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In industrial practice, additive manufacturing (AM) processes are often fol-
lowed by post-processing operations such as heat treatment, subtractive
machining, milling, etc., to achieve the desired surface quality and dimen-
sional accuracy. Hence, a given part must be 3D-printed with extra material to
enable this finishing phase. This combined additive/subtractive technique can
be optimized to reduce manufacturing costs by saving printing time and
reducing material and energy usage. In this work, a numerical methodology
based on parametric shape optimization is proposed for optimizing the
thickness of the extra material, allowing for minimal machining operations
while ensuring the finishing requirements. Moreover, the proposed approach
is complemented by a novel algorithm for generating inner structures to re-
duce the part distortion and its weight. The computational effort induced by
classical constrained optimization methods is alleviated by replacing both the
objective and constraint functions by their sparse grid surrogates. Numerical
results showcase the effectiveness of the proposed approach.

INTRODUCTION

The work described in this article has been
developed as part of the Horizon 2020 research
and innovation project CAxMan (Computer Aided
technologies for Additive Manufacturing, see http
s://www.caxman.eu). The objectives of this project
were to establish cloud-based toolboxes, workflows
as well as a one-stop shop for CAx technologies
supporting design, simulation and process planning
for additive manufacturing. The project originates
from the observation that, due to the constant
growth of the additive manufacturing (AM) market,
there is an increasing demand for a software
ecosystem that enables computer-aided technologies
(CAx) support of AM processes and machines from
design to production. Thus, the project established
novel cloud-based workflows and services for

discrete manufacturing (combinations of additive
and subtractive) by addressing simulation-based
design and simulation of process planning. One of
these workflows is the shape optimization procedure
detailed in this article.

Indeed, one of the major reasons for the success of
AM is because it enables the fabrication of very
complex geometries out of reach with standard
manufacturing processes, such as forging, machin-
ing or casting. However, the surface quality of AM
parts is often not sufficient for industrial applica-
tions because of surface roughness and thermal
distortions induced by the process. To enhance AM
quality and to achieve the required dimensional
accuracy, a possible solution consists of adding some
extra material (geometric offset) to enable the part
to be finished by subtractive manufacturing (ma-
chining). This solution introduces two limitations:
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on the one hand, if too little extra material is added,
the surface roughness cannot be removed ade-
quately; on the other hand, adding too much
material unnecessarily increases printing time and
manufacturing costs. Note that the original dimen-
sions of the nominal geometry are compromised by
the distortions accumulated during the AM process
because of the thermal stresses. Hence, the input for
the 3D printer is not the nominal geometry but the
so-called stock geometry instead. In addition to the
geometric offset, we also consider the possibility to
add inner cavities to the stock part for saving
weight and production time/costs. The generation of
inner structures also affects the structural behavior
of the entire part, not only regarding the in-service
requirements, but also during the manufacturing
phases. In fact, reducing the amount of material to
be printed as well as increasing the external surface
area modifies the thermal behavior in terms of heat
accumulation and heat extraction.

Therefore, the main objective of the proposed
workflow is the definition of a numerical procedure
for the optimization of the stock part design to be
provided as input to a metal 3D printer, taking into
account the thermal deformation induced by the AM
process itself and the following post-production by
subtractive machining. The problem is defined as a
multi-dimensional constrained optimization analy-
sis, solved using optimization methods (e.g.,
Refs. 1, 2, and 3). In the literature, few works are
available on printer-aware optimization;4–8 this is
therefore one of the major contributions of this
work.

The optimization strategy requires the numerical
simulation of the AM process for a number of
different stock part designs. This kind of analysis
computes the residual stresses and distortions
induced by the thermal deformations due to the
AM process including the final cooling phase and,
eventually, the post-treatment processes.9 These
computations are very CPU time demanding and
require a software platform based on massive
parallel computing via sub-domain decomposition
methods, octree-based meshing tools and embedded
technologies.10 Hence, to alleviate this inconve-
nience, a surrogate model for both the objective
and constraint functions is adopted to deal with the
optimization problem; specifically, a sparse grid
method has been adopted in this work.11,12

Moreover, the optimization methodology is imple-
mented in a cloud-based environment that includes
different pieces of software (provided by different
institutions involved in the project) needed for the
definition of the stock-part geometry (STEP format),
generation of the inner structure, simulation of theAM
process and the outer optimization loop. The imple-
mentation allows for an automatic pipeline reducing
the CAx service to a user-friendly black-box tool.

The content of this article is organized as follows.
‘‘Methodology’’ section discusses the overall method-
ology by focusing on a specific test case (the

generalization to more complex use cases is
straightforward). This includes discussion of the
specifications of the test case (‘‘The Industrial Use
Case’’ section), the optimization methodology and
the corresponding numerical techniques used for its
resolution (‘‘The Constrained Optimization Method’’
section), the definition of the surrogate model
(‘‘Surrogate Model Construction’’ section) and the
different steps for the evaluation of the objective
and constraint functions according to the stock
design parametrization (‘‘Evaluation of Objective
and Constraint Function’’ section). Some implemen-
tation details are given in ‘‘Implementation Details’’
section. ‘‘Numerical Results’’ section presents some
numerical examples to demonstrate the perfor-
mance of the optimization algorithm. Finally, ‘‘Con-
clusions’’ section summarizes the work, presenting
some new perspectives and possible directions for
future work. We also refer to the arXiv Ref. 13
which contains a slightly longer version of this
manuscript with some additional details.

METHODOLOGY

The Industrial Use Case

The mock-up demonstrator considered in this
work is a gear, selected within the CAxMan project
and provided by the high-tech engineering company
STAM (http://www.stamtech.com). Figure 1a shows
the nominal geometry of the gear. For the sake of
simplification, a single gear tooth (Fig. 1b) as
extracted by the original geometry is used to show
the optimization strategy proposed in this work.
The extension to the entire gear is straightforward.

The Constrained Optimization Method

The final goal is the design optimization of the
stock-part geometry to minimize the subtractive
(machining) work after the AM stage. The proposed
mock-up is parametrized by three parameters: the
first one is the offset thickness while the other two
parameters are used to control the generation of
inner structures as described in ‘‘Generation of
Inner Cavities’’ section. These parameters are col-
lected in the vector p 2 C ! R3. The goal is finding
the design variables that minimize the offset thick-
ness allowing for the surface finishing and taking

Fig. 1. Gear model provided by STAM (panel a) and a single tooth
representing the ‘‘nominal geometry’’ selected (panel b).
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into account the distortions induced by the AM
process and the post-processing operations.

Mathematically, this writes as:

p ¼ argmin
p2C

f pð Þ ð1Þ

st: g pð Þ> 0:04mm ð2Þ

C ¼ p1;min;p1;max

! "
% p2;min;p2;max

! "
% p3;min;p3;max

! "

ð3Þ

where f ðpÞ ¼ DVolumeðpÞ is the volume of the extra
material, computed as the difference between the
volumes of the nominal and the stock geometries,
and gðpÞ ¼ DThicknessðpÞ is the thickness of the
material that must be removed from each surface
after the 3D printing. Because of the machining
tolerance, this thickness must be> 0.04 mm. The
Cartesian product C ¼ p1;min;p1;max

! "
%

p2;min;p2;max

! "
% p3;min;p3;max

! "
defines the range of

variability of the three parameters: the so-called
constraints box.

Remark 1 The proposed problem can be easily
generalized by assuming a different offset thickness
and machining tolerance for each one of the surfaces
of the geometry.

In this work, the penalization method1 is used to
transform the initial constrained problem into the
following modified unconstrained one:

p& ¼ arg min
p2RN

f ðpÞ þ ~gðpÞ; p 2 RN ð4Þ

where ~gðpÞ ( 0 if gðpÞ> 0 to avoid unfeasible solu-
tions. Several methods to build the function ~gðpÞ
and to solve the unconstrained optimization prob-
lem are available in the literature. Because the
optimization method requires multiple runs of the
AM solver to estimate the distortion of the stock
geometry, in this work, functions f ðpÞ; gðpÞ; ~gðpÞ are
replaced by surrogate models (approximations)
denoted by FðpÞ;GðpÞ; ~GðpÞ. These models are built
beforehand by employing a handful of full evalua-
tions of f ðpÞ; gðpÞ; ~gðpÞ only, so that most of the CPU
time required to build the surrogate model is spent
offline. Given this, the optimization problem is
rewritten as:

p& ¼ arg min
p2RN

FðpÞ þ ~GðpÞ; p 2 RN : ð5Þ

In this work, three penalization methods (squared
penalty, augmented Lagrangian and log-barrier
methods) and two unconstrained optimization tech-
niques for each penalization method (gradient des-
cent and the Nelder–Mead) are investigated to find
the best solution for the proposed AM problem. On
the one hand, the gradient descent method is very
fast, but it might fail if the optimal point is close to

the boundary of the constraint box. On the other
hand, the Nelder–Mead technique is slower but
generally more robust.

Finally, different initial conditions chosen accord-
ing to the random Latin hypercube sampling
method have been considered to reduce the risk of
stagnation in local minima.14

Surrogate Model Construction

A vast body of literature on surrogate model
construction is available: e.g., radial basis functions,
reduced basis, proper orthogonal decomposition,
neural networks and sparse grids can be used for
this scope (see, e.g., Refs. 15, 16, and 17). In this
work, the sparse grid method11,12 is chosen. This
method is suitable to approximate multivariate
functions depending on a moderate number of
inputs (say, up to a dozen) and has been successfully
employed as a surrogate model in optimization
problems; see, e.g. Ref. 18. It is easy to use, since
it only requires evaluating the functions at hand at
some prescribed points, and works well if the
function to be approximated is smooth. An example
of a set of evaluation points over a three-dimen-
sional constraint box C is shown in Fig. 6 in the
‘‘Numerical Results’’ section; each dot represents a
set of parameters p to evaluate f ðpÞ and gðpÞ and,
finally, to build the surrogate models FðpÞ;GðpÞ and
~GðpÞ.
The accuracy of the surrogate model depends on

the number of points in the sparse grids. The user
chooses the number of points indirectly by setting
the integer number w, which represents the ‘‘re-
finement level’’ of the sparse grid. For instance, the
number of points in a sparse grid over a two-
dimensional constraint box grows as 1, 5, 17, 49, 129
for w = 1, 2, 3, 4, 5. For a three-dimensional
constraint box, one would get 1, 7, 31, 111, 351
points for the same values of w.

Given this, the optimization procedure proceeds
as follows:

1. Fix the starting sparse grid refinement level w
to determine the sparse grid points;

2. For each point (i.e., upon fixing the stock
design), evaluate the constraint and objective
functions;

3. Build the sparse grid surrogate model by com-
puting the corresponding surrogate constraint
and objective functions;

4. Solve the constrained optimization problem (5)
obtained by replacing the constraint and objec-
tive problem with their sparse grid surrogates;

5. If the result is not satisfactory, increase the
sparse grid level w and repeat from point 2.

Remark 2 All the computations required in point 2
can be performed in parallel as they are indepen-
dent from each other.
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Remark 3 By increasing the sparse grid level w,
one generates a new grid that typically includes the
previous one, so that all computations already
performed can be recycled.

Evaluation of Objective and Constraint
Function

Evaluating the objective and constraint function
for a given stock design is a complex, multi-stage
operation that requires the use of different software.
Upon fixing the values of the design parameters p
for the stock design, the following steps are needed:

1. Generation of inner cavities in the nominal
geometry;

2. Construction of the stock geometry by offsetting
the surfaces of the nominal geometry with the
inner cavities;

3. Mesh generation;
4. Simulation of the AM process;
5. Computation of the constraint function gðpÞ as

the distance function between the deformed
stock geometry (after manufacturing) and the
nominal geometry.

6. Computation of the objective function f ðpÞ as
the difference between the volumes of the stock
and the nominal geometry, respectively.

Generation of Inner Cavities

To reduce the distortion during the printing process,
internal cavities inside the nominal geometry can be
generated. In fact, reducing the volume of the part
mitigates its thermal deformation. Moreover, intro-
ducing such cavities leads to a weight reduction that
saves material and printing time. One hypothesis
made in this work assumes that the generation of
inner cavities is compatible with structural/mechan-
ical performance of the component to be printed. If
this is not the case, it is always possible to increase
the complexity of the optimization problem adding
any mechanical constraint.

Internal cavities are created by fitting a repetitive
pattern based on a regular hexahedral grid inside
the bounding box of the nominal geometry. Differ-
ent patterns hold different thermo/mechanical

behaviors in terms of heat diffusion, structural
stiffness and material savings. The intersection
(Boolean operation) between the volume of the
nominal geometry and the structure chosen for the
inner cavities leads to the final geometry of the
component.

The geometries of the inner structures are based
on Catmull–Clark (CC) subdivision surfaces.19 This
technique is commonly used in computer graphics
and animation and is increasingly used in the
engineering sector. CC subdivision allows for defin-
ing smooth surfaces (C2-continuous in regular
areas, C1-continuous around extraordinary points)
based on a discrete control mesh. Regular CC
subdivisions correspond to bi-cubic B-spline sur-
faces, and therefore the geometry of the internal
structures can be converted into a CAD-compatible
representation.

Figure 2 shows three possible patterns repeated
in a grid-based manner. By alternating different
patterns, it is possible to treat different regions of
the part according to local structural requirements.
Note that 90" angles between grid cells result in a
curved geometry due to the smoothing property of
CC surfaces. This is beneficial in terms of manufac-
turability because modern AM machines (especially
SLS and SLM machines) are able to manufacture
overhangs of up to 45", unless the geometry has a
curved, arch-like shape. Therefore, the overall qual-
ity of the inner cavities is quite good in terms of
surface quality and dimensional control. In this
work, the so-called ‘‘cross’’ pattern is adopted as
shown in panel c of Fig. 2. The generation depends
on two parameters: the grid resolution (size of the
cavities) and the minimum wall thickness between
the cavities and the outer surface of the object. Both
parameters belong to the optimization space C.

Geometry Offset and Mesh Generation

In this work, starting with an initial tessellated
geometry, the objective is to obtain an ‘‘inflated’’
geometry (offset) satisfying the required allowance.
Unfortunately, a plain offsetting cannot be used
because the class of polyhedra is not closed under
the offsetting operation. Therefore, exact offsetting

Fig. 2. Three different possible patterns for internal cavities: ‘‘tri’’ (panel a); ‘‘H’’ (panel b); ‘‘cross’’ (panel c). The picture in panel c shows the
internal structures inserted in the nominal geometry.
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might be possible for a very small set of simple
geometries, only.

An offset can be seen as a particular case of a so-
called Minkowski sum. Hence, denoting a solid
object by M (e.g., a sphere), then an arbitrary
Minkowski sum can be used to get the offsetting by
rolling M over the surface S of the nominal geom-
etry. The result is denoted by S)M. Thus, if M is a
sphere with radius r, the Minkowski sum S)M is
equal to Offsetr(S). Note that the Minkowski sum of
two polyhedra is a polyhedron. Thus, we exploited
this result to implement an approximated offsetting
whose result is a polyhedron with guaranteed
distance bounds from S. Our implementation uses
the CGAL library20 and the concept of the NEF
polyhedron.21 In the experiments reported in this
article, the solid M used to obtain the Minkowski
sum is a cube. Figure 3 shows the nominal geometry
of the tooth as it is used in the optimization process,
together with offset geometries of different radii.

Merging the data structures of the offset nominal
geometry and the internal cavities allows for repre-
senting the complete (tessellated) boundaries of the
simulation domain. Starting from this file, an
appropriate tetrahedral mesh of the domain can be
created with the aid of the CGAL library and its 3D
meshing functionalities.22 This tetrahedral mesh is
then passed forward to the subsequent stage where
the simulation of the printing process is performed.

Printing Process Simulation

The EOS M280 is the selective laser melting
(SLM) printer considered in this work. The printing
process consists of uniformly spreading the loose
powder by a wiper to form a new layer ready for the
laser melting. A user-defined scanning sequence
drives the heat source (laser) to selectively melt this
new layer according to the geometry of the compo-
nent. The process is repeated until the stock part is
built.

From the computational point of view, different
approaches have been developed for the numerical
simulation of this process. The most accurate one

requires the solution of the fully coupled thermo-
mechanical problem together with a high-fidelity
representation of the scanning path.9,23 These
approaches provide a reliable and accurate predic-
tion of the distortion and residual stresses but are
expensive in terms of computational resources and
CPU time. Nowadays, the numerical simulation of
large industrial components is still unfeasible with
standard computers, and the use of massive parallel
computing in distributed memory is mandatory.10,24

Consequently, the implementation of a simplified
method is necessary to reduce the CPU time. In this
work, the inherent strain method is adopted.10,24,25

The main hypothesis allowing for the use of the
inherent strain method assumes a localized heat
source so that the heat-affected zone (HAZ) is very
small, not affecting the rest of the domain. Given
this, the classical coupled non-linear thermo-me-
chanical analysis is replaced by a sequence of
mechanical computations according to the layer-
by-layer deposition strategy. The inherent strains
are defined as the sum of both the thermal and the
plastic strains induced by the manufacturing pro-
cess. More precisely the thermal shrinkage of each
new layer is estimated (offline) according to the
melt-pool temperature and the thermal expansion
coefficient, while the plastic strains are calibrated
according to the scanning speed and the power
heat.25 Hence, all the elements belonging to a new
layer are activated to form part of the current
computational domain. For each new layer, the
corresponding thermo-mechanical loading is given
in terms of inherent strains at each Gaussian
quadrature point.

The computation is performed assuming a layer-
by-layer deposition by skipping the high-fidelity
simulation of the scanning sequence necessary to
complete each layer of the domain. Nonetheless,
still a huge number of layers (corresponding to an
equal number of simulation steps) is necessary to
deal with the numerical simulation. As a result, an
extremely fine mesh (smaller than the layer thick-
ness of about 20–30 lm thick) is also required,
increasing the CPU time per simulation. However,
through sensitivity analysis a multi-layer activation
process has been investigated, showing that it is
possible to pack up to ten layers per single activa-
tion without losing the original accuracy. Hence, up
to 200 lm can be used as a reference thickness for
the layer-by-layer analysis. The simulation time can
be accelerated by a factor of 10 allowing the AM
simulation kernel to be part of the optimization
loop.

The other important hypotheses of the numerical
simulation strategy are the following: First, the
back plate is generally not analyzed. Instead, the
corresponding clamping conditions are taken into
account by means of full displacement prescriptions
at the contact surface between the part and the back
plate. Second, the loose powder has been virtual-
ized; thus, it is neither discretized nor computed.

Fig. 3. Nominal geometry with different offset radii.
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This is due to the fact that, from the thermal point
of view, the powder can be tackled as almost
adiabatic boundary conditions, while mechanically,
its stiffness is negligible if compared with the bulk
(sintered material). Finally, the effects induced by
the supporting structures have been accounted for.
Their geometrical description as well their dis-
cretization by the FE mesh has been avoided to
reduce the computational time while preserving the
accuracy of the results. Instead, an equivalent
stiffness has been computed and assembled into
the global system of equations at each node con-
necting the part to the back plate. This equivalent
stiffness takes into account both the length and the
effective area of each supporting structure as well
as the fact that they are built by sintering the same
powder as for the component. Hence, the Young’s
modulus of the supporting structure is the same as
for the AM part under construction.

The final result coming from the manufacturing
process simulation is presented in terms of accu-
mulated distortions of the component according to
the AM sequence. Those deformations will define a
distorted volume of the stock geometry to be com-
pared with the nominal one. Comparisons with both
the experimental evidence through the 3D printing
of ad hoc samples or by analyzing the results
obtained by high-fidelity fully coupled thermo-me-
chanical analysis have been carried out.25

The proposed AM model has been implemented
into the software package COMET,26 a finite ele-
ment-based platform for the analysis of coupled
thermo-mechanical problems. Pre- and post-pro-
cessing is done with the GiD software,27 developed
at CIMNE, the International Center for Numerical
Methods in Engineering.

Computation of the Objective and Constraint Func-
tions

The objective function requires the evaluation of
the volume of the extra material to be removed from
the stock part by machining. This volume can be
obtained by subtracting the volume of the nominal
geometry (including the internal cavities) from the
volume of the printed stock part obtained after the
AM process simulation by summing the volumes of
all the tetrahedra of the deformed mesh. Hence:

DVolume¼Distortedmeshvolume
* Nominalgeometry*Internalcavitiesð Þ:

ð6Þ

To evaluate the constraint function of the optimiza-
tion problem, it is necessary to compute the distance
between the nominal and the stock geometry at
each of the points belonging to the tessellation of the
external surfaces. The method consists of an itera-
tive solution to find the orthogonal projection of
each point to the (smooth) surface defining the
nominal geometry. This computation is based on an

iterative closest point projection method.28 If the
closest point projection results in a point outside the
domain, then the distance is computed with respect
to the closest boundary of the trimmed surface.

Implementation Details

One objective of the CAxMan project was the
automatic interoperability among the different
pieces of software required by the AM optimization
methodology through a cloud-based system. This
complex workflow is enhanced by designing suit-
able API and favoring standard formats like STEP.
Docker containers have been used to simplify the
deployment of each piece of software.29 More in
detail, the software used is the following: SG++18,30

to generate the sparse grids and to solve the
optimization problem; in-house software to generate
the internal cavities; CGAL routines31 for the
geometry offset and the mesh generation; COMET26

for the simulation the AM process and to compute
the volume of the stock-part after 3D printing;
GiD27 for the result post-processing; GoTools32 to
compute the distances between the distorted stock-
part and nominal geometry. Figure 4 shows the
flowchart of the implemented optimization
methodology.

NUMERICAL RESULTS

The results of the optimization methodology pre-
sented are discussed here. A sequence of tests of
increasing complexity is considered by extending
the number of optimization parameters. Ti64 is the
reference powder material used for the printing
process, and the following properties are required
for the AM process simulation. The density of the
material is 4420 kg/m3, the Young modulus is
1.18e+11 Pa, and the Poisson ratio is 0.33. The
thermal expansion coefficient is 9e*06, the metal
deposition temperature is 700"C, and the annealing
temperature is 800"C. The elastic limit is
954e+06 Pa, and the ultimate stress is
1110e+06 Pa. Finally, the nominal geometry is
contained in a bounding box of 10 mm 9 6 mm 9 4
mm, and the machining tolerance is set as 0.04 mm.

Optimization of the Offset Thickness

This analysis focuses on the optimization of the
offset thickness only. The offset value ranges
between 0 and 1 mm. The AM simulation uses a
mesh defined by approximately 500 K tetrahedra.
The optimization workflow is performed four times
by increasing the sparse grid level from w = 2 to
w = 5, until reaching the required accuracy (i.e., the
optimal thickness value computed for w = 4 and
w = 5 varies less than 1e*4 mm).

Figure 5 shows the surrogate models (w = 4) of
the objective (panel a) and constraint functions
(panel b), respectively. The constraint function is
actually rewritten as 0:04mm*DThickness pð Þ< 0
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Fig. 4. Software flowchart for the optimization methodology implemented.

Parametric Shape Optimization for Combined Additive–Subtractive Manufacturing

Author's personal copy



because of the requirements of the optimization
software. The black triangles represent the values
computed by the evaluation of the full model (i.e.,
performing all the steps described in ‘‘Evaluation of
Objective and Constraint Function’’ section), while
the red dotted lines represent the surrogate func-
tions computed offline. As expected, the objective
function (i.e., the volume) increases as the offset
thickness increases, faster than linearly. The dis-
tance between the nominal and the distorted sur-
faces also becomes larger and larger as the offset
increases. Hence, the constraint function becomes
increasingly negative. Note that if the constraint
function is positive, the offsetting is not feasible
because the machining tolerance is not satisfied.

The results obtained through the optimization
methodology are reported in Table I. The column
‘‘interpolant evaluations’’ in Table I reports the
total number of evaluations required by the surro-
gate models of the objective and the constraint
functions performed to compute the optimal design
point. These values would roughly correspond to the
number of solutions required by the optimization

process when the sparse grid surrogate model is not
used. The value is much larger than the number of
design points, meaning that significant computa-
tional time is saved with the proposed procedure. In
this work, the optimization procedure was repeated
according to the six variants of the method and for
five starting points to find the exact optimal value of
the offset. The column ‘‘method’’ shows the best
penalization method (squared penalty, augmented
Lagrangian, log-barrier) and the unconstrained
optimizer used (gradient, Nelder–Mead).

Optimization of Offset Thickness and Cavity
Parameters

The next optimization analysis that we report is
the joint optimization of the offset thickness and
both parameters needed by the cavity generation
algorithm. We refer to Ref. 13 for additional opti-
mization analyses where only two parameters are
considered (the offset thickness and only one
parameter for the cavity generation). Sparse grids
of level w = 2, 3 are used because level w = 4 would
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Fig. 5. Surrogate model for objective (panel a) and constraint (panel b) functions for w = 4 when optimizing the offset radius. The plot of the
constraint function also shows the feasible region, where the original constraint function is positive.

Table I. Results of the optimization test to find the optimal offset radius

w
Design
points

Optimal
offset (mm)

Optimal
volume (mm3) Best method

Interpolant
evaluations

Computational time
(hh:mm:ss)

2 3 0.0569 132.67 Squared penalty
with gradient

52 00:12:01

3 7 0.0571 136.93 Squared penalty
with gradient

50 00:25:41

4 15 0.0567 137.59 Squared penalty
with gradient

49 00:56:35

5 31 0.0567 137.62 Squared penalty
with gradient

48 01:57:14
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require an excessive CPU time. The variation
ranges of the three parameters are as follows: offset
0–0.1 mm, grid resolution 17–24, wall thickness
0.4–0.9 mm.

The results in this case are reported in Fig. 6 and
Table II. Figure 6 shows the three-dimensional
constraint box in which the problem is defined.
Each dot is a sparse grid point where the full model
is evaluated (for the sparse grid at level w = 3). In
panel a, dots are colored in blue-to-yellow shades
according to the value of the objective function,
while in panel b the value of the constraint function
has been considered. The red dot represents instead
the optimal point selected by the optimization
algorithm. It can be easily seen that most of the
variability is due to the offset parameter for both
objective and constraint functions. Specifically, the
optimal offset thickness is around 0.056 mm; the
values selected for the wall thickness and grid
resolution are irrelevant to the optimization and
therefore they are not constant across values of w.
Finally, observe the much larger number of surro-
gate model evaluations needed by the Nelder–Mead
algorithm for this optimization case. This number is
so large that trying to solve the optimization

problem without replacing the full model with its
surrogate model approximation would be
impossible.

CONCLUSION

The main objective of this work is the definition of
the procedure for the optimization of the stock part
design to be provided as input to a metal 3D printer,
keeping into account the thermal deformation
induced by the AM process. The problem is defined
as a multi-dimensional constrained optimization
analysis, where the constraint and objective func-
tions have been replaced by their sparse grid
surrogate models to achieve the best computational
efficiency.

The proposed optimization procedure is fully
automatic. The workflow makes use of different
software modules (most of them in-house solutions)
as part of the optimization loop to deal with the CAD
geometry, the offsetting procedure, the inner cavi-
ties generation and the AM solver, among others. A
cloud-based environment together with HPC facili-
ties reduced the computational time while keeping
the CAx tool transparent to the AM end-user.
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Fig. 6. Plot of objective and constraint functions (panels a and b, respectively) for the optimization over three parameters.

Table II. Optimizing offset radius and both inner cavities generation parameters

w

Design
points

Optimal
offset
(mm)

Optimal
volume
(mm3)

Optimal
grid

resolution

Optimal
wall

thickness Method
Interpolant
evaluations

Computational
time

(hh:mm:ss)

2 7 0.0551 137.24 17 0.9 Aug. Lagran-
gian with

Nelder Mead

2008 00:34:35

3 31 0.0566 137.54 20.65 0.9 Squared penalty
with Nelder

Mead

2057 02:27:23
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For the proposed demonstrator, up to three
different parameters have been optimized: the offset
thickness and two parameters related to the inner
cavity generation. The optimization of the stock part
can be enhanced improving the proposed strategy as
follows. First, one could assume different offsets on
different region of the geometry. Second, the gener-
ation of inner cavities could be subjected to mechan-
ical or thermal constraints. In this case, also the
analysis of the mechanical/thermal performance of
the component under the actual mechanical/ther-
mal loading for each stock part design would be
required as part of the optimization loop. Finally,
the post-processing phase also causes a change in
the final shape because of the stress release due to
the heat treatment or the subtractive operations.
Therefore, a numerical framework to simulate the
entire manufacturing chain in AM could be used to
predict the evolution of the residual stresses and the
corresponding part distortion.
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