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Abstract. We analyze the performance of a state-of-the-art domain decomposition
approach, the Finite Element Tearing and Interconnecting Dual Primal (FETI-
DP) method [1], for the efficient solution of very large linear systems arising from
elliptic problems discretized by the Virtual Element Method (VEM) [2]. We provide
numerical experiments on a model linear elliptic problem with highly heterogeneous
diffusion coefficients on arbitrary Voronoi meshes, which we modify by adding nodes
and edges deriving from the intersection with an unrelated coarse decomposition.
The experiments confirm also in this case that the FETI-DP method is numerically
scalable with respect to both the problem size and number of subdomains, and its
performance is robust with respect to jumps in the diffusion coefficients and shape
of the mesh elements.

1 Introduction

Polytopic meshes allow the treatment of complex geometries, a crucial task
for many applications in computational engineering and scientific computing.
We consider here the problem of preconditioning the Virtual Element Method
(VEM), which can be viewed as an extension of the Finite Element Method to
handle such a kind of meshes. In view of a possible parallel implementation of
the method, we consider a state-of-the-art domain decomposition approach,
the Finite Element Tearing and Interconnecting Dual Primal (FETI-DP)
method. It has been proved that the FETI-DP method is still scalable when
dealing with VEM, under the assumptions that the subdomains, obtained
by agglomerating clusters of polygonal elements, are shape regular [3]. Such
an assumption can be quite restrictive. In practice, it reduces to asking that
the fine tessellation is built as a refinement of the previously existing coarse
subdomain decomposition. This, of course, does not generally hold, so, in
order to apply FETI-DP in a more general case, we propose to build the coarse
decomposition independently from the tessellation, and modify the latter by
inserting nodes and edges deriving from “cutting” it with the macro-edges of
the subdomains. Of course, the resulting modified tessellation will possibly
contain nasty elements with very small edges. Numerical tests do however
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show that FETI-DP is quite robust in this respect, providing satisfactory
results also in this framework.

This paper is organized as follows. A basic description of VEM is given
in Section 2. The FETI-DP method is introduced in Section 3, whereas the
algorithm for partitioningΩ into subdomains and modifying the mesh is given
in Section 4. Numerical experiments that validate the theory are presented
in Section 5.

2 The Virtual Element Method (VEM)

In this paper we focus on the numerical solution of the following model elliptic
boundary value problem of second order discretized with VEM

−∇ · (ρ∇u) = f in Ω, u = 0 on ∂Ω, (1)

with f ∈ L2(Ω), where Ω ⊂ R2 is a polygonal domain. We assume that the
coefficient ρ is a scalar such that for almost all x ∈ Ω, α ≤ ρ(x) ≤ M for two
constants M ≥ α > 0. The variational formulation of equation (1) reads as
follows: find u ∈ V := H1

0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ V, (2)

with

a(u, v) =

∫

Ω

ρ(x)∇u(x) · ∇v(x) dx, (f, v) =

∫

Ω

f(x)v(x) dx.

We consider a family {Th}h of tessellations of Ω into a finite number of
simple polygons K, and let Eh be the set of edges e of Th. For each tessellation
Th, we assume there exist constants γ0, γ1, α0, α1 > 0 such that:

– each element K ∈ Th is star-shaped with respect to a ball of radius
≥ γ0hK , where hK is the diameter of K;

– for each element K ∈ Th the distance between any two vertices of K is
≥ γ1hK ;

– Th is quasi-uniform, that is, for any two elements K and K ′ in Th we
have α0 ≤ hK/hK′ ≤ α1.

For each polygon K ∈ Th we define a local finite element space V K,k as

V K,k = {v ∈ H1(K) : v|∂K ∈ C0(∂K), v|e ∈ Pk(e) ∀e ∈ EK , ∆v ∈ Pk−2(K)},

with P−1 = {0}. Then, the global virtual element space Vh is defined as

Vh = {v ∈ V : w|K ∈ V K,k ∀K ∈ Th}.

We will consider the following degrees of freedom, uniquely identifying a
function vh ∈ Vh:
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– the values of vh at the vertices of the tessellation;
– for each edge e, the values of vh at the k − 1 internal points of the k + 1

points Gauss-Lobatto quadrature rule on e;
– for each element K, the moments up to order k − 2 of vh in K.

Due to the definition of the discrete space Vh, the bilinear form a in equa-
tion (2) is not directly computable on discrete functions in terms of the
degrees of freedom. The VEM stems from replacing a with a suitable approx-
imate bilinear form ah. Thus, the discrete form of problem 1 reads as follows:
find uh ∈ Vh such that

ah(uh, vh) = fh(vh) ∀ vh ∈ Vh. (3)

Further details on how the bilinear form ah, as well as the study of the
convergence, stability and robustness properties of the method can be found
in [4,6,5]. For further details on the implementation of the method we refer
to [2].

3 The FETI-DP Domain Decomposition Method for
the VEM

Since the degrees of freedom corresponding to the edges of the polygons
in the tessellation are nodal values, the FETI-DP method is defined as in
the finite element case. More precisely let Ω be split as Ω = ∪ℓΩ

ℓ, with
Ωℓ = ∪K∈T ℓ

h
K, where T ℓ

h are disjoint subsets of Th. In view of the quasi
uniformity assumptions on the tessellation Th and assuming that also the
decomposition into subdomains is quasi uniform, we can introduce global
mesh size parameters H and h such that for all ℓ and for all K we have
hK ≃ h and diam(Ωℓ) ≃ H. We let Γ = ∪ℓ∂Ω

ℓ \ ∂Ω denote the skeleton (or
interface) of the decomposition.

Let Ṽh ⊃ Vh denote the space obtained by dropping the continuity con-
straint at all nodes interior to the macro edges of the decomposition (which
we will call dual nodes), while retaining continuity at cross points. Problem 3

is equivalent to finding ũh ∈ Ṽh satisfying
{
J(ũh) = minṽh∈Ṽh

J(ṽh), with J(ṽh) =
1

2
ah(ṽh, ṽh)−

∫
Ω
fṽh,

such that ũh is continuous across the interface.
(4)

For each ṽh ∈ Ṽh, we denote by ṽ ∈ RM the corresponding vector coefficient,
whereM is the dimension of Ṽh. Let B be a matrix whose entries assume value
in the set {−1, 0, 1}. The continuity constraints across the interface can then
be expressed as Bũ = 0. By introducing a set of Lagrange multipliers λ ∈
range(B) to enforce the continuity constraints, we obtain a finite dimensional
saddle point formulation of (4)

Ãũ+BTλ = f̃ , Bũ = 0,
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where Ã and f̃ are the finite dimensional representation of ah(ṽh, w̃h) and∫
Ω
fṽh, ∀ ṽh, w̃h ∈ Ṽh, respectively. Since Ã is symmetric and positive def-

inite [1], we can eliminate ũ, and obtain a linear system for the Lagrange
multiplier. This linear system is solved with a conjugate gradient method
with a preconditioner that takes the same form as in the finite element case
([1]). In [3] the authors proved that, as in the finite element case, the condition
number of the preconditioned matrix increases at most as (1+ log(k2H/h))2,
under the assumption that the Ωℓ are shape regular.

4 Subdomain Partitioning by Conformal Meshing

In general, subdomains Ωℓ obtained as the union of polygonal elements of
a tessellation are not shape regular, unless this is constructed in two stages:
first, a decomposition into shape regular subdomains is defined; then, each
subdomain is refined to obtain the final tessellation. An alternative is to
define the subdomains independently of the tessellation and to modify the
latter by “cutting” it with the edges of the subdomains. By construction, the
subdomains will then be the union of elements of the new tessellation.

We provide here details of our meshing algorithm, which we implemented
in C++ using CinoLib [8]. Given a tessellation Th of Ω and a set of L polyg-
onal subdomains that jointly cover Ω without overlaps, we output a domain
tessellation with matching interfaces along subdomain boundaries.

In the general case the edges of Th will intersect subdomain boundaries at
many points. We start by splitting all the edges that are crossed by subdomain
boundaries, thereby producing an edge soup. For any pair of edges in the
soup, either the two edges are completely disjoint or they meet at a common
endpoint (Fig. 1, middle). When computing intersections, exact arithmetics
should be used to handle pathological cases due to roundoff errors introduced
by finite machine arithmetics [9].

In order to generate the output, we process the edge soup and produce a
list of polygons, each one represented as an ordered list of vertices. To this
end, for each oriented edge in the soup, we trace polygons by iteratively visit-
ing the leftmost edge until hitting the starting edge at its opposite endpoint,
thus closing the polygon (Fig. 1, middle right). If all the edges are visited
twice (both orientations count) the result is a list of polygons, with vertices
ordered counterclockwise. The only polygon with clockwise winding order
will be the one covering the whole domain and containing all and only the
boundary edges of Th, which is discarded during the post-processing phase.

The leftmost edge is found as follows: given an oriented edge e (from
node vi to node vj), the set of edges incident to it at vj are first classified as
being either on the left or on the right of e. Let e′(vj → vk) be one of these
edges and A the 2 × 2 matrix having (vj − vi) and (vk − vj) as rows. e′ is
at the left of e if det(A) > 0, at the right of e if det(A) < 0 and collinear
with e if det(A) = 0. Computing det(A) is known to be a critical issue in
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finite floating point arithmetics. For this reason, Shewchuck predicates [7]
are used to estimate its sign robustly. If there exist some edges at the left of
e, then the polygon is locally convex and the leftmost turn is the one that
passes through the edge e′ that minimizes the dot product between e′/‖e′‖
and e/‖e‖. Conversely, if all the edges incident to vj are at the right of e,
the polygon is locally concave and the leftmost turn is the one that passes
through the edge e′′ that maximizes the dot product between e′′/‖e′′‖ and
e/‖e‖.

left
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edge soup polygon
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Fig. 1: Schematic representation of our meshing algorithm.

5 Numerical Results

Here we consider the performance of the preconditioned FETI-DP method. In
each experiment, the domain Ω = [0, 1]2 has been discretized using Voronoi
cells of arbitrary shape. Every tessellation Th of Ω is partitioned into L
squared subdomains using the approach described in Section 4. This approach
can introduce new polygons with very small edges, as shown in Fig. 2. In order
to test the robustness of FETI-DP, we consider two different types of data:
i) ρ = 1, f = sin(2πx) sin(2πy); ii) for each subdomain, ρ = 10α, α random
integer in [−5, 5], f uniform random in [−1, 1].

Table 1 shows that, with the first type of data, by fixing the initial mesh Th
and increasing the number of subdomains, thereby fixing h while decreasing
H, the condition number κ decreases as expected. The smallest edge in the
mesh hmin, as well as the parameters γ0 and γ1 introduced in Section 2 are
also listed to stress that the presence of arbitrarily shaped Voronoi polygons
does not hinder the convergence of the method. In Fig. 3, κ1/2 is plotted as a
function of the degrees of freedom of the whole problem, for varying number
of subdomains L. The size of the problem is increased by taking five different
meshes with 10000, 20000, 40000, 80000, and 160000 polygons, respectively,
as initial tessellations of Ω. Solid and dashed lines correspond to the first
and second types of data, respectively. With the first type, for fixed L, κ1/2

clearly grows as log(degrees of freedom), in agreement with the theoretical
bound. This behavior does not seem to be affected by jumps in the diffusion
coefficient, especially for high L (see Fig. 3, right). Finally, we present some
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Fig. 2: (Left) General Voronoi mesh partitioned into L = 16 subdomains.
(Right) Zoomed view of the boundary between two subdomains, where a
tiny triangle is generated.

computations performed with high order elements (see Table 2 and Fig. 4).
In Fig. 4 (Left), it is possible to verify the polylogarithmic dependence of
κ on the polynomial order k. Indeed, for H/h fixed, the expected bound
(1 + log(k2H/h)2 ∼ (1 + log(k2))2 ∼ (1 + 2 log(k))2 is confirmed. In Fig. 4
(Right), we keep the polynomial order fixed to k = 3 and k = 5 and increase
the dimension of the problem by using the five meshes mentioned above.
The expected bound (1 + log(k2H/h))2 ∼ (1 + log(H/h))2 (for fixed k) is
confirmed for both types of problem data.

All these experiments demonstrate that the performance of the precon-
ditioned FETI-DP method is robust with respect to jumps in the diffusion
coefficients and shape of the mesh elements.

Table 1: Results obtained with the first type of data and polynomial order
k = 1 on two Voronoi meshes.

voro1, 40000 initial polygons

L D.o.f. 1/h hmin γ0 γ1 λmin λmax It.

64 86 202 55.93 1.04× 10−5 5.73× 10−3 1.32× 10−3 1.05 5.78 14
144 90 561 55.93 1.04× 10−5 3.97× 10−3 1.32× 10−3 1.05 5.37 14
256 94 954 55.93 1.04× 10−5 2.94× 10−3 1.13× 10−3 1.06 4.90 13

voro2, 160000 initial polygons

L D.o.f. 1/h hmin γ0 γ1 λmin λmax It.

64 330 104 113.38 1.01× 10−5 4.11× 10−4 2.47× 10−3 1.06 7.32 16
144 338 451 113.38 1.04× 10−5 4.11× 10−4 2.10× 10−3 1.05 6.56 15
256 346 829 113.38 1.00× 10−5 4.11× 10−4 1.87× 10−3 1.05 6.25 15
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Fig. 3: Plots of κ1/2 as a function of the global degrees of freedom for fixed
polynomial order k = 1 but increasing number of subdomains L. Solid and
dashed lines correspond to the first and second types of data, respectively.

Table 2: κ1/2 and number of iterations of the preconditioned FETI-DP system
with the first type of data, for a fixed starting mesh (voro2, see Table 1) but
increasing number of subdomains L and polynomial order k.

L\k 2 3 4 5 6

64 3.13 19 3.51 21 3.75 23 3.91 23 4.05 24
144 2.98 18 3.37 21 3.60 22 3.78 23 3.93 24
256 2.97 18 3.37 21 3.57 22 3.74 23 3.88 24
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Fig. 4: High order elements. Solid and dashed lines correspond to the first and
second types of problem data, respectively. (Left) Plot of κ1/2 as a function
of the polynomial order k, initial mesh voro2 (see Table 1). We have H/h ≈
20.04 for L = 64 and H/h ≈ 10.02 for L = 256. (Right) Plot of κ1/2 as a
function of the global degrees of freedom, H/h ≈ 10.02, L = 256.
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