation of anatomical
knowledge before the beginning of medical data digitalization age. In Fig 1,
we present the time-line of its evolution: starting from the beginning of med-
ical history, anatomical knowledge has been illustrated either in a symbolic
manner (e.g., names and synonyms of anatomical structures, functionalities,
classification, definitions, spatial relationships) or in a visual (e.g., sketches,
drawing, physical samples, images) way. The first historical evidence of the
systematic study of human anatomy is “Egyptian EbersPapyras” (1600BC),
which described the human anatomy in a symbolic way with the help of
formulas (almost 700) and remedies. Herophilos (335-280 BC) and Erasis-
tratus (304 -250 BC) were the first who studied anatomy via visual means
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Figure 1: Evolution of anatomy (science) [1600BC - 2007]

by assembling a first human skeleton for osteology. With Claudius Galen,
a new age in anatomy began, where he attempted to structure conceptual
knowledge of anatomy in his book “De ossibus ad tirones”, by combining
and compiling all existing sources of information. The next milestone of
anatomical study was Vesalius’s work:“De humani corporis fabrica”(1543),
where emphasis was given to the“anatomical view of body”, by representing
internal organs and their functioning in a three-dimensional space by realistic
sketches.

Afterwards, many famous artists studied anatomy and published their
works on anatomy sketching, e.g., Leonardo da Vinci, Michelangelo, Rem-
brandt. The use of sketching became one of the preferred ways of transferring
anatomical knowledge, but symbolic representations were equally indispens-
able. Anatomical illustration via classic atlases was a successful attempt
that provides a complementary way of expressing anatomy: pure visualiza-
tion through sketches emphasizes immediacy and direct access to informa-
tion, whereas annotation in natural language targets the expressibility and
communicability of anatomical knowledge. In 1895, the discovery of X-ray
provided the first means to capture a snapshot of the interior of an in vivo
body without dissection, and the modern phase of anatomical knowledge rep-
resentation initiated. However, a proper interpretation of these radiographic
snapshots needs particular expertise in anatomy.

The history points out that anatomy is indeed highly visual in nature; at
the same time, it requires a highly descriptive documentation for optimal un-
derstanding. Over the ages, classical atlases have been the popular medium
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for conveying canonical knowledge; starting from the beginning of the digital
age, patient-specific anatomy has been represented via two complementary
approaches, relying either on formalized knowledge (reports, clinical notes,
electronic patient-records), or on multi-modal medical imaging (visual con-
tent, X-ray, CT, MRI). Less endeavors have been noticed in terms of achiev-
ing a comprehensive integration between these two modalities for creating a
patient-specific atlas.

3. Symbolic representation

Tools and methods. Starting from the beginning of digital age, textual doc-
uments are a prominent medium to convey knowledge at the symbolic level.
Beside classical textbooks, there is a huge amount of information that comes
naturally in textual form: generic information - names, synonyms, and phys-
iological functions of the anatomical entities, or patient specific information
- clinical diagnosis report, physician notes, treatment plans. Natural lan-
guage is the most certain choice to represent these descriptive information,
as the communication is primarily among humans. However, expressions in
natural language are often affected by a certain degree of subjectivity due
to several factors: (i) variety of expertise and backgrounds - radiologists
define “femoral cartilage” as a constitutional part of the knee joint in the
biological scale “organ”, while biologists classify “femoral cartilage” as con-
nective tissue; (ii) multi-lingual context - “knee” [English] anatomical joint
is represented as “ginocchio” [Italian] and “rodilla” [Spanish].

Standard formalization in anatomy dates back to the mid 19-th century,
but the major initiatives appear concurrently with the widespread use of
computerized systems in the 1970s and 1980s, with major developments in
the last decade. The advent of knowledge formalization technologies, indeed,
made it clear that the communication could be directed not only to humans
but also to computers, combining the expressive power of the language with
the computational power of machine. Standardization, interoperability and
machine readability were the strict requirements for the integration.

Medical terminologies and vocabularies provide a list of terms, and their
semantics or definition, related to various medical concepts and knowledge,
e.g., diseases, diagnoses, findings, operations, treatments, drugs, adminis-
trative items. The examples are the Standardized Nomenclature of Dis-
ease (SND), Systematized Nomenclature of Medicine (SNOP), Systematized
Nomenclature of Medicine Clinical Terms (SNOMED CT). With these vo-
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cabularies, a standard definition and organization of medical terminology
have been achieved; the next issue is to manage the resources to enable the
interoperability among various formalizations.

The Unified Medical Language System (UMLS) [7] is a large repository
designed to bring together biomedical vocabularies and standards, to inte-
grate and distribute key terminology, classification, and coding standards
in biomedicine, to manage resources for the creation of effective and inter-
operable biomedical information systems. The goal is to support the ex-
change of information across communities, based on reliable and formal-
ized descriptions of the domain that can establish a shared understanding of
concepts among domain-experts. However, in an inter-disciplinary context,
agreeing on the semantics of anatomical terms is definitely a time consuming
and resource intensive task.

Going beyond elemental knowledge, a standard formalization of patient-
specific information (e.g., Electronic Patient Records (EPR)) supports the
access and sharing of data and information about a specific patient across
different healthcare platforms. Health Level 7 (HL7) [8] is a well known and
accepted standard for sharing and integrating electronic health information
among various healthcare providers. Modeling patient-specific information
in the form of textual EPRs is certainly one of core functionality of this
framework. Particularly, HL7 specifies the structure and semantics of a wide
range of clinical documents about the patients, such as admission records,
discharge summaries, progress notes, and subsequently it allows to transfer
the data/info among various software applications adopted by the distinct
providers. On the imaging content side, the Digital Imaging and Communi-
cations in Medicine (DICOM) standard [9] achieved nearly universal level of
acceptance in medicine for handling and transmitting medical images (e.g.,
MRI, CT) together with information related to the patient (e.g., age, gender)
and the acquisition session (e.g., intensity of the magnetic field, acquisition
parameters). The formalizations provided by HL7 and DICOM support ef-
ficient communication of patient-specific information among various health-
care professionals, and allow the integration between clinical hardware and
software systems.

At the conceptual level, anatomical taxonomies and clinical vocabularies
formalize only parent/child relationships (IS-A) between anatomical terms.
A substantial step forward is the development of biomedical ontologies [10],
which can be seen as a constructed model of the biomedical domain [11] that
defines a rich set of inter-relationship among the concepts. Most importantly,
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this formalism represents information in a form that supports reasoning,
inference, and assertion of new knowledge, and can act as a basis for future
clinical systems.

Given the variety of perspectives and specializations in medicine, refer-
ring to one single conceptualization is difficult. The OBO Foundry [12] was
formed to certify a set of inter-operable human validated reference ontolo-
gies, named OBO member ontologies, which cover a wide range of life science
phenomena in a modular way. The most popular OBO member ontology for
anatomy is the Foundation Model of Anatomy (FMA) [13], which defines
the classes and relationships necessary for the symbolic description of the
human body structure. FMA satisfies a comprehensive suite of requirements
deemed to be fundamental for considering it as the reference domain ontol-
ogy for anatomy. It also provides templates for evolving biomedical domain
ontologies (e.g., Physiology Reference Ontology (PRO), Pathology Reference
Ontology (PathRO)). FMA’s richness lies in a detailed anatomical termi-
nology, but it does not define rich relationships among the involved classes.
With the emerging popularity of biomedical ontologies, the National Cen-
ter for Biomedical Ontology (NCBO) was developed to support the use of
biomedical ontologies in the management and analysis of data derived from
complex biomedical experiments. Starting from 2006, OBO ontologies also
became a part of the resources of the NCBO and emerged as a central com-
ponent of the NCBO’s BioPortal [14].

Practical usages of formalized symbolic representation. With the progress in
intelligent programming ontologies have been employed in several clinical
applications and not only for describing complex anatomical concepts. For
instance, Radlex [15] was created to support the formalization of knowledge
in radiology, with links to anatomy by importing the FMA conceptualiza-
tion. At the beginning, Radlex only aimed to provide a standard lexicon
and unified language to organize, index, and retrieve a variety of radiological
data and information for learning, research, and clinical reporting procedures.
Recently, Radlex has become a de facto standard for imaging terminology
in the Society of Radiology, and has been adopted in several clinical and
research applications; e.g., decision support software - iVirtuosoYottaLook,
Goldminer; clinical reporting - Commissure RadWhere, StructuRadReport-
Now; research projects - NCIA, Ontology of Biomedical Investigations.

Furthermore, ontologies have been extended to represent the structural,
functional, and topological connections that exist among the various facets of
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anatomical knowledge. A notable example is the MyCorporisFabrica ontol-
ogy (MyCF) [16], which focuses on the formalization of anatomy along with
its behavioral function. An important contribution of MyCF knowledge base
is the introduction of links between symbolic descriptions of anatomical en-
tities and digital models of anatomy, by declaring the 3D models directly as
the instance of anatomical concepts and by characterizing the instances with
physical and functional meta-data. These links can be exploited to support
automatic reasoning for complex queries, which shows an added-value for
CAD system and interactive visualization [17].

Moreover, the MyCF knowledge base has been extended with bio-mechanical
parameters (canonical and patient-specific), which allow the user to intu-
itively create a patient-specific 3D representation from a formal description
of anatomy, and automatically export this description to test a physical sim-
ulation. In absence of patient-specific data/parameters, the system also sup-
ports the adoption of canonical instances of anatomical concepts. Going one
step further, the Virtual Soldier project by the U.S. Defense Advanced Re-
search creates a computational model of the thorax by utilizing FMA and
the Visible Human data set. The objective is to model injury impacts and it
serves as a template for individual physiognomic databases.

Finally, we report the use of ontology in managing textual resources. For
instance, Clement Jonquet et. al. [18] described an ontology-based resource
management system that allows users to locate publicly available biomed-
ical data related to particular ontology concepts in the NCBO Bioportal.
It also supports the semantic expansion of annotation through hierarchical
relations in the ontology, and establishes direct links between metadata, ra-
diological descriptions, clinical reports, PubMed abstracts, and ontological
concepts. For instance, if a resource element (e.g., a GEO protein expres-
sion), is annotated with “pheochromocytoma” concept from the ontology Na-
tional Cancer Institute Thesaurus (NCIT), then a query can be executed
in Bioportal for “retroperitoneal neoplasms” and retrieves data sets related
to “pheochromocytoma”. In fact, “pheochromocytoma” is formalized as di-
rect child of “retroperitoneal neoplasms” in NCIT. Additionally, the recent
development on the top of modern ontologies has targeted computational
frameworks for clinical decision support systems. For instance, OntoQuest
system [19] is built over a large hospital database and supports ontological
queries for computing the semantic similarity among different patients, ac-
cording to their diagnosis sets defined by using International Classification
of Diseases (ICD-9). This kind of computational framework can reduce the
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medication prescription errors by facilitating the interaction with computer-
ized order entry.

Prospective usages. Ontologies are quite popular in bio-medicine, however,
their concrete value should be assessed against their actual usage in the clin-
ical practice. Since they were introduced as a means to achieve the sharing
and interoperability at system level: what is the extent to which they suc-
ceeded? For this assessment, re-usability is a key aspect and should involve a
through investigation of the knowledge source, perspective and scope, seman-
tic and syntactic interoperability, and its maintenance aspect. Note that for
the re-usability of biomedical ontologies, “granularity” (i.e., at which level
of detail anatomical concepts have been formalized) is another important is-
sue because of the multi-scale nature of anatomy. Up to now, the FMA can
be considered a reasonably complete resource for representing canonical hu-
man anatomy, and several applications were built on top of it to support the
knowledge exploration. In radiological applications, Radlex supports data
and information management and supplies the knowledge background for
building decision support tools for the radiologist.

Nowadays, an efficient adoption of biomedical ontologies in patient-specific
data management, clinical decision support system, and patient healthcare
planning is one of the leading research topics. Structural knowledge of
anatomy alone is not enough for comprehensive reasoning: knowledge for-
malization should take into account temporal changes in anatomical struc-
ture, functional behavior and pathologies of the organ system, clinical re-
search models [20]. More importantly, the formalization should be brought
beyond the scope of establishing a common knowledge, by developing tools
and methods to support a dynamic evolution of ontologies by inferring new
knowledge [21], exploiting the richness and variety of digital patient data.
The utilization of ontology in managing inter-patient variability and captur-
ing temporal changes in anatomy still remains an unsolved problem.

4. Visual representation

Tools and methods. “Use a picture. It’s worth a thousand words.” - the
phrase illustrates the importance of visualization to represent complex knowl-
edge. There is no doubt that visual representations are vital and common-
place in anatomy; not only medical data often come in visual form, but visual
representations play a crucial role for their capability to convey immediate
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knowledge. In a large number of situations, indeed, the pathological condi-
tions of anatomical parts are highly correlated with visual aspects of their
shapes (e.g., normal versus abnormal shapes, erosions, spikes). Spatial data,
and the information they carry, are mainly utilized by the clinicians in med-
ical diagnosis and treatment planning. However, the portrayal of anatomy
through spatial data is often not explicit and computationally unaccessible.
For instance, medical images are unstructured raw data, which capture a
snap-shot of structural (e.g., organ shape, size, texture, positioning) and/or
functional (e.g., tissue composition, metabolic or functional behavior) aspects
of an individual’s body interior.

Knowledge carried by images can be detected by visual inspection: while
visualization is the direct modality of interaction with images, the complex-
ity and volume of the shapes digitized may hinder understanding. Relying
on efficient and user interpretable rendering of the visual content is crucial,
and it encourages the quest “for better viewing for better understanding,
and better understanding for better medicine” [22]. For medical applica-
tions, the challenge is not only visualization but the practical use of ren-
dering techniques beyond just looking at the data. As main examples, we
mention the commercial DICOM viewer OsiriX [23], open source viewers -
3DSlicer [24], Yadiv [25]. Most of these packages support visual inspection
thanks to advanced rendering techniques, including classical iso-surface ren-
dering, or 2D/3D texture mapping.

“Wealth of information is buried inside the acquired data” [26]. Acquired
images capture the snapshot about individual anatomy, which needs to be
processed and analyzed for extracting knowledge about, volume-of-organs,
shape-of-organs, positioning, abnormalities, progression of pathology. In the
image interpretation workflow, segmentation plays a crucial role as it provides
manual or semi-automatic ways to identify regions of interest (ROI) with
clinical relevance. Manual ROI recognition is time-consuming task and the
results may suffer from intra- or inter-observer variability. In the past few
decades, the incorporations of modern mathematical and physical techniques
have greatly enhanced the accuracy of the computer-aided segmentation, but
still a huge number of published scientific articles in the same area points
to an evident insufficiency [27]. One of the most popular techniques for 3D
segmentation is the deformable model, where an elastic template model (e.g.,
2D curve or 3D surface) is transformed according to image parameters and
prior information on the targeted object shape. To reduce the bias introduced
by the selection of the model parameters, various deformable models have
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been designed and we refer the reader [28] for further detail.
After the segmentation of images, 3D reconstruction allows to go one step

forward, by generating a digital model which mirrors the accurate appearance
of the patient-specific anatomy in 3D space. Moreover, 3D models can be
used to perform computer measures on the acquired human body parts, and
most importantly, to support simulations of their behavior. Their potential-
ity can be exploited to support virtual surgery, bio-mechanical simulation,
prediction of pathology growth, and many other medical areas.

Practical usages of visual representation. It is well acknowledged that spatial
data about anatomy, either in the form of images or processed 3D models,
had and will have a strong impact on judging the patient condition in clin-
ical scenario. Besides, the trend of visual 3D data usages evolved over the
time in terms of multifaceted nature of knowledge illustration. Segmentation
and reconstruction procedures are useful only if they can provide reliable
results. Therefore, it is important to compare results obtained with differ-
ent techniques to assess their quality. A large number of data sets have
been created and shared in the scientific community with the primary moti-
vation of benchmarking and testing specific medical visualization softwares
with multimodal data. Generic scan data sets are a few anonymous DI-
COM data sets freely available in web for scientific research OsiriX data set,
S. Barre Samples, Phantom Images. All these data sets contain a limited
number of multi-modal anatomical images (mostly MRI, CT, XRay) which
may emphasize some structural or anatomic peculiarities upon visualization.
For instance, OsiriX group primarily released their anonymized MRI, CT,
PET, XA angiogram, hybrid scan (MRI-PET and MRI-CT) data set to as-
sess their DICOM viewer performance, and declare the exclusive availability
of the data set for scientific research and teaching.

Alternative data sets produced for scientific purposes are the complete
human body: “Visible Human male’ ’ (1994) and “Visible Human female”
(1995) [29]. These were released by the U.S. National Library of Medicine
(NLM) within the framework of “Visible human project”. The main goal was
to facilitate experimentation of analysis and processing of digital representa-
tions of anatomy. These data sets contain high-resolution images acquired by
MRI, CT scan and anatomical images (RGB cross sectional image) of male
and female human cadavers. Afterwards, various projects (e.g., VisibleHu-
man browser, Voxelman, AnatLine, W3D-VBS, etc.) used this raw data
set to describe knowledge about human anatomy in a computer-simulated
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framework by integrating either the 2D images with lexical knowledge or 3D
virtual model with symbolic label.

However, these data sets suffers from data loss of the three junctions
caused by physical segmentation of cadaver bodies, and it is only typical of
the Caucasian population for both male and female. To overcome the data
loss and ethnicity limitation of visible human data set, the Visible Korean
Human (VKH) [30] and Chinese VisibleHuman (CVH), [31] data sets were
released. These data sets contain the MR and CT images, as well as compre-
hensive anatomical images of Chinese (male and female) and Korean (male)
cadavers. Recently, interesting data sets and benchmarks were released (VIS-
CERAL datasets) to support the evaluation of automated identification in
anatomy and pathology from 3D (MRI, CT) and 4D (MRI with a time com-
ponent) radiology images [32]

The second relevant usage of 3D data that we want to discuss is the cre-
ation of canonical or 3D atlases of anatomical parts. 3D canonical model
are “synthetic” digital models [33], [34] created with prior knowledge and/or
simulated data to represent the canonical appearance of the anatomy. Turbo
Squid, SawBones are commercial companies which produce 3D anatomic
models to overcome the scarcity of legitimate data set. However, the syn-
thetic models are often over-simplified, and the accuracy entirely depends on
the designing methodology. This kind of canonical models can be seen as the
3D counterpart of 2D sketches done for illustration purposes.

“Data-driven” anatomical models provide a mathematically-defined 3D
representation of canonical human body parts. Their potentiality lies in the
realistic representation of anatomy, based on processing of acquired data.
Several whole body [35], [36] and partial body [37], [38] anatomical models
are constructed from acquired images (X-Ray, MRI, CT ) of healthy volun-
teers, patients or cadavers. Some full body modeling attempts [39], [40] used
high resolution RGB cross sectional image of cadavers, to realize the rep-
resentation of anatomy. Most of the approaches follow either volumetric or
surface modeling. Volumetric methods are a quite popular choice in anatom-
ical modeling, although traditional fixed resolution volumetric method is not
competent to represent precisely small anatomical details [41].

The conveyed anatomical knowledge via the data-driven models is often
incomplete, since one single static model may not be able to describe the vari-
ability in anatomical structures that is inherent across the human population.
Virtual family [42] is an interesting initiative that generated four whole body
models of two adults and two children to represent the anatomical features
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variability based on age and gender. However, the Virtual Family models are
unable to capture the large anatomical differences among individuals within
the same age and gender group.

Prospective usages. A conceivable future research direction is patient-specific
modeling (PSM) that aims to implement the powerful modeling tools and
techniques for three-dimensional computational reconstruction of the anatomy
or a mathematical model of the organ for individual patient, based on imag-
ing scans or other individualized parameters. The target is to exploit the
models for calculations/simulations that can provide a diagnosis, prognosis
or prediction of treatment outcomes. Segmentation and reconstruction are
the crucial components at the basis of any PSM; interesting work have been
done in the area of bony joints [43], heart [44], and brain [45]. In the scope of
PSM, previous work has tried to maximize the level of information and accu-
racy in the generated model [46] and to minimize the manual effort in terms
of time and selection of parameters. In this context, a recent work [47] creates
patient-specific models based on a minimal prior knowledge about the tar-
get and deformation of anatomy templates. The current barriers for modern
PSM technologies to become a clinically acceptable standard are: scarcity
of required information, complexity in data interpretation, successful vali-
dation of the predicted outcome measures, and inadequate inter-disciplinary
endeavor between medical and computer professionals.

An alternative way of building approximated lost-cost patient-specific
model is to increase the statistical relevance in the data-driven modeling by
using a large number of input data set, i.e., sample population to model the
randomness of biological variability. The sample population generally con-
sists of healthy patients for characterizing the anatomical variability and pa-
tients with a particular disease for understanding developmental and anatom-
ical aspects of the disorder.

Statistical models are mainly composed of two components: the mean
model - the average shape or appearance of the organ within the population,
and statistical variance with respect to the mean model. In theory, a good
statistical model should represent most of the variability that existed within
the sample population using less number of variance. For several years,
statistical model creation of bony anatomy [48], and cardiac structures [49]
got an increasing attention of the scientific community. However, highly
varying soft-tissue structures (e.g., liver, vessel-systems, muscles) are much
harder to model, and random shapes (e.g., lesions, tumors) are unsuitable
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for statistical shape analysis with most of existing methods.

5. Integration between visual and symbolic representation

Both visual and symbolic representations have equal importance for de-
picting anatomy, and the optimal solution goes in the direction of a tighter
integration of the two, which can be realized through the annotation of spa-
tial data with symbolic information [50] (Fig. 2). The classical atlases, up
to the digital atlas annotation of spatial data, provides an optimal under-
standing of anatomical knowledge. Moreover, the integration between spatial
data and symbolic knowledge supports an effortless dynamic navigation in
the knowledge space, thus creating advanced pathways in the modern clinical
society and stimulating new medical reasoning and correlations finding [51].

The process of tagging single/multiple texts (metadata) with the spatial
data, which may represent semantics, comments, links, and any other textual
information, is known as linguistic annotation and can be classified as free-
text-based and knowledge-driven annotation. In free-text based annotation,
the users are free to tag an object with any keyword he/she has in his/her
mind, e.g., notes, observation. On the contrary, in knowledge-driven annota-
tion, the terms are fixed and defined by an underlying formalized knowledge,
e.g. taxonomy, ontology.

Most of the existing medical image visualization software (OsiriX, Yadiv,
3DSlicer) allow the user to manually or automatically mark the ROI inside
the images and to tag it with user-defined observations (free-text). How-
ever, mostly, manually added keywords are unable to capture the objective
meaning of the targeted data. In fact, the textual abbreviation reflects the
perspective and interest of the user only, without placing the annotation in a
diagnostic work flow that could be shared with other clinicians. Additionally,
annotation expressed in natural language, is influenced by several factors,
such as language or context, and can be limited or ambiguous. Indeed, it
is convenient to use the free text annotation in an isolated interpretation
environment, but it may not provide meaningful results in a network-based
collaborative scenario.

On the contrary, the formalized semantics of the annotation ensures a
common and shared understanding, restricts the use of an exhaustive set of
terms, and allows the annotation only with the ‘controlled vocabulary’. In-
deed, the main difference among existing methods is the trade-off between
flexibility and meaningful. Previous work [52], [53] associates virtual body
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Figure 2: Present: Anatomical knowledge representation facets.

models, generated from the Visible Human dataset, with a knowledge base
of descriptive information (symbolic), which permits an intuitive method
for anatomy training in a distributed environment. However, semantic an-
notations has potentiality to go beyond simply portraying the anatomy for
training and can bridge the ambiguity of the natural language by express-
ing notions and their computational representation in a formal language.
Moreover, encoding how data items are related and how these relations can
be evaluated automatically, supports the definition of complex filters and
search operations. For example, a MRI data set annotated with concep-
tual tags ‘FMA:Knee joint’ can be interpreted as - it captures the spatial
representation of ‘FMA:Knee joint’ that has constitutional parts, such as
‘FMA:Lateral meniscus’, ‘FMA: Patellar Ligament’ etc.. These facts im-
ply that the visual content of MRI data set also represents ‘FMA:Lateral
meniscus’ and ‘FMA: Patellar Ligament’. Indeed, the annotation refers not
only to the textual tag but also to the concept ‘FMA:Knee joint’, which has
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formal definition in FMA [54]. The combination of controlled annotation of
patient data with a richer vocabulary and a sophisticated reasoning policy
can dramatically increase the performance of data management, information
navigation, and data retrieval system.

Performing a comprehensive semantic annotation for all medical datasets
is beyond the human capacity due to its massive volume. However, the effi-
cient combination of man and machine can improve the speed and efficiency of
annotation, and can offer ultimate understanding and utilization of anatom-
ical data. In other words, semantic annotation softwares which extract the
implicit content of the input data, parse all available symbolic information
about patient history, and take into account the formalized medical knowl-
edge, are becoming more and more relevant in this context. However, such
automatic methods heavily count on the availability of solutions to deal with
the “gap” between computational and semantic features, inter-subject vari-
ability, and the enormous amount of accessible information.

Existing tools. To the best of our knowledge, we have selected some suitable
approaches that were published between 2005-2015 and presented an inves-
tigation summary in Table 1. Each of the solutions shows a specific way to
link visual 3D data with symbolic knowledge on anatomy. We mainly analyze
each approach according to: which type of spatial data (synthetic, acquired
or generated) is being described? Which kind of symbolic knowledge is as-
sociated: anatomy, pathology or just the personal observation? How it has
been exploited in clinical applications? However, the features focused here
are only the tip of the iceberg of possible medical interests on the way to a
comprehensive representation of the generic and patient-specific anatomy.

To give the reader a more comprehensive overview, we decided to position
the prime solutions in a Spatial-Symbolic space (Fig 3) based on what type of
spatial data have been integrated with which sort of symbolic knowledge. Af-
terwards, depending on the analysis (Table 1) we clustered them to recognize
the remaining “gaps”. First of all, at the beginning of spatial axis we plotted
a few platforms that has been developed for exploring 3D anatomical atlas
(canonical) mainly for training purposes. Some of them used static database
to manage pre-defined anatomical labels; for instance, the Medical Informa-
tion Service [55] and the Zygote body (previously known as Google body
browser) [33]. In contrast, Bio-digital Human [34] stores the pointers of the
web-resources (wiki, books) to support the association of external source of
information along with the static labels. However, we cluster them under the
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Table 1: Systems that integrate spatial data with symbolic knowledge.
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Symbolic knowledge
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specific
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Span
Anatomy

labels

Anatomy
&
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&

pathology
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notes
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Vertex
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Gray’s
anatomy
(Digital)

FMA
FMA,
ICD10,
RadLex

Radlex

Link N/A
Pointer to

web-
resources

Internal
link

Semantic
network

Database
relations

Semantic
relations

Semantic
relations

Semantic
relations

Spatial data

Type Synthetic Synthetic Synthetic
Data-
driven

Data-
driven

Data-
driven

Patient-
specific

Patient-
specific

Rep. 3D model 3D model 3D model
Visible
human
data

Visible
human
data

Segmented
data

CT images
(dicom)

Acquired
image

Features and applications

Framework Web-based Web-based Web-based Standalone Web-based Web-based
Web-based
& MITK

client
Web-based

Annotation No
link

pointer
No Free text Free text No

Formalized
&

Free-text

Formalized
&

Free-text

Search
Keyword-

based
Keyword-

based
Keyword-

based
Keyword-

based
Keyword-

based
Semantic Semantic Semantic

Usage Education
Education,

virtual
dissection

Education
Virtual
surgery

Learning
Learning &
simulation

Sharing,
retrieval

Analysis,
retrieval

same top class Atlas with synthetic data since these 3D atlases are fabricated
by using synthetic data tagged with static labels of generic information, such
as anatomy labels, its synonyms, function of the organ, etc. On the symbolic
axis, they reside in the middle because they incorporated the textual labels
from a pre-define vocabulary rather than free-texts.

In the next cluster - Atlas with real data, VoxelMan - Intelligent vol-
ume [56], W3D-VBS [57] and other web-based three-dimensional anatomy
training systems have been grouped that use images (using axial, coronal,
sagittal views) and/or 3D virtual structures generated from acquired data,
and annotated them with pre-defined labels to provide a more realistic picture
of visual-spatial relationships of anatomy. BodyParts3D [58] and Biolucida
platform [61] can also be clustered as Atlas with real data that creates the
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Figure 3: Existing solutions in Spatial-symbolic space.

link between canonical models and structured knowledge by populating the
FMA [13] with 3D models of body parts of distinct individuals, and allows
a hierarchical navigation through the FMA ontology. However, the sub-
group of BodyParts3D stays higher in the symbolic axis, since they adopted
ontology-driven annotation of the canonical dataset.

Beside realistic atlas creation for anatomy training, a main challenge is to
devise methods that can integrate patient-specific spatial data and symbolic
information to support knowledge-driven clinical trials. Moving towards the
“patient-specific” direction of the spatial axis, we first cluster the medical
data visualization software (e.g. 3DSlicer [24], OsiriX) that allow the human
operator to annotate the patient’s data with free-texts (e.g. anatomy, disease
status, clinical notes) for optimizing the representation. ePad (earlier known
as iPad [60]) is a web-based medical data visualization and sharing platform,
and allows the user to add semantic tags from the RadLex ontology [15] to
2D acquired images. However, the process is mostly manual and can only
support the annotation of DICOM images.

In the next cluster, we grouped the semi-automatic annotation platforms
that integrate patient-specific 2D/3D data with formalized symbolic knowl-
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edge. For instance, the Medico system [59] applies a semi-automatic detec-
tion and localization of anatomical structures within CT scans of the human
torso and maps them to the concepts that are derived from FMA [13]/ICD10
[62]/RadLex [15]. However, this approach is applicable only to CT data
sets of human torso, and verified only within a small set of sample images.
Another similar system [63] uses numerical atlas and symbolic knowledge
(ontology and description logic rules) in an integrated way to achieve semi-
automatic annotation of brain MRI images.

Following the semi-automatic ontology-driven annotation trend, the next
challenge is to build an efficient knowledge-driven segmentation-annotation
platform to handle different types of medical images, 3D models, and to in-
corporate automatic characterization of the object geometry within the scope
of formalized knowledge-base. In this context, SemAnatomy3D [64] demon-
strates the idea of automatic ontology-driven annotation of patient-specific
3D models (segmented from MRI and CT images) and its relevant subparts
by coupling 3D geometric characterization and knowledge formalization tech-
niques. However, it is restricted to a specific input data representation, i.e.,
triangulated mesh.

6. Key challenges towards a comprehensive integration

In modern anatomy, an imaginable future advancement is the “Digital
patient” that should represent, model and abstract the real patient in all
of his/her medically relevant aspects to support computer assisted clinical
diagnosis. The European project DISCIPULUS [65] published a research
agenda in May, 2013 for the realization of digital patients. In the DISCIPU-
LUS roadmap, the integration of descriptive symbolic data/information with
digital images and models is listed as one of the key research issue because
the amount of medical data acquired and stored has increased enormously
due to successful developments in data generation/medical scan techniques.
However, an efficient use of such data for computational modeling and sim-
ulation has not yet been achieved. To dig into the issues, we narrowed down
our discourse only to the patient-specific 3D models, and present the chal-
lenges which are the key to enforce the role of 3D models into computer
assisted clinical applications, e.g., diagnosis, virtual surgery, bio-mechanical
simulation.

Extraction of knowledge out of 3D data. In the perspective of extracting the
knowledge content of the patient-specific 3D data with minimal human inter-
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vention, automatic tools/methods are needed to be developed for identifying
anatomical features (e.g., muscle insertion, contact area) and recognizing
anomalies (e.g., degradation, lesion) from the geometric appearance of the
patient’s organ, and then, based on the extracted features classify the mod-
els into the corresponding categories (e.g., according to disease progression,
healthy vs abnormalities).

So far, most of the methods/tools developed in the Computer Graphics
field aimed at the generic 3D shape understanding and analysis (e.g., Eigen
decomposition, curvature analysis, geodesic). Put it differently, they can
only support the characterization of the geometric and structural properties
of the 3D models, but most of the shape descriptors are not suitable for
extracting the clinically relevant information from the anatomical shapes.
This is mainly due to the fact that: (i) often the anatomical landmarks
and pathological markers belong to the geometric featureless regions; (ii) the
medical definition of the features is intrinsically vague, and thus, the features
cannot be coded or identified by mathematical formulation; (iii) the shapes
often are highly variable between individuals.

There is a need for focused 3D characterization techniques that can ad-
dress the feature recognition problem in the specific medical context. Special-
ized techniques can be developed by capitalizing the existing shape analysis
and segmentation methods, proposed in the computer graphics field, and
then couple the relevant ones to devise a tailored characterization algorithm
for the specific clinical context. Another crucial aspect for medical data
characterization is to capture the normality, and differentiate abnormalities
from the healthy shape variations. The statistical models which capture the
healthy shape variabilities, can act as a vital component for the characteri-
zation of abnormalities.

Integration of symbolic knowledge with patient-specific 3D models. The in-
tegration is more valuable when the symbolic definitions are associated not
only to the whole 3D model but to the parts of interest, which can represent
anatomical or pathological features. This integration can be considered as
a step towards part-based indexing of the 3D model to support efficient re-
trieval relying on linguistic queries. Such framework can be a great support
to the clinical studies by retrieving “similar” cases and allowing the inter-
patient comparative analysis at the required level of granularity. In order to
fulfill the objective, there is a demand of a significant amount of work not
only in the area of developing annotation techniques, but also agreeing on a
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“common standard” or stable 3D markup to link the annotations to the 3D
geometry and make the metadata and knowledge-base consistent.

The Annotation and Image Markup (AIM) standard [66] is developed for
storing descriptive and quantitative clinical image markup data in DICOM-
SR, HL7 CDA, or XML formats to facilitate the communication of image
annotations and markup data in a standard manner. However, at this stage,
such standard is mainly limited to 2D/3D images, and no state-of-the-art
solution applies to patient-specific 3D model. Besides the AIM, a number of
semantic annotation data models have been proposed for generic annotation
of digital resources, such as the Annotea model [67] and the Open Annotation
(OA) [68]. Unfortunately, none of these common models provides sufficient
specifications for annotating free form parts of a 3D model. The OA data
model [69] developed by W3C Open Annotation Community Group specifies
a extensible data model to support inter-operable annotations without using
a particular set of protocols. Thus, a straightforward way is to extend the
OA model (or similar model) or design a new data model from scratch to
manage 3D part-based annotations.

Only an information model is not enough to manage efficiently the an-
notation of 3D-PSMs, a link need to be established between annotation and
the 3D geometry. A popular way of addressing a part of digital resource in
web is via fragment-identifier. However, fragment identifiers for 3D objects
are not popular because the 3D data streams are often too large to be di-
rectly encoded into an URI string. Another approach is to store the 3D data
streams within an independent file linked to the annotation via an URI using
the Linked-Data approach. There exist some XML-based standard formats
to record the annotated geometry of a 3D object, such as X3D [70] or Col-
lada [71]. However, XML-based formats are mainly designed to support the
description of compound scenes as assemblies of simpler objects, and they
are not very efficient to store multiple annotations of a large mesh. This
is mainly due to the fact that the whole geometry has been replicated and
indexed while storing a single annotation. Therefore, exclusive formats are
needed for delivering a high performance 3D annotation service. Moreover,
to date, no previous effort has focused on methods to compress these 3D
annotation file formats.

Management of heterogeneous 3D data sets and information in an inter-
connected manner. Integrative anatomical modeling requires the fusion of
knowledge coming from various sources, distinct medical disciplines, and nu-
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merous clinical issues. In fact, 3D data and information about anatomy
are available in a range of different formats, and high level computational
expertise is required for performing analysis and integrating data coming
from various backgrounds. We argue that biomedical ontology based data
management is a promising choice that allows to interpret the data through
the explicit definition of terms and relationships in an ontology, and able to
resolve any semantic heterogeneity that is present within the data. Single on-
tology approach uses one global ontology where pre-defined correspondences
have been established between the ontology and data sources. To avoid the
static correspondences, instead of using a common ontology multiple ontolo-
gies could be adopted where each data source is described by its own ontology
separately and mappings are used to express the relationships between the
ontologies. For this purpose, an additional representation formalism is neces-
sary for defining the inter-ontology mappings which allows a quasi-dynamic
modification of the data sources.

Given these technical challenges, sophisticated digital healthcare plat-
forms could be envisaged in the light of digital patient where the true po-
tentiality of patient-specific 3D models will be fully exploited in the complex
medical data analysis scenario. Bridging the semantic gap between patient-
specific 3D data and formal knowledge is a challenging and demanding area
of research. Indeed, an interdisciplinary effort between medical profession-
als and informatics scholars is needed to build a new generation healthcare
system such that a human specialist can access effectively the machine inter-
preted knowledge about the patient.
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poris fabrica: an ontology-based tool for reasoning and querying on
complex anatomical models, Journal of biomedical semantics 5 (2014)
1.

[18] C. Jonquet, M. A. Musen, N. Shah, A system for ontology-based anno-
tation of biomedical data (2008) 144–152.

[19] M. Popescu, G. Arthur, Ontoquest: A physician decision support system
based on ontological queries of the hospital database 2006 (2006) 639.

[20] C. Patel, J. Cimino, J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershen-
baum, L. Ma, E. Schonberg, K. Srinivas, Matching patient records to
clinical trials using ontologies, in: The Semantic Web, Springer, 2007,
pp. 816–829.

[21] N. F. Noy, M. Klein, Ontology evolution: Not the same as schema
evolution, Knowledge and information systems 6 (2004) 428–440.

25



[22] C. Barillot, Surface and volume rendering techniques to display 3-D
data, IEEE Engineering in Medicine and Biology Magazine 12 (1993)
111–119.

[23] A. Rosset, L. Spadola, O. Ratib, Osirix: an open-source software for
navigating in multidimensional dicom images, Journal of Digital Imag-
ing 17 (2004) 205–216.

[24] S. Pieper, B. Lorensen, W. Schroeder, R. Kikinis, The NA-MIC Kit:
ITK, VTK, pipelines, grids and 3D slicer as an open platform for the
medical image computing community, in: 3rd IEEE International Sym-
posium on Biomedical Imaging: Nano to Macro, 2006., IEEE, pp. 698–
701.

[25] K.-I. Friese, P. Blanke, F.-E. Wolter, Yadiv-an open platform for 3D
visualization and 3D segmentation of medical data, The visual computer
27 (2011) 129–139.

[26] S. C. Mitchell, J. G. Bosch, B. P. Lelieveldt, R. J. Van Der Geest,
J. H. Reiber, M. Sonka, 3-d active appearance models: segmentation
of cardiac MR and ultrasound images, IEEE Transactions on Medical
Imaging 21 (2002) 1167–1178.

[27] D. L. Pham, C. Xu, J. L. Prince, Current methods in medical image
segmentation 1, Annual review of biomedical engineering 2 (2000) 315–
337.

[28] A. Sotiras, C. Davatzikos, N. Paragios, Deformable medical image reg-
istration: A survey, IEEE Transactions on Medical Imaging 32 (2013)
1153–1190.

[29] M. Ackerman, V. Spitzer, A. Scherzinger, D. Whitlock, The visible hu-
man data set: an image resource for anatomical visualization., Medinfo.
MEDINFO 8 (1994) 1195–1198.

[30] J. S. Park, M. S. Chung, S. B. Hwang, B.-S. Shin, H. S. Park, Visible
korean human: its techniques and applications, Clinical Anatomy 19
(2006) 216–224.

[31] S.-X. Zhang, P.-A. Heng, Z.-J. Liu, L.-W. Tan, M.-G. Qiu, Q.-Y. Li, R.-
X. Liao, K. Li, G.-Y. Cui, Y.-L. Guo, et al., The chinese visible human

26



(CVH) datasets incorporate technical and imaging advances on earlier
digital humans, Journal of Anatomy 204 (2004) 165–173.

[32] G. Langs, A. Hanbury, B. Menze, H. Müller, VISCERAL: Towards
large data in medical imaging-challenges and directions, in: Medical
Content-Based Retrieval for Clinical Decision Support, Springer, 2013,
pp. 92–98.

[33] A. Blume, W. Chun, D. Kogan, V. Kokkevis, N. Weber, R. W. Petterson,
R. Zeiger, Google body: 3D human anatomy in the browser, in: ACM
SIGGRAPH 2011 Talks, ACM, p. 19.

[34] J. Qualter, F. Sculli, A. Oliker, Z. Napier, S. Lee, J. Garcia, S. Frenkel,
V. Harnik, M. Triola, The biodigital human: a web-based 3D platform
for medical visualization and education., Studies in health technology
and informatics 173 (2011) 359–361.

[35] T. Nagaoka, S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe,
M. Taki, Y. Yamanaka, Development of realistic high-resolution
whole-body voxel models of japanese adult males and females of av-
erage height and weight, and application of models to radio-frequency
electromagnetic-field dosimetry, Physics in medicine and biology 49
(2004) 1.

[36] I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, P. B.
Hoffer, Computerized three-dimensional segmented human anatomy,
Medical physics 21 (1994) 299–302.

[37] Y. Jun, Morphological analysis of the human knee joint for creating
custom-made implant models, The International Journal of Advanced
Manufacturing Technology 52 (2011) 841–853.

[38] T. F. Besier, G. E. Gold, G. S. Beaupré, S. L. Delp, A modeling frame-
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