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A B S T R A C T

The estimation of the differential properties of a function sampled at the vertices of a
discrete domain is at the basis of many applied sciences. In this paper, we focus on
the computation of function gradients on triangle and tetrahedral meshes. We study
one cell-based method (the standard the facto), plus three vertex-based methods. Com-
parisons regard accuracy, ability to perform on different domain discretizations, and
efficiency. We performed extensive tests and provide an in-depth analysis of our re-
sults. Besides some common behaviour, we found that some methods perform better
than others, considering both accuracy and efficiency. This directly translates to use-
ful suggestions for the implementation of gradient estimators in research and industrial
code.
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1. Introduction1

Geometric meshes play a central role in a number of do-2

mains, including computer graphics and scientific visualization,3

mechanical, structural and electrical engineering, and computa-4

tional methods in physics, chemistry and geology. Quite often,5

a scalar field is sampled at the vertices of a geometric mesh,6

which discretizes a given domain. Computational analysis of7

such a field may require evaluating its gradient and, possibly,8

tracing its integral curves.9

In the geometry processing and FEM literature, a scalar field10

is often extended from vertices to the interior of higher dimen-11

sional cells by linear interpolation. Under this approach, a con-12

stant gradient is associated to each cell with a straightforward13

computation, thus providing the simplest form of evaluation14

of the gradient field. Although sufficient for many applica-15

tions, the piece-wise constant gradient has several limitations16

and drawbacks: being not continuous, the gradient has diver-17

gent covariant derivative at the interface between cells; singu-18

larities are forced to lie just at vertices of the mesh; and integral19

curves are discretised into polylines that travel parallel to each20

other inside each element, so that their distribution does not de-21

pend just on the field, but also on the orientation of edges and22

vertex valences of the underlying mesh (see Figure 1). 23

As discussed in [1], discrete vector fields can be given per 24

face, per edge, or per vertex. Despite the entity to which the 25

gradient estimate is attached, the gradient field can be extended 26

to the whole mesh either in a piece-wise constant manner – i.e., 27

defining a local region surrounding each vertex/edge/face and 28

assuming the gradient to be constant within it, or via interpola- 29

tion – e.g., linearly inside each simplex. When vector fields are 30

extended to the whole mesh by linear interpolation, they can be 31

traced exactly inside each region [2, 3]. However, there exist 32

surprisingly few works dealing with the estimation and assess- 33

ment of piece-wise linear gradient fields. 34

In this work, we review common methods for estimating a 35

per-vertex gradient field linearly interpolated within each ele- 36

ment, and we compare their accuracy with respect to the stan- 37

dard method to compute a per-face constant gradient field. 38

Since our interest is to study the performances of the vertex- 39

based methods in every point of the domain, such comparisons 40

will be made considering not only the vertices of the mesh, as 41

shown in Sec.4.3. This choice is further motivated by the expec- 42

tation of applying these results to the tracing of integral curves. 43

We limit our study to the most common cases of planar and vol- 44

umetric complexes. Since all methods can be extended to arbi- 45

http://www.sciencedirect.com
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Fig. 1. Per-face gradient estimation on a paraboloid with minimum at the
center of the domain (left). Although the estimate is very accurate, in-
tegral lines traced from a neighborhood of the minimum do not diverge
uniformly, but rather travel in four bundles of nearly parallel lines (right).
This behaviour is induced by the discrete piece-wise constant nature of the
gradient field. Starting the tracing from the star of a vertex with low va-
lence exacerbates the problem.

trary dimensions, given the coherent results that we obtain in1

2D and 3D, we postulate a similar behaviour also on higher di-2

mensional complexes. Performances of the various methods are3

measured according to a family of parametric functions sam-4

pled at mesh vertices. The influence of the underlying tessella-5

tion is also studied, considering different domain discretisation6

strategies. Note that the extension to surface meshes embed-7

ded in 3D is out of the scope of this paper, and will be briefly8

discussed in Sec. 8.2.9

The analysis of our results shows that – not surprisingly –10

piece-wise constant gradients perform worse than gradients lin-11

early interpolated within each cell in almost all our experiments.12

The only exception being performances on boundaries, and the13

estimation of the sole magnitude of the gradient, where sepa-14

rate computation per cell offers an advantage to methods that15

use a bigger stencil. Restricting to vertex-based approaches,16

we found that all methods performed similarly in many exper-17

iments in terms of accuracy, with some exceptions regarding18

resiliency to anisotropy and signal noise. We broke ties combin-19

ing accuracy with an analysis of scalability and computational20

cost associated to each technique, being able to provide useful21

suggestions for the implementation of per-vertex gradients in22

research and industrial code.23

A preliminary version of this paper was presented at Smart24

Tool and Apps for Graphics (STAG) [4]. While the former work25

was devoted to 2D triangulated domains, in this version we ex-26

tend it by a more thorough analysis of the 2D case, as well27

as by adding an experimental part on volumetric meshes. Ex-28

periments on volumes substantially confirm the performances29

of the gradient estimators that we already observed on triangle30

meshes.31

2. Related Works32

Sozer and colleagues [5] surveyed different approaches to33

gradient estimation for a variety of meshes used in Compu-34

tational Fluid Dynamics (CFD), ranging from tetrahedral and35

hexahedral, to general polyhedral meshes. In all the consid-36

ered examples, the function is encoded at the vertices of the37

mesh and the average per-cell gradient is computed according 38

to different techniques, always leading to a piece-wise constant 39

gradient field. In a recent course, De Goes and colleagues [1] 40

discuss gradient fields as a special case of the more general vec- 41

tor fields; the course focuses on triangular meshes embedded in 42

R3, and does not extend to other spaces or discretisations. Hy- 43

man and Shashkov [6] introduced a framework for discrete cal- 44

culus of fields defined on the vertices of a 2D domain meshed 45

with quads, formulating a discrete counterpart of continuous 46

operators such as gradient, divergence and curl. Neumann and 47

colleagues [7] propose an efficient method to estimate surface 48

normals of a density field encoded in a voxel grid, and use 49

this information for shading. The method is based on a gra- 50

dient estimation obtained with 4D linear regression. Jirka and 51

Skala [8] studied gradient estimation based on fitting quadrics 52

on mesh vertices; the regression strategy we study is based on 53

the method they describe. Correa et al. [9] studied the accuracy 54

of gradient estimation in the context of scientific visualization. 55

Their study is similar in spirit to ours (similar gradient estima- 56

tion techniques are considered), but it is focused on volumetric 57

meshes only. For the 2D case, Cerbato et al. [10] tested the per- 58

formances of the Green Gauss gradient estimation on a variety 59

of different polygonal meshes (simplicial meshes were not con- 60

sidered). To the best of our knowledge, no comprehensive study 61

of gradient field estimation on simplicial meshes is present in 62

literature. 63

3. Methods for gradient field estimation 64

We introduce here the four methods we consider in our study, 65

also fixing our notation. Let Ω ⊂ Rd be a compact domain. 66

In the following, we focus on the cases d = 2, 3; nevertheless 67

concepts extend to any dimension. 68

Let Σ be a simplicial mesh having Ω as carrier. Mesh Σ can be 69

described by the collection V of its vertices, and the collection 70

T of its maximal cells – i.e., triangles and tetrahedra, for d = 2 71

and d = 3, respectively. Cells of intermediate dimensions, such 72

as edges and faces, can be derived uniquely by subsets of ver- 73

tices belonging to the same maximal cell. We assume the stan- 74

dard topological relations among adjacent and incident cells. In 75

this context, we recall that the star (or 1-ring) of a vertex v ∈ V 76

is defined as the collection of all cells (edges, triangles, tetra- 77

hedra) of Σ that are incident at v. With abuse of notation, we 78

will refer to vertices in the star of v by meaning the vertices 79

sharing an edge with v. The star provides a discrete version of a 80

mathematical neighbourhood, and will be generically denoted 81

by N(v). The k-ring, for k > 1, can be defined inductively as 82

the union of the stars of all vertices in the (k − 1)-ring. 83

Let f : Ω −→ R be a smooth scalar function. We assume 84

to know the value of f only at the vertices of Σ. The discrete 85

version of f is therefore a collection F = { f1, . . . , fn}, where n 86

is the number of vertices in V and each fi corresponds to the 87

function value sampled at vertex vi, for all i = 1, . . . , n. 88

The problem addressed in the following is that of estimating 89

the gradient∇ f on Ω, on the basis of the discretisations F and Σ. 90

The gradient will be estimated at cells of Σ and extended to the 91

whole domain via an either piece-wise constant (Section 3.1), 92

or vertex-based (Sections 3.2.1, 3.2.2 and 3.2.3) approach. 93
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3.1. Per-Cell linear Estimation (PCE)1

Our bottom line is a method that estimates a constant gradient
at each maximal cell. We start by extending the values in F to
the cells of Σ by linear interpolation. This is well defined on
cells of all orders because Σ is a simplicial mesh, hence there
exists a unique linear function that interpolates the values in F
at all vertices of any cell σ ∈ Σ, namely

f̃σ(p) =
∑
vi∈σ

λi fi,

where p is a generic point of σ, the vi’s are the vertices of cell
σ and the λi’s are the barycentric coordinates of p with respect
to the vi’s. In this model, function f̃ estimates f as a piecewise-
linear function, which is continuous over Ω and differentiable
only in the interior of its maximal cells. The gradient of f̃ is
thus constant inside every cell σ and it is associated either to
the whole σ, or conventionally to its centroid cσ, depending on
the applications. For a triangle t with vertices vi, v j, vk it is easy
to show that we have

∇ ft = ( f j − fi)
(vi − vk)⊥

2At
+ ( fk − fi)

(v j − vi)⊥

2At
. (1)

Analogously, for a tetrahedron τ with vertices vi, v j, vk, vh we
have

∇ fτ = ( f j − fi)
(vi − vk) × (vh − vk)

2Vτ

+ ( fk − fi)
(vi − vh) × (v j − vh)

2Vτ

+ ( fh − fi)
(vk − vi) × (v j − vi)

2Vτ
,

(2)

where e⊥ denotes edge e rotated by 90◦ w.r.t. the normal of the2

triangle we are considering, and At,Vτ are the area of t and the3

volume of τ, respectively.4

3.2. Per-vertex gradient estimation5

As already observed, in the piece-wise linear model of f̃ the6

gradient is not defined at vertices of Σ. The methods we re-7

view in the following assume that f is a higher order function,8

smooth at edges and vertices of Σ. The different methods ex-9

ploit different facts that hold in the continuous case, and try10

to bring them to the discrete setting. All such methods work11

either by averaging (discrete integration) or by approximation12

(fitting), because no exact model can be assumed for f in the13

generic case.14

Note that, once the gradient has been estimated at all vertices,15

the gradient field can be extended by linear interpolation inside16

cells of any order. It is therefore continuous in Ω and overall17

more accurate than the piece-wise constant field reviewed in18

the previous section, as we will see in our experiments.19

3.2.1. Average Gradient on Star (AGS)20

A common procedure in discrete differential geometry con-
sists of estimating a differential property at a point p as the av-
erage value of the same property in a neighbourhood of p [11].
More formally, in our case, we can write

∇ f (p) '
1

VB(p)

∫
B(p)
∇ f dV, (3)

where B(p) is a neighbourhood of p and VB(p) is its area/volume. 21

Now, given a vertex v of Σ, we can use the method in the
previous section to estimate (an average value of) ∇ f in the
maximal cells of the star of v, and compute the integral as a
weighted sum of constant terms, obtaining

∇ fv '
1∑

σ∈N(v)
wσ

∑
σ∈N(v)

wσ∇ fσ, (4)

where ∇ fσ is the value computed with Equation 1 and wσ is 22

the weight assigned to cell σ incident at v. Correa et al. [12] 23

studied the influence of different weights on the accuracy of 24

results on tetrahedral meshes, They experimented using the in- 25

verse distance of centroid of σ from v, the (solid) angle of σ at 26

v, and the volume of σ. Note that weighting with the volume 27

corresponds to applying the Green-Gauss theorem to compute 28

Equation 3 on the star of v (or, equivalently, on a centroidal de- 29

composition of cells), by assuming the linear model inside each 30

incident cell. According to the experiments in [12, 13], how- 31

ever, the inverse distance of centroid and the angle weights per- 32

form similarly, and overall better than the volume weight. Fur- 33

thermore, in our experiments we found the angle weight to be 34

more robust against anisotropic meshes (i.e., meshes containing 35

elongated elements), hence we use such weight throughout. In 36

summary, wσ in Equation 4 will be the measure of the angle 37

(solid angle in the 3D case) of σ at v (where dependence of wσ 38

on v has been omitted to keep a lighter notation). 39

3.2.2. Least Squares fit of Directional Derivatives (LSDD) 40

This approach consists in estimating first a few directional
derivatives of f at vi, and imposing their relation with the gra-
dient. Let be {v0, ..., vki } the vertices belonging to the 1-ring of
vi. Taylor’s expansion of f at the first order allows us to write:

f (v j) − f (vi) ≈ ∇ f · (vi − v j),

for every j = 0, ..., ki. The idea is to build a linear system ex-
ploiting the above approximation, i.e writing

f (v j) − f (vi) = ∇ f · (vi − v j), j = 0, ..., ki. (5)

Note that the second term of (5) is the directional derivative 41

of f along vector (vi − v j), hence the name. Since ki is usually 42

greater than the dimension of the space, the linear system is usu- 43

ally overdetermined and it only admits a least squares solution. 44

As observed in [12], this can be addressed as a weighted least 45

squares problem, where a weight is assigned to each equation, 46

which is inversely proportional to the square of the correspond- 47

ing edge length. Let Ai be the ki × d matrix obtained by collect- 48

ing all the (v j−vi), let Wi the diagonal matrix of weights, and let 49

Di be the column matrix consisting of all the f (v j)− f (vi). Then, 50

the weighted least squares solution is obtained by resolving the 51

d × d linear system 52

AT
i WiAi∇ f (vi) = AT

i WiDi, (6)

where Wi( j, j) = 1/d2
i j and di j is the length of edge viv j. Note 53

that such a system must be solved at every vertex. We have also 54

experimented with the unweighted solution (i.e., Wi = I), but 55

the weighted one resulted superior in all our experiments, so we 56

use the weighted version throughout. 57
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3.2.3. Linear Regression (LR)1

The last approach we review consists of approximating func-2

tion f in the neighbourhood of vi with a polynomial πi of given3

degree, by setting a system of linear equations that asks πi to4

assume the given values of F at all vertices of a given k-ring of5

vi. After the fitting polynomial has been obtained, the gradient6

of f at vi is estimated analytically as the gradient of πi.7

In our experiments we consider quadratic polynomials and
1-rings, which are extended to 2-rings only if the number of
neighbours of vi is insufficient to fix all degrees of freedom. In
2D we have

πi(x, y) = aix2 + biy2 + cixy + dix + eiy + fi,

where coefficients PT
i = [ai, bi, ci, di, ei, fi] are unknown. For8

each vertex v j in the neighbourhood of vi (including vi itself),9

we impose πi(v j) = f j, thus obtaining a linear system with10

as many equations as the vertices in the neighbourhood of vi.11

Again, we address it as a weighted least squares problem, by12

assigning a weight to the each equation, and we obtain the co-13

efficients of the best fitting polynomial by solving the system14

AT
i WiAiPi = AT

i WiFi, (7)

where:15

• Ai is a ki × 6 matrix containing one row per vertex in16

the neighbourhood of vi (including vi itself); the row17

corresponding to vertex v j = (x j, y j) contains values18

(x2
j , y

2
j , x jy j, x j, y j, 1);19

• Fi is a column vector containing the values f j correspond-20

ing to the vertices v j in the neighbourhood of vi;21

• Wi is a diagonal matrix of weights, each inversely propor-
tional to distance from vi with a Gaussian decay:

Wi( j, j) =
1

L
√

2π
e−

d2
i j

L2

with di j being the length of edge viv j (dii = 0) and L being22

the average edge length in the mesh.23

Once the coefficients of πi are known, the gradient at vi =

(xi, yi) is given trivially by

∇ f (vi) = (2aixi + ciyi + di, 2biyi + cixi + ei).

For d = 3 the solution is analogous: the polynomial has 1024

unknown coefficients and the method needs solving a 10 × 1025

linear system. Note that we have to solve such a system at every26

vertex. As for the previous method, we found the weighted27

solution of the least squares problem to perform better than28

the unweighted solution in all our experiments, so we use it29

throughout.30

31

Remark: Notice that, if we assume function f to be piecewise-32

linear (linear inside each triangle) and the gradient to be esti-33

mated at centroids (or any internal point) of triangles, then all34

the methods produce the same estimate of PCE, which is exact35

in the piecewise-linear model. This can be seen easily by con-36

sidering a triangle ti jk, a point c internal to ti jk (where function37

fc at c is computed by linear interpo- 38

lation), and a conventional split of ti jk 39

into three triangles obtained by con- 40

necting c with its three vertices. Then 41

PCE applied to either ti jk, or any of 42

its three sub-triangles returns the same 43

gradient, hence AGS averages three 44

equal values and also returns the same 45

gradient. LSDD applied to the three edges cvi, cv j and cvk also 46

returns the same gradient, since the three edges (lifted by the 47

values of f at the four points) span the same plane. And also LR 48

applied to the same four points returns the same plane, hence 49

the same gradient, once the quadratic terms of the polynomial 50

are forced to zero to be compliant with the piecewise-linear 51

model. So, there is no point comparing the different methods 52

if the piecewise-linear model is assumed. The main argument 53

here is that the piecewise-linear model is in fact too coarse and 54

inaccurate, while per-vertex gradient estimation methods as- 55

sume a more general model, which not only supports gradient 56

estimation at the vertices of the mesh, but also allows us to ex- 57

tend it to the interior of triangles (e.g., with linear interpolation) 58

providing a better estimation over the whole domain. 59

4. Experimental setup 60

We evaluate the four techniques presented in Section 3 on 61

analytic functions, comparing numerical estimates with the 62

ground truth. In order to analyze different situations, we use 63

a parametric family of non-polynomial periodic functions, and 64

meshes with different characteristics. 65

4.1. Test functions 66

For the planar case, we consider the domain Ω = [0, 1]×[0, 1]
and the following parametric family of functions:

fa,b(x, y) = a sin(bx) cos(by).

Parameters a and b control the amplitude and the frequency of
the function, respectively. Figure 2 shows four plots of fa,b for
different values of a and b. Likewise, for the 3D setting, we use
the parametric family of functions

f3,a,b(x, y, z) = a sin(bx) cos(by) sin(bz),

defined in the domain Ω3 = [0, 1] × [0, 1] × [0, 1]. We denote 67

P = 2π/b the period of function fa,b, hence 1/P its frequency. 68

4.2. Meshes 69

We aim to test the performances of the various gradients on 70

different discrete settings, where the domain is tessellated ac- 71

cording to different strategies. To this end, we select three 72

meshes, which we believe are representative of ubiquitous sce- 73

narios in applied sciences. Specifically, for the 2D case we con- 74

sider: 75

• ΣS : a structured mesh made of equilateral triangles; 76

• ΣU : an unstructured mesh obtained computing a Con- 77

strained Delaunay Tessellation of a Poisson sampling of 78

the domain Ω; 79
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Fig. 2. Four examples of our test function fa,b. Parameter a controls the amplitude, whereas parameter b controls the frequency. From left to right: f2,10,
f5,10, f2,30, f5,30.

Fig. 3. Close up of our test meshes for the planar case. From left to right:
structured, unstructured and anisotropic (K = 5).

• ΣA: an anisotropic mesh obtained by computing a CDT of1

a sampling of the [0,K] × [0, 1] domain, and squeezing it2

to fit the unit square. Value K is called the coefficient of3

anisotropy.4

Mesh ΣS was built procedurally, while for ΣU and ΣA we used5

Triangle [14] for mesh generation. In order to get a fairly uni-6

form distribution of points, we impose the min angle of a tri-7

angle in ΣU to be 20◦ and the maximum area of a triangle to8

be 1/(1.6n2) where n is the number of sampled points (con-9

sider that the mesh contains about n2 triangles with an average10

area of about 1/(2n2) each). Mesh ΣA is built with similar fig-11

ures, prior to squeezing it. Each mesh contains approximately12

1K triangles. Closeups of our meshes are shown in Figure 3.13

Analogously, for the 3D case the regular mesh was constructed14

splitting each element of a regular lattice into five tetrahedra us-15

ing a standard scheme [15], and ΣU ,ΣA were created as in 2D,16

substituting Triangle with Tetgen [16] for the computation of17

the CDT and using similar figures to bound maximal volumes18

and minimum solid angles.19

For a given mesh, we define L to be its average edge length,20

hence 1/L to be the sampling frequency. In our experiments, we21

do not investigate progressively finer meshes; we rather decided22

to keep the tessellation fixed and to act on the frequency of the23

test function (i.e., parameter b), in order to study the interaction24

between domain discretisation and signal frequency. Note that25

the two approaches are equivalent. In order to be scale inde-26

pendent, most our graphs use the ratio L/P (signal frequency27

vs the sampling frequency) on the abscissa. It is worth pointing28

out that meshes have been constructed with the same approx-29

imate average edge length in both the 2D an the 3D case, in30

order to be able to consider consistent frequency ranges in all31

our experiments.32

4.3. Error metrics33

Depending on applications, either the vector value of the gra-34

dient, or just its direction, or just its magnitude may be relevant.35

For this reason, we evaluate the behaviour of the various meth- 36

ods by adopting three separate error measures: for angles we 37

measure the Root Mean Square Error (RMSE); while for vector 38

and magnitude, we adopt the Symmetric Mean Absolute Per- 39

centage Error (SMAPE) [17], in order to be as scale indepen- 40

dent as possible. 41

Considering the gradient of the analytic function ∇ f , and its
numerical estimation ∇̃F (computed on the discrete sampling F
of f at the vertices of the mesh), our error metrics are defined
as:

RMSEang =

√√√
1
N

N∑
i=1

](∇ f (vi), ∇̃F(vi))2 .

SMAPEtot =
1
N

N∑
i=1

‖∇ f (vi) − ∇̃F(vi)‖2
‖∇ f (vi)‖2+‖∇̃F(vi)‖2

SMAPEmag =
1
N

N∑
i=1

∣∣∣∣∣∣ ‖∇ f (vi)‖2−‖∇̃F(vi)‖2
‖∇ f (vi)‖2+‖∇̃F(vi)‖2

∣∣∣∣∣∣
In order to measure error on the whole domain, we sample data 42

on a regular grid of 500×500 points in 2D, and 100×100×100 43

points in 3D. We also add some measures just limited to either 44

the vertices (for the piecewise-linear methods), or the centroids 45

(for the piecewise-constant method) of triangles. In general, we 46

plot angle and magnitude errors only in cases where they show 47

significantly different behaviours (e.g., Figure 9). If not stated 48

differently, we always assume the total error is considered, and 49

the other two errors exhibit a similar behaviour. 50

5. Evaluation 51

We report here our experiments and analysis. We consider 52

the four different gradient estimators described before: 53

• PCE: Per-Cell Estimator (Section 3.1); 54

• AGS: Average Gradient on Star (Section 3.2.1); 55

• LSDD: Least Squares Directional Derivatives (Sec- 56

tion 3.2.2); 57

• LR: Linear Regression (Section 3.2.3). 58

Gradients evaluated with PCE are considered constant inside 59

each cell, while vertex-based gradients (i.e., AGS, LSDD and 60

LR) are linearly interpolated inside each cell using barycentric 61

coordinates. We test the performances of the different methods 62

under different conditions, namely: by varying the frequency of 63
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f0.1,11 PCE AGS LSDD LR
0

>0.25

Fig. 4. Heatmaps of the total error measured on the 2D unstructured mesh with test function f0.1,11 (L/P ' 0.07).

our parametric test function; by considering the three different1

domain discretisations; and by using data affected with noise.2

All methods have been implemented as functions of the3

CinoLib [18] geometry processing library, which relies on the4

Eigen [19] library for numerical computations. Analysis was5

performed through interactive programs to support data visu-6

alization and batch programs to support numerical evaluations.7

All our implementations run as single threaded C++ applica-8

tions. The programs are made available in the public domain9

at https://github.com/mlivesu/gradient_benchmark.10

Experiments were run on a MacBook Pro equipped with an In-11

tel i5 with 2.7 GHz and 8 GB of RAM.12

Evaluations are reported separately for the 2D and the 3D13

case. For the sake of brevity, some discussions are made just in14

the 2D case, for all situations in which we found a consistent15

behaviour in the 3D case, too.16

5.1. Overview17

In order to get a first assessment of the performances of the18

various methods, we show qualitative results with the help of19

heatmaps, with a color transfer function mapping low-to-high20

values to a blue-to-red scale (through green for mid-range val-21

ues). Here, we show only heatmaps for the 2D case; our bench-22

mark programs support heatmaps also for the 3D case; 3D re-23

sults are qualitatively consistent with the 2D case.24

Heatmaps are used to show both the scalar function (leftmost25

image in Figure 4), and the total error estimates for the different26

methods on the same scale (other images in the same figure).27

It is immediately apparent that the distribution of error is not28

uniform for all methods:29

• PCE, AGS and LSDD exhibit the largest error near critical30

values of the signal; while LR appears to be less sensitive31

to the variation of the signal in the interior of the domain;32

• AGS, LSDD and LR exhibit a much larger error at the33

boundary of the domain, which also appears to be ampli-34

fied near critical points of the signal; conversely, PCE ex-35

hibits a rather uniform behaviour both in the interior and36

at the boundary;37

• PCE seems to perform worse than the other methods (at38

least at this signal frequency) and to have a wider distribu-39

tion of error.40

On the basis of such observations, in the following we per-41

form quantitative analyses by studying separately the behaviour42

of the different methods at the boundary and in the interior of 43

the domain. For the boundary, we just investigate the major 44

sources of error for the different methods. For the interior, we 45

study sensitivity to the ratio between average edge length and 46

period of the function (L/P), to anisotropy, and to noise, which 47

is evaluated by sweeping the corresponding parameters within 48

ranges that may be relevant in practical applications, and report- 49

ing the overall error according to the metrics defined in Section 50

4.3. Since the different methods exhibit different error distribu- 51

tions, we also report box plots for various situations, by consid- 52

ering a small number of values for each parameter (namely, the 53

extreme values and an intermediate value for each range in the 54

sweeps). 55

5.2. Boundaries 56

PCE computes the gradient at any point inside a cell σ by 57

using only data at its vertices. In this respect, a boundary cell 58

is not different from a cell internal to the domain, so it is not 59

surprise that this method exhibits the same performance in the 60

interior and at the boundary. 61

The situation is rather different for the vertex-based methods. 62

Remember that all such methods use a stencil (i.e., the 1- 63

ring) to sample the function in a local neighborhood and esti- 64

mate the gradient. More specifically, AGS and LSDD are both 65

based on discrete integration (averaging) and use the stencil as 66

integration domain; while LR is an approximation method, us- 67

ing the vertices in the stencil as data to fit. In both cases, the 68

underlying principle assumes that the stencil provides a dis- 69

crete version of the mathematical neighbourhood of point v 70

where the gradient is estimated. But this assumption is violated 71

at boundary vertices, where the stencil only captures a “half- 72

neighborhood” (i.e., a set with the topology of a half-space con- 73

taining v on its boundary). 74

Specific instances of the boundary effects for the three vertex- 75

based methods are depicted in Figures 5, 6 and 7 and discussed 76

below. For all three methods, it is apparent that the largest error 77

occurs in the proximity of critical points of the signal, where 78

information on the “half-neighborhood” provided by the stencil 79

is not sufficient to guess the behaviour of the signal on the other 80

(unknown) half. Away from critical points, the signal would 81

extend outside the boundary in a more monotone way, which is 82

easier to guess just on the basis of the “half-neighborhood”. 83

More specifically, both AGS and LSDD exhibit very simi- 84

lar behaviour and fail at all critical points on the boundary, just 85

because there are no triangles/edges outside the boundary to 86
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0 >0.25

Fig. 5. Heatmap of the total relative error of AGS (center) and the gradi-
ent directions estimated at a saddle point (left, red arrow) and at a mini-
mum (right, red arrow). The gradient field depicted by black arrows is the
ground truth from test function f0.1,11).

0 >0.25

Fig. 6. Heatmap of the total relative error of LSDD (center) and the gradi-
ent directions estimated at a saddle point (left, red arrow) and at a mini-
mum (right, red arrow). The gradient field depicted by black arrows is the
ground truth from test function f0.1,11.

“pull” the gradient to a different direction. For LR the situa-1

tion is rather different. Note that estimating a gradient at the2

boundary with LR is equivalent to using LR to extrapolate the3

signal beyond the boundary. It is well known that extrapola-4

tion methods are very unstable, unless a prior on the data can5

be assumed. The assumption underlying LR is that the signal6

is a quadric, which is not true in general, and in particular for7

our test function. In fact, LR does not fail in a systematic way8

at all critical points, but when it does, it may return very poor9

results, as the examples illustrated in Figure 7: in one case, a10

minimum, which is fit rather well inside the domain, is extrapo-11

lated into a saddle on the boundary; and a saddle, which is also12

fit well inside the domain, is extrapolated into an unbalanced13

and misaligned saddle at the boundary.14

In Figure 8, we plot the SMAPEtot of the four methods evalu-15

ated on boundaries (left) and interior vertices (right),while vary-16

ing the ratio L/P. Note that on the boundary all methods show17

0

>0.25

Fig. 7. Top left: heatmap of the scalar field f0.1,11 with two boundary
vertices (red circles) and two internal vertices (black circles) near criti-
cal points; the internal points are placed in positions rather equivalent to
the boundary vertices with respect to the period of the signal, respectively.
Top right: the heatmap of the total error made by LR shows how the er-
ror inside red circles is much higher than inside black circles. Bottom: 3D
plots of the signal with superimposed the functions fitted by LR at the cor-
responding points in the circles: red plots correspond to red circles, green
plots correspond to black circles (minimum at the left, saddle at the right).

Fig. 8. Error plots at growing signal frequencies, for boundary (left), and
interior (right) points. See Section 4.2 for the definition of L/P.

a similar increase, with LR performing best at low frequen- 18

cies and PCE performing best at high frequencies, while AGS 19

and LSDD perform very similarly and overall stay between the 20

other two methods. Oscillations in such graphs are due to the 21

presence of more or less critical points on the boundary, which 22

in turn depends on the signal frequency. Conversely, in the in- 23

terior PCE shows a trend similar to the boundary case (except 24

for the bumps, which are absorbed by the distribution of critical 25

points), which is roughly linear with L/P; while vertex-based 26

methods show a non-linear trend, very similar for all of them: 27

they perform better than PCE at low frequencies and worse than 28

it at high frequencies. The better performance of PCE at high 29

frequencies is given to its higher locality (smaller stencil). 30

In order to avoid the bias introduced by boundaries, in the 31

remainder of the paper we always discard errors measured at 32

sample points lying inside cells of the outer layer, i.e., which 33

have at least one vertex on the boundary of the domain. In a 34
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Fig. 9. Left: plot of angle error, obtained varying both the function am-
plitude a and the frequency parameter b. Right: plot of the RMSE of the
magnitude for fixed frequency and varying amplitude. For growing values
of a, angle error remains constant, while magnitude error grows linearly.

sense, we act as if around the domain we had a padding layer1

of size compatible with the local stencil used by numerical al-2

gorithms.3

5.3. The 2D case4

Here we report performances of the four gradient estimators5

on different instances of our test function fa,b for the case d = 2.6

As stated in Section 4.1, parameters a and b set the amplitude7

and frequency of the function, respectively.8

Amplitude. We tested different values of parameter a, ranging9

from 0.1 to 2. As it can be noticed from Figure 2, changes in10

amplitude affect the magnitude of the gradient (the bells be-11

come steeper), leaving unchanged its direction (maxima and12

minima do not change). This is confirmed by our experiments,13

where we see that angle error is constant while varying a (Fig-14

ure 9, left), whereas magnitude error grows linearly for increas-15

ing frequencies (Figure 9, right).16

Frequency. We investigate the response of gradient estimators17

versus growing frequencies of the signal, varying the ratio L/P18

in the range [0.03, 0.22], hence in a range where we have at19

least four samples per signal period in all directions. Pushing20

the signal frequency closer to the Nyquist frequency would not21

make much sense, as it introduces reconstruction artefacts that22

are independent of the specific estimator.23

Differently from the amplitude, in this case both the an-24

gular and the magnitude components of the gradient are af-25

fected. For this experiment, we considered structured and un-26

structured meshes. Overall, we noticed a coherent behaviour for27

all piecewise-linear methods, and a rather different behaviour28

for the PCE method. We analyse the differences with the help29

of the graphs in Figure 10 and of the heatmaps in Figure 4 . We30

observe that PCE is the least accurate in terms of angle error,31

while being the most accurate in terms of magnitude error; in32

terms of total error, the vertex-based methods perform better at33

low frequencies, while PCE prevails at high frequencies.34

Large angle error for PCE is not surprising, as this method35

cannot catch the non-linear variation of the function within each36

face, due to its piecewise-constant nature (Figure 4). On the37

other hand, the smaller stencil of PCE implies a higher locality38

thus favouring a better estimate of the magnitude of the gra-39

dient. Among piecewise-linear approaches, the only noticeable40

Fig. 10. Plot of total error (top row), angle error (middle row), and mag-
nitude error (bottom row) on the 2D structured (left column) and 2D un-
structured mesh (right column).

differences are found in estimating the angle on the unstructured 41

mesh. In this case, Linear Regression (LR) performs better at 42

low frequencies, but above a certain frequency its error grows 43

faster and it starts to perform worse than AGS. Overall, AGS 44

exhibits the best performance in terms of resilience to increase 45

in signal frequency. LSDD exhibits a behaviuor similar to LR, 46

but with a consistently larger error. 47

Magnitude error offers an opposite landscape, with PCE con- 48

sistently prevailing on the vertex-based methods. However, 49

looking at data, we noticed that vertex-based methods tend to 50

smoothly distribute the error on the whole domain, without rel- 51

evant positive or negative peaks. Conversely, the magnitude er- 52

ror of PCE tends to be overall lower, while showing spikes near 53

critical points, where also its angle error becomes much larger. 54

Therefore, even in terms of magnitude and total error, PCE per- 55

forms better on average, but with a less uniform behaviour.See 56

also Section 5.5 on error distribution. 57

Notice that both our regular and unstructured meshes come 58

from a uniform sampling; consequently, the stars of internal 59

vertices provide neighbourhoods of nearly constant radius. This 60

is in fact a desirable property, which is pursued by all meshing 61

tools used in practical applications. We made further experi- 62

ments to test the dependency of accuracy from the valence of 63

vertices, but we could not find any evident correlation (besides, 64

as pointed out in Section 4.2, even in the unstructured meshes, 65

most vertices have a valence equal to the average). 66
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Fig. 11. Plot of the RMS Eang of the four methods, computed on an unstructured mesh with anisotropy factor K = 9.

Fig. 12. Plot of angle error (left) and magnitude error (right) of the
four methods computed on unstructured meshes with increasing levels of
anisotropy. We set the input signal with frequency parameter b = 10.

Anisotropy. We test here the performances of the four gradient1

estimators with respect to meshes exposing increasing levels of2

anisotropy (Figure 3, right). We report both angle and magni-3

tude errors in Figure 12. As for the frequency tests, there is4

a neat separation between piecewise-constant and vertex-based5

methods, which exhibit a consistently superior performance6

throughout. Among vertex-based methods, linear regression7

(LR) performs remarkably better than the others just on esti-8

mating the direction (Figure 11); while AGS turns out to be9

generally worse than the other two vertex-based methods.10

Noise. In many experiments involving real data (e.g. acquired11

with sensors), the signal measured at vertices is affected by12

noise. We test here the resiliency of all methods with respect13

to perturbations of the test function at the mesh vertices. Per-14

turbations are computed as random deviations from the ground15

truth function. In details, we perturbed the data with additive16

noise with uniform distribution, random sampled in the range17

(−aε, aε), where a is the amplitude of the signal (from Section18

4.1) and ε is a parameter to tune the entity of perturbation. Ab-19

scissas in Figure 13 are labeled according the values chosen for20

ε during the experiments. In Figure 13, we report both angle21

and magnitude errors for growing values of noise. Again, we22

observe a clear separation between PCE and the vertex-based23

methods, with PCE exhibiting a much faster increase of error.24

The vertex-based methods exhibit similar behavior, resulting25

more sensitive to noise in terms of angle error and more re-26

silient in terms of magnitude error.27

Fig. 13. Plot of angle error (left) and magnitude error (right) of the four
methods on the unstructured mesh, where the input signal has been per-
turbed at vertices to simulate an increasingly high amount of noise. We set
the input signal with frequency parameter b = 10.

5.4. The 3D case 28

Results in the volumetric case substantially confirm the be- 29

haviour of the planar case. Amplitude variations of the test 30

function do not lead to relevant considerations; we therefore 31

study the performances of the four methods with respect to vari- 32

ations in frequency, mesh anisotropy, and resiliency to noise. 33

Frequency. The tetrahedral meshes considered in our experi- 34

ments have been constructed in order to have approximately 35

the same average edge length of the meshes used in the pla- 36

nar case. We consider the function f3,a,b(x, y, z) introduced in 37

Section 4 and we vary the ratio L/P in the range [0.035, 0.27]. 38

Overall the 2D (Figure 10) and 3D (Figure 14) cases 39

exhibit a quite coherent behaviour. The same con- 40

siderations made Section 5.3 about comparative perfor- 41

mances remain true also in this case: PCE performs a 42

poor estimation of direction, but it is more resilient to 43

the increase of frequency in estimating the magnitude: 44

on the other hand, vertex-based 45

methods are more accurate in 46

terms of angle error. The main 47

difference is that, in the planar 48

case, the estimation of the gra- 49

dient direction provided by the 50

vertex-based methods is much 51

more accurate on the structured mesh than on the unstructured 52

one. Indeed, the 1-rings in the volumetric mesh are not as 53

isotropic as in the planar mesh (see inset – 2D ring left, 3D ring 54
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Fig. 14. Plot of total error (top line), angle error ( middle line), and mag-
nitude error (bottom line) on the 3D structured (left column) and unstruc-
tured mesh (unstructured column).

right); we conjecture that less regular shape of cells and 1-rings1

have a negative effect on the accuracy of all methods.This seems2

confirmed by the fact that LR is most resilient to this kind of3

1-rings, consistently with its superior behaviour on anisotropic4

meshes.5

Anisotropy. The results of the experiments made on the vari-6

ation of the coefficient of anisotropy are shown in Figure 15.7

Here results lead to slightly different considerations compared8

to what we observed in the 2D case: PCE suffers much more9

the increase of coefficient K and this, in turn, affects the perfor-10

mance of AGS, which turns out to be the less accurate among11

the vertex-based methods. LR seems to be almost insensitive12

to the increase in anisotropy of the mesh, while LSDD has an13

intermediate behaviour.14

Noise. Figure 16 reports both angle and magnitude error for15

growing values of noise in the test function. As in the planar16

case, we observe a super-linear increase of the magnitude error17

for PCE, while all vertex-based methods exhibit a similar be-18

haviour in terms of magnitude error. Concerning angle error,19

we see that PCE has the worse performance. In this case, we20

notice that the differences in term of accuracy between the three21

vertex-based methods are less evident compared to the 2D case.22

Fig. 15. Plot of angle error (left) and magnitude error (right) of the
four methods computed on unstructured meshes with increasing levels of
anisotropy. We set the input signal with frequency parameter b = 10.

Fig. 16. Plot of angle error (left) and magnitude error (right) of the four
methods computed on a structured mesh, where the function sampled at
its vertices was affected by increasingly high displacement to simulate noisy
data. We set the input signal with frequency parameter b = 10.

5.5. Error distribution 23

In this section, we analyze the distribution of the total error 24

for the various methods, by using box plots. For each experi- 25

ment made in the previous sections, we compute the error dis- 26

tributions at the starting value, at an intermediate value, and at 27

the final value of the parameter scale. For the case of variable 28

frequency (Figure 17) and variable anisotropy (Figure 18), we 29

show the box plots of both the 2D and the 3D case, in order to 30

highlight differences; for the case of variable noise (Figure 19), 31

we show just the box plot for the 2D case, as its 3D counterpart 32

shows a nearly identical behaviour for all methods. 33

The red line inside each box indicates the value of the me- 34

dian error; the box encloses all data between the 25th and 75th 35

percentiles, respectively; the whiskers extend to the most ex- 36

treme data points not considered outliers; and the outliers are 37

plotted individually using blue dots. We choose to use the max- 38

imal whisker length, e.g. 1.5∗ IQR, where IQR is the difference 39

between the 75th and 25th percentiles of the sample data. 40

In the variable frequency experiment, PCE shows an error 41

distribution much wider than all other methods; while all the 42

vertex-based methods exhibit a similar distribution. Not sur- 43

prisingly, the distribution becomes wider as the L/P ratio in- 44

creases. At high frequencies, the better resiliency of PCE to 45

the L/P ratio becomes apparent as its box lies below the median 46

of the other methods. Note how the median is higher in the 3D 47

case for vertex-based methods, although at low frequencies they 48

present much less outliers w.r.t. the 2D case. 49

In the 2D variable anisotropy experiment, PCE exhibits both 50

a worse mean and a much wider distribution than the vertex- 51

based methods, while AGS exhibits a slightly wider distribu- 52
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Fig. 17. Box plots of error distribution for L/P = 0.03, 0.11, 0.23 for the 2D case( top row) and for L/P = 0.03, 0.12, 0.24 for the 3D case (bottom row).

Fig. 18. Box plots of the error distribution for varying anisotropy with K = 1, 5, 9 for the 2D case (top row) and for the 3D case (bottom row).

Fig. 19. Box plots of the error distribution for varying noise level with ε = 0.1, 0.5, 1 for the 2D case.
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tion than the LSDD and LR. In the 3D case, the increase in1

error of PCE becomes dramatic and also the difference between2

the distribution of AGS from the distributions of LSDD and LR3

becomes more relevant, at intermediate levels of anisotropy al-4

ready. The slightly better resiliency of LR over LSDD at high5

anisotropy levels is witnessed by a thinner distribution, the two6

medians being comparable, though.7

The variable noise experiment confirms a definitely worse8

overall performance of PCE over the vertex-based methods, but9

the error distribution of PCE maintains a nearly constant vari-10

ance at increasing noise, while the variance of the vertex-based11

methods increases dramatically, becoming wider than that of12

PCE at high levels of noise. Distributions of the three vertex-13

based methods are very similar, with a slight superiority of14

AGS.15

6. Computational cost16

Here we discuss the four tested methods with respect to their17

computational cost. All methods support two possible imple-18

mentations: in a one-shot implementation, the gradient is esti-19

mated directly by taking in input the mesh and the signal; in an20

amortised implementation, some pre-computation, which de-21

pends just on the mesh, is performed once and for all, while22

the gradient evaluation is computed efficiently from the pre-23

computed structures each time the input signal changes. The24

cost of the one-shot implementation is roughly equal to the sum25

of costs of the two phases in the amortised implementation;26

while the cost of gradient evaluation is expected to be much27

lower than the cost of pre-computation in the amortised imple-28

mentation. Therefore, the amortised implementation is always29

convenient when gradient computation is repeated for multiple30

signals. Given a mesh with T triangles/tetrahedra and V ver-31

tices, we summarise the pre-computation and the gradient esti-32

mation phases for each method below:33

• PCE can be efficiently packed into a dT ×V sparse matrix34

G, having just four d + 1 non-zero entries per row, where35

d = 2, 3 for the 2D and 3D case, respectively. Multiplying36

G for a column vector containing the function values at37

each vertex in the mesh, returns a dT long column vector38

containing the serialised per triangle gradient.39

• AGS is similar to PCE, but matrix G will have size dV×V ,40

where the number of non-zero entries per row is equal to41

the valence of the corresponding vertex, being 6 and 13 on42

average for the 2D and 3D case, respectively. Multiplying43

G with the scalar field vector returns a dV vector contain-44

ing the serialised per vertex gradient. Note that, for both45

PCE and AGS, having the gradient in matrix form is use-46

ful to define a discrete divergence operator, which is noth-47

ing but the matrix GT , which transforms gradients into per48

vertex divergence values by means of matrix vector multi-49

plication [20].50

• LSDD consists of a collection of dV linear systems of di-51

mension d × d each. The matrix in the left term can be52

assembled and pre-factorised; each system can be solved53

Method 2D 3D
pre-computation gradient estimation pre-computation gradient estimation

PCE 38V 20V 221V 106V
AGS 44V 22V 185V 75V
LSDD 129V 44V 469V 125V
LR 822V 174V 4317V 553V

Table 1. Computational cost of each gradient estimator, obtained counting
the number of floating point operations for both the pre-processing and the
gradient computation phases. Costs are presented in terms of the number
of vertices V . Since the complexity depends on the number of incident
vertices and faces, whenever needed we substitute those values with the
corresponding average valences in a CDT.

efficiently after pre-factorisation. Note that the signal part 54

in the right term must be reassembled each time the sig- 55

nal changes. In order to exploit the parallelism of linear 56

algebra libraries, all systems can be assembled in a unique 57

sparse block matrix consisting of 3×3 blocks along the di- 58

agonal. Since all linear systems are independent, however, 59

this further optimization does not reduce the total number 60

of operations. 61

• LR can be implemented similarly to LSDD, only in this 62

case there will be dV linear systems of dimension 6 × 6 63

and 10 × 10 each, for the 2D and 3D case, respectively. 64

In Table 1, we report an estimate of the computational cost 65

of such implementations in terms of number of floating-point 66

operations for the pre-processing and for the gradient computa- 67

tion phases, both for the 2D and for the 3D case, respectively. 68

Note that we disregard completely the cost of retrieving inci- 69

dence and adjacency relations between simplices in the mesh, 70

as this cost is highly dependent on the underlying data structure. 71

All figures are referred to the number of vertices V in the input 72

mesh; since some figures actually also depend on the number of 73

triangles/tetrahedra in the mesh, we reported all such parame- 74

ters to V . For the 2D case, we rely on the Euler formula, giving 75

T ≈ 2V; likewise, the average number of neighbors and trian- 76

gles in the star of a vertex is 6. Since the Euler formula for the 77

3D case does not provide an estimation of the number of tetra- 78

hedra in terms of V , we rely on figures from our unstructured 79

mesh (CDT), where T ≈ 5V; likewise, the average number of 80

neighbors and tetrahedra in the star of a vertex is 13 and 21, 81

respectively. 82

The pre-computation phase of PCE involves just a straight 83

computation of Eq. 1 and 2, for d + 2, 3, respectively; while 84

gradient estimation has just the cost of a sparse matrix vec- 85

tor product. For the pre-computation phase of AGS, instead 86

of implementing Eq. 4, which involves computing PCE first, 87

we directly compute the weighted coefficients corresponding 88

to the neighbours of each vertex, as in the traditional Green- 89

Gauss method of Eq. 3: this approach simplifies computation 90

by avoiding terms corresponding to faces incident at the central 91

vertex v, which cancel in the Green-Gauss method, while lim- 92

iting computations to faces opposite to v. The gradient estima- 93

tion phase for AGS is again a sparse matrix vector computation, 94

with about the same number of non-zero entries of PCE in 2D, 95

and a smaller number of non-zero entries than PCE in 3D. For 96

the pre-computation phase of LSDD and LR, we count all the 97

operations necessary to build the square systems in Eq. 6 and 98
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Fig. 20. Computational times associated to each gradient estimator in 2D
(left) and 3D (right) for the one-shot implementation (top) and the gradi-
ent estimation phase of the amortized implementation (bottom). Mesh size
varies between 500 and one million vertices, both in 2D and in 3D; times
are reported in log scale.

Eq. 7, respectively, and then we add the complexity of a QR1

factorization with Householder (see [21], Lec.10). While the2

gradient estimation phase for LSDD and LR involves the cost3

of a matrix vector computation to build the right hand term, plus4

the cost of resolving a triangular system.5

In Figure 20 we plot computation times of the four methods6

we tested for meshes with growing size. We report times for7

both the one-shot implementation and the gradient estimation8

phase of the amortised implementation. In the one-shot imple-9

mentations, in 2D all four methods exhibit the same asymptotic10

behaviour, with LR being the more expensive, and PCE being11

the least expensive. In 3D, PCE and AGS have a higher cost,12

and seem to scale worse. While there are no conceptual differ-13

ences between the 2D and 3D case, we believe this increased14

cost is due to the specific data structures we used, which are15

tailored for general polygonal and polyhedral meshes [18], and16

do not fully exploit memory locality, leading to an overly high17

cost to access topological relations between cells. In the amor-18

tised implementation, all methods run faster by at least one or-19

der of magnitude than their related one-shot implementation. In20

2D, PCE and AGS run almost equally fast and overall at least21

one order of magnitude faster than LSDD and LR, LSDD being22

faster than LR for about a factor of two. In 3D, differences be-23

come more dramatic: AGS runs faster than PCE, being based24

on a smaller matrix, and almost three orders of magnitude faster25

than its one-shot version; PCE also runs about two orders of26

magnitude faster than its one-shot version, but it is about three27

times slower than AGS. LSDD is just about twice faster than28

its one-shot version, and about one order of magnitude slower29

than AGS. LR exhibits the worst performance, being between30

two and three times faster than its one-shot version, but still31

much slower than LSDD, especially when the size of the mesh32

grows.33

7. Summary 34

In Table 2, we summarize on an ordinal scale the perfor- 35

mances of the various methods. As it can be easily seen, there 36

is no clear winner. 37

In terms of overall performances on semi-regular meshes, the 38

vertex-based methods do almost equally well, and definitely 39

better than PCE, on estimating the direction of the gradient; 40

while PCE provides a better estimate of the magnitude of gra- 41

dient; the total error is lower for the vertex-based methods at 42

low L/P ratio, while PCE shows a better resilience to the in- 43

crease of such ratio, thanks to its smaller stencil. 44

All methods provide lousy estimates at the boundaries: PCE 45

in fact exhibits the same (relatively poor) performances at the 46

interior and at the boundary, while the vertex-based methods 47

have a much worse behaviour at the boundary (not worse than 48

PCE, though); LR exhibits the most unpredictable behaviour at 49

the boundary, given to the effect of extrapolation error on the 50

second order polynomial fit. 51

On the other hand LR excels on the anisotropic mesh; while 52

all three vertex-bases methods result equally resilient to noise, 53

and do definitely better than PCE. 54

In terms of computational cost, PCE and AGS result faster 55

than LSDD and LR, both in 2D and in 3D, both in the one-shot 56

and in the amortised case; in particular, LR results much slower 57

than the other methods and its difference in speed is particularly 58

relevant in 3D. 59

Overall, AGS seems a good choice for processing semi- 60

regular meshes, while LR should be preferred for anisotropic 61

meshes. 62

8. Extensions 63

The scope of our analysis is limited to the evaluation of a gra- 64

dient field on simplicial meshes covering a Euclidean domain. 65

There are several important extensions of this problem that we 66

briefly review in the following. 67

8.1. Polygonal/polyhedral meshes 68

Linear interpolation of function f cannot be used on non-
simplicial cells. Per-cell gradient estimation can be obtained by
applying the Green-Gauss formula to each cell σ∫

σ

∇ f dV =

∫
∂σ

f ndA

where n is the normal direction to the boundary of σ. In [5] 69

this approach is investigated in detail and some computational 70

alternatives are proposed. Note that this formula gives the same 71

result of per-cell linear estimation in case σ is a simplicial cell. 72

The extension of per-vertex methods is straightforward. 73

Once per-cell constant gradient has been obtained, the method 74

described in Section 3.2.1 can be applied with no change, by 75

averaging gradients in the incident cells of each vertex. Also 76

the methods described in Sections 3.2.2 and 3.2.3 can be ap- 77

plied directly, since they only require retrieving vertices in the 78

star (or k-ring) of a given vertex. In the latter case, since the di- 79

rect neighbors of each vertex are usually fewer in a polyhedral 80

mesh, all vertices of cells incident at a given vertex might be 81

considered as neighbors. 82



14 Preprint Submitted for review / Computers & Graphics (2019)

Method
Overall performance Resilience to: Comp. cost

Pathologiesinterior boundary poor L/P anisotropy noise
direction magnitude

PCE - - + - + -/- - - - ++/+ critical points
AGS ++ - - - +/- + ++/+ critical points

LSDD ++ - - - + + - critical points
LR ++ - - - - ++ + - - critical points on boundary

Table 2. Summary of the performance of the various methods on an ordinal scale (- -, -, +, ++) on all aspects analyzed. We obtained coherent results for
the 2D and 3D cases with respect to most aspects: in that case just one symbol is reported; we report two symbols separated with a slash for the 2D / 3D
case, respectively, just where we found relevant differences.

8.2. Manifold domains1

When domain Ω is a manifold, such as a surface embedded2

in 3D space, gradient fields are defined in tangent space. Per-3

face gradient estimation can be applied unchanged, because the4

tangent plane at a face of a surface mesh coincides with the5

plane of the face itself. Conversely, the estimation of gradi-6

ents at vertices, as well as their extension to the whole domain,7

need to bring the necessary information to the tangent planes8

at vertices, either through an affine connection (for AGS), or9

through an exponential map (for LSDD and LR). An excellent10

reference about computing exponential maps and affine connec-11

tions is provided by [22]. There exists a vast literature on the12

design and analysis of vector fields on surfaces. However, to13

the best of our knowledge, the explicit problem of estimating14

gradient fields per-vertex on a surface has not been investigated15

in the literature. In a recent survey [1], several techniques for16

vector field processing are reviewed, yet gradient estimation is17

reported only under the per-face approach.18

8.3. Field tracing19

Once a gradient has been estimated on a mesh Σ, it is possible20

to trace its integral lines. Tracing a piecewise-constant gradient21

is straightfoward and gives piecewise-linear integral lines, but22

it often produces artifacts.23

A piecewise-linear gradient model is much more reliable, but24

it is also much more difficult to trace. As shown in [3], the inte-25

gral lines of a linear vector field on a simplex may be expressed26

in analytic form with a rather complex parametrization, which27

cannot be easily intersected with the boundary of the cell. Trac-28

ing such exact lines has been attempted in [2], but it may lead29

to numerical issues. One straightforward alternative consists30

of computing a piecewise-linear approximation of an integral31

line: starting at a given point, the line is traced by consider-32

ing a polyline that follows the gradient for a given step at each33

node; with this approach, the intersection with the boundary of34

cells is easy, but the tracing procedure is prone to a potentially35

large drift which may propagate at each step. Although this so-36

lution converges to the exact one, as the length of the step tends37

to zero, it is hard to set a step that guarantees a bound to the38

drift. One dangerous consequence of accumulated numerical39

errors and/or drift is that integral lines that should proceed par-40

allel may meet and intersect, thus corrupting the topology of the41

field.42

Some recent approaches try to address the topological cor-43

rectness of a piecewise-linear vector field on a surface, by de-44

tecting coherent bundles of integral lines that travel parallel45

inside a cell [23, 24, 25]. Under these approaches, big drifts 46

are avoided and the overall topological structure of the field is 47

maintained, at the cost of a rougher approximation of lines in- 48

side a given cell. 49

9. Concluding remarks 50

We presented an experimental evaluation in 2D and 3D of 51

four different gradient estimators for simplicial meshes. We 52

started from the consideration that the ubiquitous piece-wise 53

constant gradients, obtained computing the partial derivatives 54

of the function sampled at the mesh vertices and linearly ex- 55

tended within each cell, suffer from a number of limitations 56

(Section 1). 57

In our study, we have considered a family of periodic func- 58

tions, and tested each method on a variety of discrete meshes 59

which are common in applied sciences, also testing resiliency 60

to noise and computational performances. 61

Experiments confirm that overall – due to its piece-wise con- 62

stant nature – PCE performs worse than any vertex-based gradi- 63

ent estimator that we tested. The worst performances come for 64

anisotropic meshes or signals affected by noise, where PCE has 65

angle error which grows as the same rate observed for vertex- 66

based gradients, and magnitude error which grows at a much 67

higher rate (Figures 12 , 15 , 13 and 16)x. This is also probably 68

due to its higher locality, which makes it extremely sensitive to 69

perturbations in the signal or sampling, although it is not yet 70

clear why this effect manifests itself more on the magnitude 71

component than on angles. On the positive sides, the local- 72

ity of PCE makes it more resilient to the increase of the sig- 73

nal frequency in estimating the magnitude of the gradient (Fig- 74

ures 10 and 14). Furthermore, being computed separately on 75

each triangle, PCE is basically insensitive to boundaries (Fig- 76

ure 8). 77

Restricting to vertex-based methods, linear regression (LR) 78

seems to do slightly better than AGS and LSDD when the 79

mesh is quite refined with respect to signal frequency (Fig- 80

ures 10 and 14), and has a superior behavior on anisotropic 81

meshes (Figures 12 and 15). However, LR suffers the most on 82

boundaries, (Figures 4). Furthermore, LR is the most expensive 83

method, as it requires solving a linear system for each vertex, 84

making it hardly scalable on big meshes (Figure 20). AGS and 85

LSDD often show the same asymptotic behaviour, but AGS has 86

lower error in every experiments, except the one made on the 87

anisotropic 3D mesh, and it has lower computational cost. 88
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For a standard use, AGS seems to offer the best compromise1

between stability, accuracy and computational cost. LR per-2

forms better on anisotropic meshes and may offer more uni-3

form accuracy at a slightly larger computational cost, but it has4

a quite unpredictable behaviour at the boundaries.5

A common trait of all the meshes we considered – both pro-6

cedural and Voronoi based – is to expose a fairly even distri-7

bution of per vertex valences. Meshes that do not fall in this8

category may possibly bias the results of our study. While va-9

lence irregular meshes could certainly be created with interac-10

tive modeling tools; we did not investigate such meshes because11

we are not aware of any automatic tool capable to synthesize12

them. Conversely, the scientific literature offers various tech-13

niques to harmonize mesh connectivity and transform irregular14

meshes into semi-regular or regular ones [26].15

For future works, we aim at extending this study consider-16

ing estimation on manifold domains and integral curve tracing17

problems. The latter seems to be particularly interesting (and18

challenging) for the vertex-based methods, where singularities19

may arise at any point inside elements domain and not only at20

the mesh vertices. Global methods, e.g., based on radial basis21

functions, could also offer a valid alternative to the local meth-22

ods investigated here: it would be interesting to investigate the23

trade-off between accuracy and computational cost, which is24

probably higher.25
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