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Abstract

We propose a novel algorithm to decompose a 3D object into an atlas of disk-like charts. Decomposition into charts with
controlled shape and topology is relevant in many engineering areas, such as spline fitting, compression and re-meshing.
We produce our chartifications by jointly exploiting the Reeb graph of a guiding function and its gradient aligned flow
paths. The key advancements of our method with respect to similar approaches are: (i) a novel strategy to provably
remove all T-junctions; (ii) a stable system to trace flow paths starting far from critical points; (iii) the exploitation of the
regularity of certain functions under isometries (e.g., harmonic ones) to produce structurally equivalent chartifications
for families of objects posed differently. The charts produced by our system can be of two types: topological quads and
topological octagons. Both of them can be easily gridded to produce full quadrilateral meshes, as we demonstrate in the
second part of the article.
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1. Introduction

Shape chartification is the process of partitioning an
arbitrary surface into a set of charts having simpler
topology and geometry [52]. As demonstrated by recent
research in the field [51, 10, 24, 23], in the CAD/CAE
community it is often convenient to have charts that
can be easily gridded, and also to make sure that the
chartification does not contain T-junctions [36]. Further-
more, chartifications are beneficial in a whole variety of
applications, including remeshing [39, 40, 47, 12], spline
fitting [11], texturing [41, 50], compression [13], shape
approximation [14] and fabrication [26].

Our goal is to produce a chartification that remains
consistent if the surface undergoes deformations that,
at least to some extent, preserve geodesic distances
(i.e. isometries). Moreover, we target a chartification
that is T-junction free and keeps the valence of the
chart vertices as regular as possible. The solution pre-
sented in this paper adopts a topology-driven approach
whose ingredients are Reeb graphs and discrete gradi-
ent flow paths. The core novelty relies in the way they
are combined together to produce the final decomposition.

The Reeb graph of a guiding scalar field is used to
extract a coarse chartification of the surface, isolating
cylindrical and saddle areas, and caps. These initial charts
are then refined by tracing piece-wise linear curves aligned
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with the function gradient, ensuring the elimination
of all T-junctions and the construction of only 4-sided
and rhombus charts. Rombus charts are 8-sided charts
enclosing saddles. The strategy adopted for refining the
coarse Reeb atlas distributes the boundaries of the charts
evenly with respect to the behaviour of the field over the
surface, and sufficiently far away from the critical points
to avoid instability of the chart boundary positioning,
a known critical issue in previous similar approaches
[20, 25]. An overview of the chartification approach is
shown in Figure 1.

While this machinery is agnostic to the function being
used and could potentially be adopted for any function
which admits a Reeb Graph (i.e., Morse-Smale), the
choice of functions which are invariant under isometries is
the key to ensure consistent chartifications across different
poses of the same shape. There is practical evidence
that harmonic functions exhibit a consistent behaviour
when boundary conditions are well placed [2] (e.g., at the
extrema of protuberances). In our experiments we mostly
rely on harmonic functions, producing consistent decom-
positions for shapes belonging to the same class. For
completeness, in Section 6 we show a few chartifications
obtained with alternative functions.

Methods that adopt similar chartification approaches
have been presented in literature, but either they are re-
stricted to a small class of shapes (e.g., tubular [50]) or
suffer from presence of T-junctions or instability in the
quad layout (see Section 2 for a detailed discussion). The
main achievements of our method with respect to existing
ones can be summarized as follows:
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Figure 1: Our chartification algorithm in a nutshell. Left: we start from a triangle mesh and a guiding function; middle left: we extract the
Reeb regions (caps, saddles, cylinders); middle: we refine saddle charts, creating rhombus domains; middle right: we propagate and eventually
delete the T-junctions generated at the previous step; right: we grid each domain to produce a quadrilateral remeshing of the input shape.

• consistency across deformations: the chartification is
primarily guided by the topological structure induced
by the critical points of a harmonic field defined over
the surface, whose critical points are well behaving
with respect to deformations of the surface and there-
fore ensuring consistency of the topological structure
across isometric deformations (Figure 1);

• stability of the chart structure: we propose a method
to trace separatrices of our coarse Reeb charts as flow
paths of the underlying scalar function. The key point
of our tracing system is that we start tracing them far
from critical points (Figure 1(a-b). Other approaches,
for instance [20, 25], trace separatrices starting from
saddle points. We observe that this may lead to un-
stable behaviour, because the gradient is not defined
in critical points and, due to discretization issues, is
also usually unstable nearby;

• T-junction free chartification: our surface charts are
topological quads with no T-junctions. The most re-
cent approach that is able to obtain such a result
[48] deletes T-junctions by using a geometric greedy
stitching algorithm that is not always able to remove
all of the them. Our T-junction removal system is
more general and robust, and always guarantees a T-
junction free chartification (Figure 1(c).

We demonstrate our chartification algorithm in the con-
text of quadrilateral remeshing (Figure 1(d)). In Sec-
tion 5 we discuss a simple yet effective method to map
both 4- and 8-sided charts onto proper quadrangular do-
mains, producing a quadrilateral tessellation of the input
surface. By exploiting the regularity of harmonic func-
tions we also show how to generate consistent quadrilat-
eral meshes of similar shapes having different discretiza-
tion and no cross-parameterization. Differently from the

recently published method [1] which produces quad meshes
with similar structure, our topological approach produces
exactly the same structure (same number of singular ver-
tices and separatrices).

2. Previous work

The chartification process is composed by an earlier de-
composition and (optionally) a per chart parameterization.
General segmentation algorithms [44] may not fulfill all
the necessary requirements. Typical requirements are the
generation of charts with disk-like topology [39] (e.g. for
texturing), or the generation of charts where all the charts
are topological quads. The latter are often called quad
layouts [7] and play a fundamental role in quadrilateral
remeshing [47, 50, 12] and spline fitting [36], where the
tensor product structure of the domains is exploited.

2.1. Function-driven Decompositions

More relevant to our work are chartification processes
driven by some continuous function defined on the bound-
ary of a three-dimensional shape.

The use of a scalar function to drive a mesh tesselation
has been addressed in [20, 19] and further optimized in [25].
In [20] the patch boundaries are generated by both by iso-
contours of the function and orthogonal lines (in practice
authors combine iso-contours of the function f with the
flow paths of a scalar function whose gradient is orthog-
onal to ∇f). The approach is further developed in [19];
there the authors proposed to choose the eigenfunctions of
the Laplace operator as possible scalar functions. In this
case the same method generated a family of quadrangula-
tions, one per each eigenfunction. In this latter approach,
the use of one scalar function, instead of two orthogonal
maps, directly relates the number of quadrangles and the
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number of critical points of f . The approach in [19] has
been further extended in [25] to provide explicit controls
of the orientation and alignment of the quad elements. In
this kind of methods the patch boundaries are generally
made by the flow paths that cross in the critical points of
the eigenfunction (the corners of the quadrangles). Since
an eigenfunction can be regarded as a periodic function,
its period is prescribed by choosing an appropriate eigen-
value. However, there is no guarantee that the period de-
termined in this way is compatible with the orientation
and alignment control. In practice, where the flow paths
do not intersect transversally (i.e. the eigenfunction is not
Morse-Smale) several adjustments are necessary to deal
with particular cases (either partial or total overlaps of the
paths, strangulations, etc.). Thus, the spectral quadran-
gulation method may fail to generate high quality quads
when complex alignment controls are imposed. The idea
of considering Morse-Smale complexes is further addressed
in [53]; in this case instead of an eigenfunctions and its
gradient field, the authors adopt the principal curvature
directions [15]. The resulting tessellation is anisotropic,
well aligned with the principal curvatures but might fails
with the tessellation of handles if the input mesh contains
edge whose length is larger than the size of these handles.

A small number of articles are addressing the problem
of generating tessellations with large tiles. By reducing
the number of tiles, the needs of a topological guide is
necessary, and the existing methods are exploiting Morse
functions to address this challenge. Branch et al. [9] used
Morse-Smale complexes, by connecting critical points us-
ing flow paths). Lu et al. [33] described a method to build
a quadrangulation with the aim to drive the number of
tiles only by the topology of the mesh, with good combi-
natorial properties, e.g. the degree of each vertex of the
quadrangulation is four or five. On the contrary, the n-
loop framework [21] handles the question of tessellating a
surface with large quadrangles, adjusting the location of
the paths with respect to the geometry, but with the lim-
itation that paths are edge-based, and the computation it
is not computationally fast (being not driven by a scalar
function).

Tierny et al. [48] described a method to drive a quad-
rangulation using a scalar function, exploiting the associ-
ated Reeb graph to generate cylindrical and disc tiles, as
a structure for a small quadrangulation. In their work,
the scalar function is exploited as a parameter to adjust
the quadrangulation and to avoid multiple intersections
in correspondence of critical points or small slices among
to critical level sets. Analogously, Bærentzen et al. [2]
proposed a surface manifold partition into topologically
disk-like and annular regions driven by a mesh-skeleton
co-representation. Such a dual representation coupled the
mesh vertices with a Reeb graph-like skeleton computed
with respect to an harmonic function. Then, a template-
driven quad refitting was applied to each region. The prac-
tical robustness of the harmonic function with respect to
intrinsic model deformations made the skeleton suitable

for character animation and sculpting. Similarly to [48]
and [2], we also adopt the Reeb graph to drive an initial
mesh subdivision, whose elements are guaranteed to be
topological discs and cylinders. However, in our approach,
discs are used to isolate critical points of the function,
contours and flow paths are computed far from criticali-
ties and cylinders are adopted to decompose the rest of
the surface.

2.2. Quad Meshing

We review here quadrilateral meshing processes that
start from a coarse decomposition of the input object into
charts. We point the reader to [7] for a more compre-
hensive discussion on quad meshing and alternative tech-
niques. The majority of algorithms start from a decompo-
sition into quadrilateral charts [49, 25, 17, 48, 27] (possi-
bly containing T-junctions) and employ a local, per-chart,
parameterization to project vertices on the target sur-
face. Notable exceptions to this rule are [45, 34], where
quadrangulation starting from general polygonal decom-
positions is applied in the context of animation. When
charts are topological quads, the so generated quadrilat-
eral meshes will replicate the singular structure if the de-
composition, having as irregular vertices (i.e. not valence
four) all and only the points where more (or less) than four
charts meet. The quadmesh connectivity is generated by
gridding each chart. Attention must be paid to the tran-
sitions along boundaries shared between adjacent charts,
especially in presence of T-junctions. Boundaries should
be split in the same number of quads on both sides. This is
a global problem that can be solved at the cost of two lin-
ear equations per chart, imposing that opposite boundaries
of the same chart are be subdivided in the same number
of quads [49, 8]. Usai and colleagues [50] observed that
such a formulation would fail when multiple charts appear
on both sides of the same boundary, and proposed a more
general and efficient formulation. Notice that if charts con-
tain a small number of boundaries (e.g. less than 7), they
can be meshed right away by exploring the space of quad
tilings [46], as done in [43]. Chart boundaries can also be
relaxed, in order to better follow the geometry or align to
sharp creases. Both [47, 50] illustrate how to extend the
abstract domain technique [40] to the quadmesh case. In
Section 5 we apply a combination of the techniques dis-
cussed in [49, 50] to produce quadrilateral meshes starting
from our chartification process. Differently from them,
our approach guarantees provably correct vertex-domain
assignments (Section 7).

3. Theoretical background

The theoretical tools which allow us to build our charti-
fication are Reeb graphs and flow paths. We recall in this
Section the key definitions we will use later on.

3



(a) (b) (c)

Figure 2: Geometric representation of the Reeb graph of the cactus
model (a), its overlay onto the model (b), and the corresponding de-
composition (c) obtained using an harmonic function with boundary
conditions set on the protrusion tips of a cactus model.

3.1. Reeb graph

The Reeb graph of a manifold M with respect to real-
valued Morse function f , RG(M,f), is defined as the one-
dimensional finite and connected simplicial complex whose
nodes correspond to the critical points of f and whose arcs
join pairs of critical points when the contours evolve from
one critical point to the other without changing topology.
The original definition of Reeb graph can be found in [42],
while for detailed discussions of its properties and applica-
tion we refer to [4, 3]. The Reeb graph definition requires
f to be Morse and simple, that is, a function whose criti-
cal points are non degenerate and injective on the critical
points. The Reeb graph has been widely used in the litera-
ture to analyse 3D shapes, and its extension to non-Morse
and non-simple functions have been presented in [5]. The
Reeb graph naturally induces a decomposition of M , or of
its discrete representationM, into connected regions, each
corresponding to an arc the simplicial complex. Figure 2
shows an example of the relation between the Reeb graph
and the corresponding surface decomposition into regions.
In this work, we base our method on the algorithm for the
extraction of the Extended Reeb Graph, as described in
[6], where we detailed how to deal with degenerate and
non-simple saddles.

3.2. Gradients and integral lines on a triangle mesh

Gradients and integral lines are the main ingredients to
build our chartification. We assume M to be represented
by a triangle meshM, and f such as to guarantee discrete
differentiability conditions, that is, for any edge (vi, vj) of
M we assume f(vi) 6= f(vj).

Gradient. In literature there are several methods to es-
timate gradient vector fields [18] on each mesh element
(i.e., vertices, edges or triangles). Being the function de-
fined on vertices and linearly interpolated within each tri-
angle, the gradient field is piece-wise constant. To com-
pute per-triangle gradients we rely on the discretization
proposed in [6], which straightforwardly applies the defi-
nition of the gradient of a function of being perpendicular

to its level sets. Alternative definitions, such as the one
derived from the Green-Gauss method [30] could be used
instead. More in detail, we define the gradient of f on
a triangle t(vi, vj , vk), ∇f |t, as the solution of the 3× 3
linear system: vj − vi

vk − vj
nt

∇f |t =

 f(vj)− f(vi)
f(vk)− f(vj)

0

 . (1)

where nt is the unit length normal of t. In practice, we
impose that the projection of the gradient of f on the
plane induced by a triangle is equal to the vector (f(vj)−
f(vi), f(vk) − f(vj), 0). When necessary, we approximate
the gradient at the vertices and edges of the mesh as the
weighted average of all the gradients of the triangles that
are incident to an element (2 triangles per edge, n ≥ 3
triangles per vertex). Weights are proportional to the area
of the corresponding triangles.

Integral lines. They allow us to move on the manifold fol-
lowing the gradient direction. Formally, an integral line
γ : R→M of f is defined as the maximal path onM whose
velocity vectors, or tangent vectors, agree with the gradi-
ent of f , meaning that ∂γ

∂s = ∇f(γ(s)) for all s in R. Each
integral line is open at both ends, having its origin (i.e.,
lims→−∞ γ(s)) and its destination (i.e., lims→+∞ γ(s)) at
critical points of f [37].

It can be shown that integral lines are pairwise disjoint,
that is, if their images share a point, then they are the same
line. The images of integral lines cover the whole M , but
if we consider the integral lines associated to the critical
points of f , their images define a partition of M . This par-
tition decomposes M into regions of uniform flow. Indeed
the concepts of the descending manifold and the ascending
manifold of a critical point p are introduced respectively as
the set D(p) of points that flow towards p or the set A(p)
of points that originate from p. When the function f is
a Morse-Smale function over M , an ascending 1-manifold
intersects a descending 1-manifold at exactly one point
[37]. This condition is also known as transversality and it
is a stable and generic condition, which is independent of
small perturbations of the function f and M .

On a triangle mesh, moving according to ∇f means fol-
lowing the flows defined as the steepest ascending or de-
scending paths with respect to the gradient. Therefore,
flow paths are meant to approximate for meshes the con-
cept of integral lines and a flow path ϕ is a piecewise lin-
ear curve over the mesh faces constituted by a list of nodes
that we find intersecting the gradient vector with the edges
of the mesh. From a critical saddle s, at least four flow
paths start (more if the saddle is degenerate), two ascend-
ing and two descending paths. For this reason, for each
saddle, we follow the first four (or more) steepest ascend-
ing and descending edges incident in it as the first edge
of an flow paths moving from that. Note that flow paths
on meshes never cross, but can merge (for instance, due
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Figure 3: (a): Details of the self-adaptive chartification with a=15
and b=85. (b) Reeb graph and (c) contour-based decomposition of
a cactus model.

to numerical approximations). In any case, once merged
they cannot separate any more.

4. Shape chartification

The chartification process works in three steps. Given
RG(M,f), we start with the initial coarse chartification
induced by the Reeb graph onM, using the algorithm [6].
This initial subdivision separates cylindrical areas from
saddle areas and caps, that is, the regions containing the
maxima and minima of f (Figure 1a). In the second step,
a rhombus chart for each saddle point is generated (Fig-
ure 1b). The chartification is finalized by removing all
the T-junctions generated at the second step, producing a
chartification containing only 4- and 8-sided regions, and
having no T-junctions (Figure 1c). In the remainder of the
section we will detail each of these three steps.

4.1. Coarse Reeb Chartification

Based on RG(M, f), we extract a coarse chart decom-
position by cutting the surface along the isocontours of f ,
in the range spanned by arcs. Given the arc e of RG(M, f)
and given a value fa ∈ Im(f), we call a contour the curve
γa defined by

γa = f−1(fa) ∩M|e,

where M|e is the region of M corresponding to the arc
e (see Fig. 4).

Figure 4: Contours on a cactus model.

We may consider the process of drawing contours as cut-
ting the arcs of RG(M, f), which is equivalent to chang-
ing the size of the Reeb charts and the position of their
boundaries, while keeping their adjacency consistent with
the Reeb graph.

Our goal is to produce a chart decomposition whose
boundaries are far enough from the critical points of f ,
and possibly with uniform size. To reach this goal, a key
point is the choice of the real values fa and fb, which are
used to trace the iso-contours γa, γb (Figure 4). Indeed,
they control the distance between the contours and the
critical points and, therefore, the size of the charts.

We noticed that, especially for harmonic functions, the
variation of f tends to concentrate around maxima and
minima. This means that if we drive the cutting process
by a uniform split of the image of e, the contours could lo-
calize quite close to critical points and could split the area
spanned by e into two patches with unbalanced vertex dis-
tribution. Instead, we use an adaptive process. Given an
arc of the RG(M, f), whose nodes are two critical points
v1 and v2, we split the range (f(v1), f(v2)) of Im(f) in
intervals of size δ defined as follows:

δ =
|f(v2)− f(v1)|

n
,

and consider fa = f(v1) + δ ia, with

ia = min
j∈{1,..,n}

{#{v ∈M|e | f(v) ≤ jδ} ≥ a% of #M|e}

where #A is the cardinality of the set A. The choice
of ia corresponds to the minimum number of intervals of
Im(e) that guarantees the interval [f(v1), δia] ∈ Im(e)
contains an appropriate number of mesh vertices (the ap-
propriateness is driven by the parameter a). We proceed
similarly for fb, ib. In all our tests we set n = 30. Note
that a and b are free parameters that we can tweak to
control the size of the charts. In simpler words, for each
region corresponding to an arc e, we count the total num-
ber of vertices belonging to the region and, moving away
from the contours corresponding to nodes of e, we insert
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two contours containing respectively the a% and b% of
the vertices (Figure 3). In this way, we defined a method
which adapts not only to the variation of f but also to the
distribution of points on the mesh.

4.2. Rhombus charts

The first step has produced charts that nicely cover the
areas identified by ERG nodes. The next important step
is the construction of well behaved patches around saddle
points, which are handled by the rhombus charts. Rhom-
bus charts are special 8-sided charts built around saddle
vertices and bounded by four flow paths and three iso-
contours .

To describe the generation of a rhombus chart we refer
to the example in Figure 5. Starting from a saddle point s,
we follow the two flow paths opposed to the orientation of
the saddle, until we reach the border of another chart. This
operation identifies two points, p1, p2, located at opposite
sides of the same iso-contour. Let us now focus on point
p1 (the same process applies to p2). To define two lateral
boundaries of the rhombus chart we move laterally from
p1 along its iso-contour, finding two points a, b. From a
and b we follow the flow paths up to the higher contours,
finding the points qa and qb. Applying the same process
to p2, we define the other side of the rhombus chart.

The shape and size of the chart depends on the distance
between p1 and a, b. To fix this degree of freedom, we
center a sphere at p1, using as radius the value r = ld,
where l is the average edge length of the mesh and d is a
parameter exposed to the user to control the chart size. In
all our experiments we used d ∈ [1, 10].

For each rhombus chart, eight new T-junctions are gen-
erated. In the subsequent step of the algorithm we will re-
move them, producing the output chartification composed
of only 4- and 8-sided charts, without any T-junction.

4.3. T-junctions removal

We detail here how we propagate and eventually delete
the eight T-junctions per rhombus chart introduced at the
previous step, producing the final chartification.

We start from the observation that every corner of a
rhombus chart is defined as the intersection between an

Figure 5: Construction of rhombus charts

iso-contour of f and a flow path. For each such vertex,
we therefore continue tracking the steepest ascending (or
descending) direction until we hit the boundary of a cap
region (i.e. a region containing either a maximum or a
minimum of f). By definition, flow paths will converge to
one of these regions and will never intersect to each other,
therefore no new T-junctions will appear during this pro-
cess. In practice, due to numerical errors, merging between
two adjacent paths may occur. Should this be the case,
we use the parameter d (which determines the distance
between adjacent flow paths) to impose a bigger distance
between such paths, avoid intersections.

At this point, the chartification is composed of as many
rhombus charts as the number of saddle points in f , as
many caps as the number of maxima and minima in f , and
all 4-sided charts in between (Figure 6). In order to com-
plete the chartification process we need to refine the caps,
also deleting the T-junctions arose along their boundaries
during the aforementioned propagation process.

For caps having only two T-junctions generated by two
incoming flow path lines, we simply add two new vertices
on the boundary of the chart, and trace two flow paths
starting from them. By definition, these paths will termi-
nate in another cap region, and never in a saddle region.

After this refinement step, we process all the cap charts
having even number of sides (at this point guaranteed to
be more than two), and we split the cap into topological
quads. To do so, we consider all the vertices at the bound-
ary of the chart and alternatively connect them with the
critical point centered at the cap (see Figure 7 for an ex-
ample).

The algorithm described so far can provably provide a
chartification for any case in which cap regions with odd
number of sides do not occur. In case such caps arise, a
valid chartification can always be produced by refining the
chartification with a step of Catmull-Clark subdivision (i.e.
halving all the chart sides and adding one new vertex per
chart). Nevertheless, such refinement was never necessary
in our experiments. To the best of our understanding,
this unlucky configurations appear only when the function
f does not observe the transversality condition of Morse-
Smale complexes [37].

5. Quad Meshing

The chartifications produced so far are characterized by
a coarse yet simple structure almost entirely made of reg-
ular vertices (i.e. vertices having four incident charts).
The only irregular vertices occur nearby local maxima and
minima, where half of the integral lines used to suppress
T-junctions produce valence three vertices, and the other
half meet at a vertex with higher valence (Figure 7). This
is a fundamental property to ensure quality meshes with
well-shaped quads having angles close to 90◦ (Figure 8).
In the remainder of the section we discuss how to pro-
cess such a chartification to produce a dense quadrilateral
mesh. The goal is to grid each patch, making sure that
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Figure 6: An intermediate step of our chartification process. Rhombus charts have been created, and the newly created T-junctions propagated
along the flow lines until they reached the boundary of cap regions. Refining the caps will generate the final chartifications.

chart boundaries are tessellated with the same number of
elements at both sides to achieve mesh conformity.

Similarly to previous approaches [50, 47], we proceed
with a two steps approach: we first map each chart into a
m×n parametric square; then, we use the integer iso-lines
of the parametric space to design the mesh connectivity.
We remind the reader that our decompositions is hybrid, as
it contains 8-sided charts around saddle points, and 4-sided
charts everywhere else. Previous methods do not support
octagonal charts, thus cannot be used as-is. We extend
[50, 47] by providing a novel map from 8-sided charts to
quadrilateral parametric domains, and also by replacing
their heuristic vertex/domain assignment with a provably
robust intrinsic assignment that exploits our field-driven
tracing system (Section 7).

Map generation. Here we detail how to map each chart to
the parametric space. We distinguish between maps that
bring a quadrilateral chart to a [0,m] × [0, n] parametric
square (Φquad) to maps that bring an octagonal chart to
a [0, a+ b+ c]× [0, d] parametric square (Φoctagon). Maps
are computed through the well known Tutte embedding,
implemented using cotangent weights [35] to discretize the
Laplace operator (∆) so as to produce as-conformal-as-
possible (i.e., angle preserving) maps. For a visual example
of how these maps are realized, please refer to Figure 9.

B0 

B1 

B2 

B3 

Let B0, B1, B2, B3 be the counter
clock-wise list of piece-wise linear bound-
aries of a given patch. We denote the
length of the i-th boundary as |Bi|, and
the length of the same boundary up to

the point p ∈ Bi as |p|. We realize the
map Φquad and compute the uv coordi-
nates of the parametric square by solving the following
Laplace equation, subject to Dirichlet boundary condi-
tions:

u = 0 ∀p ∈ B0

u = n ∀p ∈ B2

u = n · |p||B1|
∀p ∈ B1

u = n · |p||B3|
∀p ∈ B3

∆u = 0 otherwise


v = 0 ∀p ∈ B1

v = m ∀p ∈ B3

v = m · |p||B0|
∀p ∈ B0

v = m · |p||B2|
∀p ∈ B2

∆v = 0 otherwise

B0 
B1 

B2 

B3 
B4 B5 

B6 

B7 

Similarly, given the ordered list
B0, B1, ..., B7 representing the piece-wise
linear boundaries of an octagonal patch,
we realize the map Φoctagon and com-
pute the uv coordinates of the paramet-
ric square as:


u = 0 ∀p ∈ B0, B1, B7

u = d ∀p ∈ B3, B4, B5

u = d · |p||B2|
∀p ∈ B2

u = d · |p||B6|
∀p ∈ B6

∆u = 0 otherwise



v = 0 ∀p ∈ B6

v = a+ b+ c ∀p ∈ B2

v = a · |p||B5|
∀p ∈ B5

v = a · |p||B7|
∀p ∈ B7

v = a+ b · |p||B4|
∀p ∈ B4

v = a+ b · |p||B0|
∀p ∈ B0

v = a+ b+ c · |p||B3|
∀p ∈ B3

v = a+ b+ c · |p||B1|
∀p ∈ B1

∆v = 0 otherwise

Notice that the so generated maps cannot be truly con-
formal, as we are constraining the boundary of the para-
metric domain to a fixed square, but in general will have
little angle distortion and produce good tessellations (Fig-
ure 8, bottom).
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Grid conformity. The map Φquad associated to each
quadrilateral domain has two degrees of freedom (m,n)
which control the integer size of the parametric space.
Similarly, each octagonal map Φoctagon has four degrees
of freedom (a, b, c, d). To produce a globally conforming
quadrilateral mesh (i.e. a mesh without T-junctions [36])
these values cannot be fixed locally, but rather ensure that
side-adjacent patches sample the shared boundary with
the same frequency. Several papers have shown that these
degrees of freedom can be fixed by solving an integer lin-
ear programming problem, where each unknown represents
the number of intervals in which a boundary will be split
and is restricted to be strictly positive [31, 50, 8, 49]. We
implemented the technique described in [50], which op-
timizes for as equiareal as possible quads. In Figure 8
we show various quadrilateral meshes computed with this
technique.

6. Results

We implemented our chartification algorithm in C++,
extending the library developed for [6] and using Eigen [22]
and CinoLib [29] for numerics and geometry processing
(harmonic functions, quad mesh generation). All tests
were run on a MacBook Pro equipped with a 2,3 GHz
Intel Core i7 processor on which we installed an Ubuntu
16.04 virtual machine with three CPU and 5GB of RAM
dedicated. Running times vary from fractions of a second
for moderate size models to a few seconds for high resolu-
tion models (see Table 1). In Figures 8 and 13 we showcase
a number of decompositions produced with our method.

6.1. Driving functions

Our chartifications are fully driven by the underlying
function f . We only require such function to be Morse-
Smale. For all the results shown throughout the paper
we used harmonic functions, obtained solving the Laplace
problem 4f = 0 subject to manually prescribed Dirichlet
boundary conditions on maxima and minima. In Figure 11

Figure 7: Type 1 minimum patch of a cactus turned into 4-sided
charts.

Model Size tfield treeb tchart tT−rem ttot

Cactus 5K 0.04 0.06 0.07 0.15 0.29
Dancer #1 16K 0.10 0.19 0.25 0.5 0.98
Dancer #2 26K 0.13 0.33 0.43 0.74 1.56
Flamingo 26K 0.13 0.26 0.3 0.44 1.05
Hand (Fig 12) 180K 1.43 1.13 1.79 2.62 5.97
Hands (Fig 8) 14K 0.07 0.18 0.18 0.34 0.72
Horse 46K 0.25 0.47 0.66 1 2.22
Kitten 19K 0.19 0.21 0.27 0.36 0.89
Mug 11K 0.05 0.15 0.18 0.24 0.6
Rocker Arm 10K 0.07 0.12 0.15 0.23 0.52
Sphere 8K 0.08 0.14 0.15 0.19 0.5
Tori (Fig 11) 4K 0.03 0.06 0.10 0.12 0.29
Twirl 5K 0.04 0.05 0.07 0.13 0.31

Table 1: Performances of our method. For each model we report its
size (number of vertices), the time necessary to produce the input
driving field (tfield), and running times for each algorithmic step: gen-
eration of the ERG (treeb); initial chartification (tchart); T-junctions
removal (tT−rem); and total (ttot). All times are expressed in sec-
onds. The line corresponding to the hands in Figure 8 and the tori
in Figure 11 report average data.

we show two chartifications obtained with alternative func-
tions. Precisely, we used the height function (i.e. the per
vertex z coordinates), and the bi-harmonic function (sim-
ilar to the harmonic, but obtained solving 42f = 0).

6.2. Structural properties

Our chartifications are characterized by a coarse yet sim-
ple structure almost entirely made of regular vertices. The
very same structure is inherited by the subsequent quadri-
lateral meshes, of which the initial chartification represents
the coarse layout [12]. The only irregular vertices occur
nearby local maxima and minima, where half of the in-
tegral lines used to suppress T-junctions produce valence
three vertices, and the other half meet at a vertex with
higher valence (Figure 7). This is a fundamental property
to ensure quality meshes with well-shaped quads having
angles close to 90◦ (Figure 8). Gridding the 8-sided charts
for quadrilateral remeshing introduces four additional va-
lence three vertices per chart, located at the corners of the
parametric space (Figure 9).

6.3. Structural coherency

An interesting outcome of our research is that we can
exploit the ability of certain functions (e.g. the harmonic
ones) to be stable under isometries, thus permitting the
generation of topologically coherent chartifications of the
same object in different poses. We demonstrate this prop-
erty in Figure 8, where consistent chartifications of the
same hand in four different poses are provided. Notice
that each decomposition contains exactly the same number
of quadrilateral and romboidal charts, and thus produced
quadrilateral meshes that embed the same quad layout
(i.e. number and connectivity between irregular vertices)
[7]. To this end, we differ from the recently published [1],
which produces quad meshes with only similar structure.

6.4. Computational cost

The combinatorial complexity of the Reeb graph ex-
traction is O(n log n), where n is the number of vertices
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Figure 8: Top: four different poses for the hand model and their associated chartifications. All the meshes have different vertex count and
connectivity. Middle: quadrilateral meshes obtained by gridding each domain in a conforming way (see Section 5 for details). Bottom: mesh
close ups; our as-conforming-as-possible map generates well shaped quads with angles close to 90◦.

of M; efficient algorithms for its computation were pro-
posed in [16, 38]. Denoting |E| the number of edges of the
Reeb graph RG , the set of all the middle contours ∂S is
computed by inserting 2|E| contours in M (two per arc)
with O(|E|n) operations. During this phase, the complex-
ity of the model may increase with the insertion of new
vertices that belong to contours in ∂S. Since each rhom-
bus definition acts only on a single chart Si, it takes O(|Si|)
operations, where |Si| denotes the number of elements
of Si. If that the insertion of ∂Si into M adds w new
elements to M, the overall cost of the rhombus charts
is O(n + w), which is O(|E|n). Therefore, the combi-
natorial complexity of the essential shape chartification
is O(max(n log n, |E|n)).

For the uniformation of the mesh, we need to connect
every vertex of each rhombus chart to the closest maximum
or minimum region. Again, only one region at time is
involved, so it will be O(|Si|) operations per each chart Si

that we cross. Being I the set of indices such that Si is not
a max/min region, we have O(

∑
i∈I |Si|) operations for

every vertex, and eight vertices per saddle. We can add
to this calculation the cost of inserting two vertices and
lines on the k = 2 max/min regions, being basically the
same operation, hence getting a uniform mesh with four
or more vertices in the max/min regions needs O((8s +
2m) ·

∑
i∈I |Si|), with s the number of saddles and m the

number of k = 2 max/min regions. Obviously, we will
generally be summing in a much smaller set than I since
we do not have to cross every region but just to follow the
steepest ascending/descending direction.

T-junctions elimination is computed with 1
2 (8s+2m) =

4s + m operations for every max/min region because we
connect half of the vertices to the critical point. Together
with the previous result, this gives (8s+ 2m) ·

∑
i∈I |Si|+

(4s + m) ·
∑
i6∈I |Si| = 6(2s + m) · n, so in conclusion we

pass from the essential chartification to a coarse quad tes-
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Figure 9: To produce dense quadrilateral meshes we map each
patch into a [0,m] × [0, n] square, and use the integer isolines of
the parametric space to design the quad mesh connectivity. Letters
a, b, c, d,m, n represent the number of intervals in which each bound-
ary will be split. Notice that deciding not to split any boundary
leads to a 1×1 grid for the quadrilateral domain, and to a 3×1 grid
for the octagonal domain.

sellation with O((2s+m)n).

7. Comparisons

We compare here against the skeleton-driven coarse
chartification algorithms presented in [50, 31]. As often
happens there is no clear winner, but rather pros and
cons for both methods. Skeleton-driven approaches give
their best with tubular shapes that are well described by a
curve-skeleton, producing extremely coarse chartifications
with well-shaped domains. On the same class of shapes,
our method is not able to be as coarse and regular, mainly
because saddle points of the guiding function tend to arise
where different branches of the skeleton meet, generating a
number of long and tiny quadrilateral charts that emanate
from each octagonal chart containing a saddle (Figure 12).
On the other hand, our approach is far more general and
poses almost no limitation on the class of shapes that can
be chartified, including objects such as a mug, which could
not be processed with [50, 31] because its axis is external
with respect to the shape, and therefore it does not admit
a skeletal representation [32].

Considering more technical aspects, we also observe that
[50, 31] and similar approaches (e.g. [28]) project the
domain decomposition on the surface with simple ray-
casting. While this procedure performs well on nice and
smooth shapes, it may easily fail on detailed or noisy
shapes, producing wrong vertex/domain assignments or
creating ill-defined domains with intersecting boundaries.
Heuristics can often cure wrong vertex/domain assign-
ments [47] but no guarantees of success can be provided. In

Figure 10: A mosaic of different chartifications and their associ-
ated quadrilateral remeshing. A variety of different scenarios have
been considered, ranging from complex shapes embedded with sim-
ple functions (e.g., the twist at the top-left corner) to simple shapes
and complex functions (e.g. the sphere in the middle).

our method, boundaries between adjacent domains are de-
fined as integral curves of a scalar field. As a result, bound-
aries are traced directly on the surface of the object, and
vertex/domain assignment is implicit. This allows us to
provably produce a correct chartification and subsequent
per chart parameterization, regardless the complexity of
the shape being processed or the amount of surface details
(Figure 13).

8. Conclusions, limitations and future work

We introduced a novel topological method to decompose
a 3D object into an atlas of 4- and 8-sided surface charts.
These decompositions are important in a number of ap-
plications, ranging from reverse engineering to computer
animation. The main contributions of our approach con-
sist in two robust and easy to implement methods to trace
chart boundaries that align to the gradient of a guiding
field, and remove all T-junctions. While special purpose
approaches (e.g. skeleton-driven chartification [50]) may
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Figure 11: Our algorithm is agnostic about the function being used.
Any univariate Morse-Smale function defined on the object can be
used to drive the chartification process. Here we show a torus char-
tified using three different functions: height (left column), harmonic
(middle column) and bi-harmonc (right column). For each example
we show the function (top line), the resulting chartification (middle
line) and the associated quadrilateral remeshing (bottom line).

be superior in terms on number and shape of each chart,
our method is far more general as it applies to any closed
3D surface, and it does not rely on heuristics to assign
vertices to each domain. Indeed, tracing chart boundaries
directly on the shape our method is guaranteed to always
produce a valid chartification and accompanying parame-
terization.

On the downsides, the chartifications we obtain tend to
contain extremely anisotropic charts nearby saddle points,
and triangular (or nearly triangular) charts around polar
regions (Figure 7). While these charts are harmless in the
context of quadrilateral remeshing, in applications such as
reverse engineering they may produce dramatically degen-
erate patches around critical points; a clearly undesired
configuration in CAD applications. Nevertheless, this be-
haviour can be alleviated by locally relaxing the corners of
the offending charts while fixing the global topology, for
example iteratively re-positioning such corners at the cen-
ter of the surface patch containing all the charts incident
to it. Similar heuristics could also be used to globally re-
lax the chartification and align it to sharp creases or other
relevant features. We believe this type of post processing
is beyond the scope of the current paper, and we leave it
as a future work.

Finally, we plan to lift this machinery one dimension

Our
chartifications

Skeleton-driven
coarse quad layouts

28 charts 45 charts

70 charts 80 charts

48 charts 145 charts

45 charts

Figure 12: Visual comparisons between our chartification method
(right) and the skeleton-driven coarse quad decomposition described
in [50] (left). While skeleton-driven methods tend to produce coarser
decompositions, they can only process tubular shapes that admit a
skeletal representation, and are not suited for objects like a mug.

up to create volumetric decompositions. To this end, we
observe that most of the ingredients we rely on (e.g. the
Reeb graph and iso-contours) naturally extend to volumes.
What is currently missing, is a method to trace the equiv-
alent of integral curves on surfaces, which should comple-
ment iso-surfaces to bound each volumetric domain. Re-
search on this topic is currently ongoing within our re-
search group.

Acknowledgments

The authors would like to thank all the members of the
Shape Modeling Group at CNR-IMATI for their valuable
support, and to professor Mauro Beltrametti from Uni-
versity of Genoa for his precious help. Special thanks
are also given to the anonymous reviewers for their com-
ments and suggestions. This work has been supported by
the internship program IMATI/TIROCINIO/1/2016/GE

11



Domain A Domain BDomain A Domain B

surface

surface
integral
curve

integral
curve

Domain A Domain B

Domain 
A

Dom
ain

 B

Figure 13: Previous methods for chart parameterization rely on heuristics to assign each mesh vertex to the correct domain. In [50] and
ray casting along surface anti-normal is used (top). While this strategy works if the surface is nice and fair (top left), wrong vertex-domain
assignments may occur for detailed surfaces (top right). In our approach separatrices between charts are defined directly on the surface and
embedded in the tessellation, therefore vertex-domain assignment is implicit (bottom).

by CNR-IMATI and partially supposed by the ERC Ad-
vanced Grant CHANGE contract N.694515.

Bibliography

[1] Omri Azencot, Etienne Corman, Mirela Ben-Chen, and Maks
Ovsjanikov. Consistent functional cross field design for mesh
quadrangulation. ACM Trans. Graph., 36(4):92:1–92:13, 2017.

[2] J. Andreas Bærentzen, Rinat Abdrashitov, and Karan
Singh. Interactive shape modeling using a skeleton-mesh co-
representation. ACM Trans. Graph., 33(4):132:1–132:10, July
2014.

[3] S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi,
C. Landi, L. Papaleo, and M. Spagnuolo. Describing shapes
by geometrical-topological properties of real functions. ACM
Computing Survey, 40(4):1–87, 2008.

[4] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb
graphs for shape analysis and applications. Theoretical Com-
puter Science, 392(1):5 – 22, 2008. Computational Algebraic
Geometry and Applications.

[5] Silvia Biasotti, Bianca Falcidieno, and Michela Spagnuolo. Ex-
tended Reeb Graphs for Surface Understanding and Descrip-
tion, pages 185–197. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2000.

[6] Silvia Biasotti, Giuseppe Patanè, Michela Spagnuolo, Bianca
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