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Abstract
The estimation of the differential properties of a function sampled at the vertices of a discrete domain is at the basis of many
applied sciences. In this paper, we focus on the computation of function gradients on triangle meshes. We study one face-based
method (the standard the facto), plus three vertex based methods. Comparisons regard accuracy, ability to perform on different
domain discretizations, and efficiency. We performed extensive tests and provide an in-depth analysis of our results. Besides
some behaviour that is common to all methods, in our study we found that, considering both accuracy and efficiency, some
methods are preferable to others. This directly translates to useful suggestions for the implementation of gradient estimators in
research and industrial code.

CCS Concepts
•Mathematics of computing → Numerical differentiation; •Computing methodologies → Mesh models; •Human-centered
computing → Scientific visualization;

1. Introduction

Geometric meshes play a central role in a number of domains, in-
cluding computer graphics and scientific visualization, mechanical,
structural and electrical engineering, and computational methods in
physics, chemistry and geology. Quite often, a scalar field is sam-
pled at the vertices of a geometric mesh, which discretizes a given
domain. Computational analysis of such a field may require evalu-
ating its gradient and, possibly, tracing its integral lines.

In the geometry processing and FEM literature, a scalar field is
often extended from vertices to the interior of higher dimensional
cells by linear interpolation. Under this approach, a constant gra-
dient is associated to each cell with a straightforward computation,
thus providing the simplest form of evaluation of the gradient field.
Although sufficient for many applications, the piece-wise constant
gradient has several limitations and drawbacks: being not continu-
ous, the gradient has divergent covariant derivative at the interface
between cells; singularities are forced to lie just at vertices of the
mesh; and integral lines are discretized into polylines that travel
parallel to each other inside each element, so that their distribu-
tion does not depend just on the field, but also on the orientation of
edges and vertex valences of the underlying mesh (see Figure 1).

As discussed in [DGDT16], discrete vector fields can be given
per face, per edge, or per vertex. While per-edge and per-face vector
fields are usually not continuous, per-vertex vector fields can be
extended to the whole mesh by linear interpolation, and they can
be traced exactly inside each element [KRG03, NJ99]. However,

there exist surprisingly few works dealing with the estimation and
assessment of per-vertex gradient fields.

In this work, we review common methods for estimating a per-
vertex gradient field, and we compare their accuracy with respect to

Figure 1: Per-face gradient estimation on a paraboloid with mini-
mum at the center of the domain (left). Although the estimate is very
accurate, integral lines traced from a neighborhood of the mini-
mum do not diverge uniformly, but rather travel in four bundles of
nearly parallel lines (right). This behaviour is induced by the dis-
crete piece-wise constant nature of the gradient field. Starting the
tracing from the umbrella of a vertex with low valence exacerbates
the problem.
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the standard method to compute a per-face gradient field. Since our
interest is to study the performances of the piece-wise linear meth-
ods in every point of the domain, such comparisons will be made
considering not only the vertices of the mesh, as shown in Sec.
4.3. This choice is further motivated by the expectation of applying
these results to the tracing of integral curves. We limit our study to
the planar case, and plan to extend it to manifold surfaces and vol-
umes in future works. It is worth observing that, in order to apply
piece-wise linear methods on a generic triangular mesh immersed
in a 3D space, a way to parallel transport vectors from a tangent
space to another will be needed (see Sec 6.2). Performances of the
various methods are measured according to a family of parametric
functions sampled at mesh vertices. The influence of the underlying
tessellation is also studied, considering different domain discretiza-
tions strategies.

The analysis of our results shows that – not surprisingly – piece-
wise constant gradients perform worse than gradients linearly inter-
polated within each triangle in almost all our experiments. The only
exception being performances on boundaries, where computing the
gradient separately for each triangle offers an advantage to meth-
ods that use a bigger stencil to evaluate the function. Restricting to
piece-wise linear approaches, we found that in terms of accuracy
all methods performed similarly in many experiments, with some
exception regarding resiliency to anisotropy and signal noise. We
broke ties combining accuracy with a deep analysis of the scalabil-
ity and computational cost associated to each technique, being able
to provide useful suggestions for the implementation of per-vertex
gradients in research and industrial code.

2. Related Works

Sozer and colleagues [SBK14] surveyed different approaches to
gradient estimation for a variety of meshes used in Computational
Fluid Dynamics (CFD), ranging from tetrahedral and hexahedral,
to general polyhedral meshes. In all the considered examples, the
function is encoded at the vertices of the mesh and the average per-
cell gradient is computed according to different techniques, always
leading to a piece-wise constant gradient field. The recent course
on field processing [DGDT16] discusses gradient fields as a spe-
cial case of the more general vector fields; the course focuses on
triangular meshes embedded in R3, and does not extend to other
spaces or discretizations. In [HS97] Hyman and Shashkov intro-
duced a framework for discrete calculus of fields defined on the
vertices of a 2D domain meshed with quads, formulating a discrete
counterpart of continuous operators such as gradient, divergence
and curl. Neumann and colleagues [NCKG00] propose an efficient
method to estimate surface normals of a density field encoded in
a voxel grid, and use this information for shading. The method is
based on a gradient estimation obtained with 4D linear regression.
Jirka and Skala [JS02] studied gradient estimation based on fitting
quadrics on mesh vertices; the regression strategy we study is based
on the method they describe. Correa et al. [CHM09] studied the
accuracy of gradient estimation in the context of scientific visu-
alization. Their study is similar in spirit to ours (similar gradient
estimation techniques are considered), but is focused on volumet-
ric meshes only. For the 2D case, Cerbato et al. [CHdSM14] tested
the performances of the Green Gauss gradient estimation on a va-

riety of different polygonal meshes (simplicial meshes were not
considered). To the best of our knowledge no comprehensive study
of gradient field estimation on 2D simplicial meshes is present in
literature.

3. Methods for gradient field estimation

We introduce here the four methods we consider in our study, also
fixing our notation. Let Ω ⊂ Rd be a compact domain. While in
the experimental part we concentrate on the case d = 2, we present
theory in a more general way, referring to d dimensional simplicial
meshes and sometimes providing explicit formulas also for the case
d = 3, which corresponds to the case of tetrahedral meshes and
is ubiquitous in applied sciences. Nevertheless, concepts extend to
any dimension.

Let Σ be a simplicial mesh having Ω as carrier. Mesh Σ can be de-
scribed by the collection V of its vertices, and the collection T of its
maximal cells – which are either triangles or tetrahedra, for d = 2
and d = 3, respectively. Cells of intermediate dimensions, such as
edges and faces, can be derived uniquely by subsets of vertices be-
longing to the same maximal cell. We assume the standard topolog-
ical relations among adjacent and incident cells. In this context, we
recall that the star (or 1-ring) of a vertex v∈V is defined as the col-
lection of all cells (edges, triangles) of Σ that are incident at v. By
abuse of notation we will refer to vertices in the star of v by mean-
ing the vertices sharing an edge with v. The star provides a discrete
version of a mathematical neighborhood, and will be generically
denoted byN (v). The k-ring, for k > 1, can be defined inductively
as the union of the stars of all vertices in the (k−1)-ring.

Let f : Ω−→R be a smooth scalar function. We assume to know
the value of f only at the vertices of Σ. The discrete version of f
is therefore a collection F = { f1, . . . , fn}, where n is the number of
vertices in V and each fi corresponds to the function value sampled
at vertex vi, for all i = 1, . . . ,n.

The problem addressed in the following is that of estimating the
gradient ∇ f on Ω, on the basis of the discretizations F and Σ. The
gradient will be estimated at cells of Σ and extended to the whole
domain via en either piece-wise constant (Section 3.1), or piece-
wise linear (Sections 3.2.1, 3.2.2 and 3.2.3) approaches.

3.1. Per-Cell linear Estimation (PCE)

Our bottom line is a method that estimates a constant gradient at
each maximal cell. We start by extending the values in F to the
cells of Σ by linear interpolation. This is well defined on cells of all
orders because Σ is a simplicial mesh, hence there exists a unique
linear function that interpolates the values in F at all vertices of any
cell σ ∈ Σ, namely

f̃σ(p) = ∑
vi∈σ

λi fi,

where p is a generic point of σ, the vi’s are the vertices of cell σ and
the λi’s are the barycentric coordinates of p with respect to the vi’s.
In this model, function f̃ estimates f as a piecewise-linear function,
which is continuous over Ω and differentiable only in the interior
of its maximal cells. The gradient of f̃ is thus constant inside every
cell σ and it is associated either to the whole σ, or conventionally to
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its centroid cσ, depending on the applications. For a triangle t with
vertices vi,v j,vk it is easy to show that we have

∇ ft = ( f j− fi)
(vi− vk)

⊥

2At
+( fk− fi)

(v j− vi)
⊥

2At
. (1)

Analogously, for a tetrahedron τ with vertices vi,v j,vk,vh we have

∇ fτ = ( f j− fi)
(vi− vk)× (vh− vk)

2Vτ

+( fk− fi)
(vi− vh)× (v j− vh)

2Vτ

+( fh− fi)
(vk− vi)× (v j− vi)

2Vτ

,

where e⊥ denotes edge e rotated by 90◦, and At ,Vτ are the area of
t and the volume of τ, respectively.

3.2. Per-vertex gradient estimation

As already observed, in the piece-wise linear model of f̃ the gra-
dient is not defined at vertices of Σ. The methods we review in the
following assume that f is a higher order function, smooth at edges
and vertices of Σ. The different methods exploit different facts that
hold in the continuous case, and try to bring them to the discrete
setting. All such methods work either by averaging (integration) or
by approximation (fitting), because no exact model can be assumed
for f in the generic case.

Note that, once the gradient has been estimated at all vertices, the
gradient field can be extended by linear interpolation inside cells of
any order. It is therefore continuous in Ω and overall more accurate
than the piece-wise constant field reviewed in the previous section,
as we will see in our experiments.

3.2.1. Average Gradient on Star (AGS)

A common procedure in discrete differential geometry consists of
estimating a differential property at a point p as the average value
of the same property in a neighborhood of p [MDSB03]. More for-
mally, in our case, we can write

∇ f (p)' 1
VB(p)

∫
B(p)
∇ f dV,

where B(p) is a neighborhood of p and VB(p) is its volume/area.

Now, given a vertex v of Σ, we can use the method in the previous
section to estimate (an average value of) ∇ f in the maximal cells
of the star of v, and compute the integral as a sum of constant terms,
obtaining

∇ fv '
1

∑σ∈N (v)Vσ
∑

σ∈N (v)
Vσ∇ fσ, (2)

where∇ fσ is the value computed with Equation 1. Note that, since
the gradient is constant inside each maximal cell, we obtain the
same result if we consider any area of integration that gives equiv-
alent weights to the cells in the star. For instance, Equation 2 holds
unchanged if we consider the centroidal integration area as defined
in [MDSB03], which partitions the mesh into disjoint integration
areas for the different vertices.

3.2.2. Least Squares fit of Directional Derivatives (LSDD)

This approach consists in estimating first a few directional deriva-
tives of f at vi, and imposing their relation with the gradient. Let
be {v0, ...,vki} the vertices belonging to the 1-ring of vi. Taylor’s
expansion of f at the first order allows us to write:

f (v j)− f (vi)≈∇ f · (vi− v j),

for every j = 0, ...,ki. The idea is to build a linear system exploiting
the above approximation, i.e writing

f (v j)− f (vi) =∇ f · (vi− v j), j = 0, ...,ki. (3)

Note that the second term of (3) is the directional derivative of f
along vector (vi−v j), hence the name. Since ki usually greater than
the dimension of the space, the linear system is usually overdeter-
mined and it only admits a least squares solution. Let Ai be the
ki× d matrix obtained by collecting all the (v j− vi), and let Di be
the column matrix consisting of all the f (v j)− f (vi). Then, the sys-
tem can be written in matrix form as Ai∇ f (vi) = Di, and its least
squares solution is obtained by resolving the d×d linear system

AT
i Ai∇ f (vi) = AT

i Di. (4)

Note that we have to assemble and solve such a system at every ver-
tex, hence this method is usually more expensive than the previous
ones.

3.2.3. Linear regression (LR)

The last approach we review consists of approximating function f
in the neighborhood of vi with a polynomial πi of given degree, by
setting a system of linear equations that asks πi to assume the given
values of F at all vertices of a given k-ring of vi. After the fitting
polynomial has been obtained, the gradient of f at vi is estimated
analytically as the gradient of πi.

In our experiments we consider quadratic polynomials and 1-
rings, which are extended to 2-rings only if the number of neighbors
of vi is insufficient to fix all degrees of freedom. In 2D we have

πi(x,y) = aix
2 +biy

2 + cixy+dix+ eiy+ fi,

where coefficients PT
i = [ai,bi,ci,di,ei, fi] are unknown. For each

vertex v j in the neighborhood of vi (including vi itself), we impose
πi(v j) = f j , thus obtaining a linear system with as many equations
as the vertices in the neighborhood of vi. The coefficients of the best
fitting polynomial can therefore be found by solving the system in
the least squares sense, accoring to the normal equation

AT
i AiPi = AT

i Fi, (5)

where:

• Ai is a ki×6 matrix containing one row per vertex in the neigh-
borhood of vi (including vi itself); the row corresponding to ver-
tex v j = (x j,y j) contains values (x2

j ,y
2
j ,x jy j,x j,y j,1);

• Fi is a column vector containing the values f j corresponding to
the vertices v j in the neighborhood of vi.

Once the coefficients of πi are known, the gradient at vi = (xi,yi)
is given trivially by

∇ f (vi) = (2aixi + ciyi +di,2biyi + cixi + ei).
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For d = 3 the solution is analogous: the polynomial has 10 un-
known coefficients and the method needs solving a 10× 10 linear
system. Note that we have to assemble and solve such a system at
every vertex, hence this method is the most expensive in the set we
review.

4. Experimental setup

We evaluate the four techniques presented in Section 3 on analytic
functions, comparing numerical estimates with the ground truth. In
order to analyze different situations, we use a parametric family
of non-polynomial periodic functions, and meshes with different
characteristics.

4.1. Test functions

We consider the domain Ω = [0,1]× [0,1] and the following para-
metric family of functions:

fa,b(x,y) = a sin(bx) cos(by).

Parameters a and b control the amplitude and the frequency of the
function, respectively. Figure 2 shows four plots of fa,b for different
values of a and b.

4.2. Meshes

We aim to test the performances of the various gradients on dif-
ferent discrete settings, where the domain is tessellated according
to different strategies. To this end, we select three meshes, which
we believe are representative of ubiquitous scenarios in applied sci-
ences. Specifically, we consider:

• ΣS: a structured mesh made of equilateral triangles;
• ΣU : an unstructured mesh obtained computing a Constrained

Delaunay Tessellation of a random sampling of the domain Ω;
• ΣA: an anisotropic mesh obtained by computing a CDT of a sam-

pling of the [0,K]× [0,1] domain, and squeezing it to fit the unit
square. Value K is called the coefficient of anisotropy.

For ΣU and ΣA we used Triangle [She96] for mesh generation.
Each mesh contains approximately 1K triangles. Closeups of our
meshes are shown in Figure 3. In our experiments, we do not in-
vestigate progressively finer meshes; we rather decided to keep the
tessellation fixed and to act on the frequency of the function (i.e.,
parameter b). Note that the two approaches are equivalent.

4.3. Error metrics

We evaluate the Mean Squared Error (MSE) of the estimated gra-
dient by sampling data on a regular grid of 100× 100 points. The
error of a gradient field has two components: angular and magni-
tude. In our experiments when possible we merge them, consider-
ing a composite metric defined as the norm of the difference vector
between the analytic gradient of the continuous function ∇ f , and
its numerical estimation ∇̃F (computed on the discrete sampling F
of f at the vertices of the mesh)

MSEtot =
1
N

N

∑
i=0

∥∥∥∇ f (vi)−∇̃F(vi)
∥∥∥2

2
,

In some applications, only the directional or magnitude compo-
nents of the gradient are relevant. Therefore, sometimes we plot
only the angle error, defined as

MSEang =
1
N

N

∑
i=0

](∇ f (vi),∇̃F(vi))
2 ,

or only the magnitude error, defined as

MSEmag =
1
N

N

∑
i=0

(‖∇ f (vi)‖−‖∇̃F(vi)‖)2 ,

In general, we plot the latter two errors only in cases where they
show significantly different behaviours (e.g., Figure 6). In all such
cases, we explicitly talk about angle or magnitude error. If nothing
is said, we always assume the total error is considered.

5. Evaluation

We report here our experiments and analysis. We consider the four
different gradient estimators described before:

• PCE: Per-Cell Estimator (Section 3.1);
• AGS: Average Gradient on Star (Section 3.2.1);
• LSDD: Least Squares Directional Derivatives (Section 3.2.2);
• LR: Linear Regression (Section 3.2.3).

Piece-wise linear gradients (i.e., AGS, LSDD and LR) are linearly
interpolated inside each cell using barycentric coordinates. We test
their performances according to various instances of our paramet-
ric test function (Section 5.2), also considering different domain
discretizations (Section 5.3). Since in real applications data com-
ing from sensors are often affected by noise, we also check per-
formances of gradient estimators under perturbed functions (Sec-
tion 5.4).

Experiments were run on a MacBook Pro equipped with an In-
tel i5 with 2.7 GHz and 8 GB of RAM. We wrote a C++ single
threaded application, implementing the four methods described in
Section 3. We used CinoLib [Liv17] for geometry processing and
Eigen [GJ∗10] to solve linear systems.

5.1. Boundaries

In our experiments we observed that all vertex-based methods ex-
hibit the same pathological behavior at the boundaries of the do-
main, where approximation error is averagely higher than in the
interior (Figure 5). To understand this increased error we must re-
member that all such methods use a stencil (i.e., the 1-ring) to sam-
ple the function in a local neighborhood and estimate the gradient.
For boundary vertices, the stencil is partially outside of the domain,
resulting in an unbalanced sampling that leads to wrong estimates
(Figure 4). Note that the performances decay as the stencil becomes
bigger, and estimation errors propagate towards the interior. For ex-
ample, using the 2-ring, all the boundary vertices and the vertices
adjacent to them will have inaccurate gradients. This is empirically
confirmed by the performance of LR, which is the worst among all
the methods we tested. In fact, most of the times LR uses a bigger
stencil (the 2-ring) at boundary vertices, because such vertices do
not have enough neighbors in their one-ring, to fix all degrees of
freedom in Equation 5.
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Figure 2: Four examples of our test function fa,b. Parameter a controls the amplitude, whereas parameter b controls the frequency. From left
to right: f2,10, f5,10, f2,30, f5,30.

Figure 3: Close up of our test meshes. From left to right: struc-
tured, unstructured and anisotropic (K = 5).

Piece-wise constant gradient (PCE) is insensitive to boundaries,
because gradients are computed on each triangle separately, by us-
ing only data at the three triangle vertices. This is confirmed by the
graphs in (Figure 4).

To avoid the bias introduced by boundaries, in the experiments
we present in the remainder of the paper we ignore boundaries. In a
sense, we act as if around the domain we had a padding layer with
size compatible with the local stencil used by numerical algorithms
to estimate gradients.
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Figure 4: Error plots obtained computing the gradient of our test
function fa,b with fixed amplitude and growing frequency. We show
separate plots for boundary (left) and interior (right). Note that for
vertex-based methods the approximation error is averagely higher
at the boundaries.

5.2. Function parameters

Here we report performances of the four gradient estimators when
tested on different instances of our test function fa,b. As stated in
Section 4.1 parameters a and b set the amplitude and frequency of
the function, respectively.

Figure 5: Color coded errors for the three vertex-based gradient
estimators. All of them exhibit the same pathological behavior at
the boundary of the domain, where the error increases (see close-
ups).

Amplitude. We tested different values of parameter a, ranging
from 0.1 to 2. As it can be noticed from Figure 2, changes in
amplitude affect the magnitude of the gradient (the bells become
steeper), leaving unchanged its direction (maxima and minima do
not change). This is confirmed by our experiments, where we see
that angle error is constant for varying a (Figure 6, left), whereas
magnitude error grows linearly for increasing frequencies (Fig-
ure 6, right).
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Figure 6: Left: plot of angle error, obtained varying both the func-
tion amplitude (a) and frequency (b). Right: plot of the RMSE (Root
Mean Squared Error) of the magnitude for fixed frequency and
varying amplitude. When varying amplitude, the gradient keeps its
orientation and changes magnitude. Therefore, for growing values
of a, angle error remains constant and magnitude error grows lin-
early.

Frequency. We investigate the response of the considered gradient
estimators for different frequencies by varying the parameter b in
the range [5,35]. Differently from the amplitude, when varying fre-
quency both the angular and magnitude components of the gradient
change. For this experiment we considered structured and unstruc-
tured meshes. Overall, we noticed a coherent asymptotic behavior
for all methods on both meshes, with higher error values for the
unstructured case.

Considering angle error (Figure 7, top line), we observe that PCE
is the least accurate. This is not surprising, as PCE does not catch
the non-linear variation of the function within each face, due to
its piece-wise constant nature (Figure 8). Among piece-wise linear
approaches, the Linear Regression (LR) performs better at low fre-
quencies, but above a certain frequency its error grows faster and it
starts to perform worse than the others. As it can be noticed from
the error plots, the value above which performance starts to decay
at faster rate is approximately the same for both structured and un-
structured meshes (see the dashed vertical lines). We believe this
relates to the ratio between edge lengths and the period of the func-
tion. Basically, at a certain point the mesh density starts to be too
coarse for the period of the function, and fitting a quadric in the
one ring becomes counter-productive as the function oscillates too
much within it. This is an inherent limitation of all fitting methods,
which depends on the degrees of both the approximated and fitting
functions. Overall, LR could provide the best estimate when the
mesh is quite refined with respect to signal frequency, while AGS
exhibits the best performance in terms of resilience to increase in
signal frequency. LSDD exhibits a behavior similar to AGS, but
with a consistently higher error.

Magnitude error offers an opposite landscape, where piece-wise
linear methods perform worse than PCE for growing frequency val-
ues of fa,b (Figure 7, bottom line). Looking at data, we noticed that
vertex-based methods tend to smoothly distribute the error in the
whole domain, without positive or negative peaks. Conversely, the
magnitude error of PCE tends to be overall lower, with spikes in
some isolated spots. We do not have a clear explanation for this.

Our current guess is that this is another effect of the mismatch be-
tween mesh density and function period. Essentially all the piece-
wise linear methods evaluate the gradient at a vertex by considering
its whole one ring, whereas PCE is more local, as it evaluates the
gradient for each triangle separately. When the mesh is too coarse
with respect to the function, the higher locality of PCE allows to
offer a better estimate of the extent to which the function locally
varies.
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Figure 7: Plot of angle error (top line) and magnitude error (bot-
tom line), obtained varying the function frequency on the struc-
tured (left column) and unstructured mesh (right column). Angle-
wise there are two interesting things to notice: (i) PCE performs
worse than others due to its piece-wise constant nature, which does
not catch field drift within each element; (ii) LR performs best for
frequencies below the vertical dashed line, and starts to diverge for
higher frequencies because the mesh becomes too coarse to catch
function fluctuations. Magnitude-wise, PCE performs consistently
better than piece-wise linear methods. We believe this is because it
is more local, and therefore less sensitive to increases in the func-
tion period.

5.3. Anisotropy

We test here the performances of the four gradient estimators with
respect to meshes exposing increasing levels of anisotropy (Fig-
ure 3, right). We report both angle and magnitude errors in Figure 9.
As for the frequency tests, there is a neat separation between piece-
wise constant and piece-wise linear methods, which are superior
at any level of anisotropicity of the mesh. Among piecewise-linear
methods, linear regression (LR) is remarkably better than the oth-
ers (Figure 10). Directional derivatives (LSDD) seem to suffer the
poor edge directions spanned by the anisotropic neighborhood and
perform worse than the other two. AGS stays in between.
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Figure 8: Plot of total error of function f0.1,15, measured on a structured mesh with PCE, AGS, LSDD and LR. Notice that piece-wise linear
methods (AGS, LSDD, LR) outperform PCE. In the closeup, visual comparison between the ground truth gradient (green arrows) and the
gradient numerically estimated with PCE (black arrows).
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Figure 9: Plot of angle error (left) and magnitude error (right) of
the four methods computed on unstructured meshes with increasing
levels of anisotropy.

5.4. Noise

In many experiments involving real data (e.g. acquired with sen-
sors), the signal measured at vertices is affected by noise. We test
here the resiliency of all methods with respect to perturbations of
the test function at the mesh vertices. In Figure 11, we report both
angle and magnitude errors for growing values of noise (we plot
the M value on the x axis). Again, we observe a clear separation
between PCE and the piece-wise linear methods, with PCE exhibit-
ing a super-linear increase the the magnitude error. The piece-wise
linear methods exhibit similar behavior, resulting more sensitive to
noise in terms of angle error and more resilient in terms of magni-
tude error.

5.5. Computational cost

Here we discuss the four tested methods with respect to their com-
putational cost. To this end, there is a major difference between
PCE, AGS and LSDD, LR. Given a mesh with |T | triangles and |V |
vertices, PCE can be efficiently packed into a d|T |×|V | matrix G.
Multiplying G for a column vector containing the function values at
each vertex in the mesh, a d|T | long column vector containing the
serialized per triangle gradient can be efficiently computed by ma-
trix vector multiplication. The same goes for AGS, where the ma-
trix G will have different size (d|V |×|V |), and multiplying it with a

scalar field in vector form one will obtain a d|V | vector containing
the serialized per vertex gradient. This results in an extremely fast
computation, where the matrix can be constructed once and used to
evaluate the gradient of several fields (e.g. when values vary over
time). Moreover, having the gradient in matrix form is useful to de-
fine a discrete divergence operator, which is nothing but the matrix
GT , which transforms gradients into per vertex divergence values
by means of matrix vector multiplication [Liv18].

Differently from PCE and AGS, LSDD and LR cannot be pre-
computed and stored in a matrix. They need to be computed from
scratch each time, without saving data from previous computations.
In particular, LSDD requires solving a d× d linear system at each
vertex. Note that while solving a 2× 2 system for each vertex of
a 2D mesh is affordable, the method intrinsically suffers from the
curse of dimensionality, and does not scale well on high dimen-
sional data (e.g. for data mining or machine learning applications).

Similarly to LSDD, also LR requires solving a linear system at
each vertex and does not allow for pre-computation. However, in
this case the system is even bigger. As explained in Section 3.2.3,
fitting a quadric in 2D requires solving a 6×6 linear system of un-
knowns (the quadric coefficients). In 3D the number of coefficient
increases, leading to a 10× 10 linear solve per vertex. Note that,
regardless the degree of the polynomial being fit, also this method
suffers from the curse of dimensionality, as the number of unknown
coefficients grows combinatorially with the size of the space. The
good news are that for low size manifolds sitting on a higher di-
mensional space, the size of the problem grows with the intrinsic
size of the data, and not with the extrinsic size of the embedding.

In Figure 12 we plot computation times of the four methods we
tested for meshes with growing size. Notice that methods that can
be expressed in matrix form (PCE and AGS) are less expensive
than LSDD and LR, which require solving a linear system at each
vertex. The amortized versions of PCE and AGS do not account
for the time necessary to build the matrix. AGS seems more expen-
sive because in our current implementation averaging around each
vertex is not plugged inside the matrix but rather computed after-
wards navigating the mesh topology. Encoding the whole computa-
tion within the matrix should produce results similar to amortized
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Figure 10: Plot of total error of the four methods, computed on an unstructured mesh with anisotropy factor K = 9.
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Figure 11: Plot of angle error (left) and magnitude error (right) of
the four methods computed on a structured mesh, where the func-
tion sampled at its vertices was affected by increasingly high dis-
placement to simulate noisy data. There are no significant differ-
ences between the piece-wise linear methods. The piece-wise con-
stant method performs worse than all.

PCE (the matrix is a bit bigger and denser, but we expect a negligi-
ble increase in time for this).

6. Extensions

The scope of our analysis is limited to the evaluation of a gradient
field on simplicial meshes covering a Euclidean domain. There are
several important extensions of this problem that we briefly review
in the following.

6.1. Polygonal/polyhedral meshes

Linear interpolation of function f cannot be used on non-simplicial
cells. Per-cell gradient estimation can be obtained by applying the
Green-Gauss formula to each cell σ∫

σ

∇ f dV =
∫

∂σ

f ndA

where n is the normal direction to the boundary of σ. In [SBK14]
this approach is investigated in detail and some computational al-
ternatives are proposed. Note that this formula gives the same result
of per-cell linear estimation in case σ is a simplicial cell.

The extension of per-vertex methods is straightforward. Once
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Figure 12: Computational cost associated to each gradient estima-
tor. The amortized curves refer to the cost of matrix vector multipli-
cation only (the matrix is assumed to be pre-computed). Our cur-
rent implementation of AGS is not optimal, as gradients are eval-
uated per triangle using the matrix, and then averaged at vertices
navigating the mesh topology. Encoding the whole computation in
matrix form the performances of AGS amortized should match the
ones on PCE amortized.

per-cell constant gradient has been obtained, the method described
in Section 3.2.1 can be applied with no change, by averaging gradi-
ents in the incident cells of each vertex. Also the methods described
in Sections 3.2.2 and 3.2.3 can be applied directly, since they only
require retrieving vertices in the star (or k-ring) of a given vertex. In
the latter case, since the direct neighbors of each vertex are usually
fewer in a polyhedral mesh, all vertices of cells incident at a given
vertex might be considered as neighbors.

6.2. Manifold domains

When domain Ω is a manifold, such as a surface embedded in 3D
space, gradient fields are defined in tangent space. Per-face constant
gradient estimation can be applied unchanged, because the tangent
plane at a face of a surface mesh corresponds with the plane of the
face itself. Conversely, the estimation of gradients at vertices, as
well as their extension to the whole domain, need an affine con-
nection that can relate tangent planes at different cells of Σ. The
problem of obtaining such an affine connection is treated in detail
in [LTGD16], and this allows evaluating several differential prop-
erties of vector fields on surfaces. There exists a vast literature on
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the design and analysis of vector fields on surfaces. However, to the
best of our knowledge, the explicit problem of estimating gradient
fields per-vertex on a surface has not been investigated in the liter-
ature. In a recent survey [DGDT16], several techniques for vector
field processing are reviewed, yet gradient estimation is reported
only under the per-face approach.

6.3. Field tracing

Once a gradient has been estimated on a mesh Σ, it is possible
to trace its integral lines. Tracing a piecewise-constant gradient is
straightfoward and gives piecewise-linear integral lines, but it often
produces artifacts.

A piecewise-linear gradient model is much more reliable, but it
is also much more difficult to trace. As shown in [NJ99], the inte-
gral lines of a linear vector field on a simplex may be expressed in
analytic form with a rather complex parametrization, which cannot
be easily intersected with the boundary of the cell. Tracing such
exact lines has been attempted in [KRG03], but it may lead to nu-
merical issues. One straightforward alternative consists of comput-
ing a piecewise-linear approximation of an integral line: starting
at a given point, the line is traced by considering a polyline that
follows the gradient for a given step at each node; with this ap-
proach, the intersection with the boundary of cells is easy, but the
tracing procedure is prone to a potentially large drift which may
propagate at each step. Although this solution converges to the ex-
act one, as the length of the step tends to zero, it is hard to set a step
that guarantees a bound to the drift. One dangerous consequence of
accumulated numerical errors and/or drift is that integral lines that
should proceed parallel may meet and intersect, thus corrupting the
topology of the field.

Some recent approaches try to address the topological correct-
ness of a piecewise-linear vector field on a surface, by detecting
coherent bundles of integral lines that travel parallel inside a cell
[BJB∗12, RS14, MPZ14]. Under these approaches, big drifts are
avoided and the overall topological structure of the field is main-
tained, at the cost of a rougher approximation of lines inside a given
cell.

7. Concluding remarks

We proposed an experimental evaluation in 2D of four different
gradient estimators for simplicial meshes. We started from the con-
sideration that the ubiquitous piece-wise constant gradients, ob-
tained computing the partial derivatives of the function sampled
at the mesh vertices and linearly extended within each cell, suffer
from a number of limitations (Section 1).

In our study, we have considered a family of periodic functions,
and tested each method on a variety of discrete meshes which are
common in applied sciences, also testing resiliency to noise and
computational performances.

Not surprisingly, experiments confirm that overall – due to its
piece-wise constant nature – PCE performs worse than any piece-
wise linear gradient estimator that we tested. The worst perfor-
mances come for anisotropic meshes or signals affected by noise,
where PCE has angle error which grows as the same rate observed

for piece-wise linear gradients, and magnitude error which grows
at a much higher rate (Figures 9 and 11). This is probably due to its
higher locality, which makes it extremely sensitive to perturbations
in the signal or sampling, although it is not yet clear why this effect
manifests itself more on the magnitude component than on angles.
On the positive sides, being computed separately on each triangle,
PCE is basically insensitive to boundaries, where it outperforms
all its piece-wise linear counterparts (Figure 4). This makes it the
best possible choice for domains with boundaries and high ratio be-
tween perimeter and area, where the error introduced by piece-wise
linear methods can take over the whole gradient field.

Restricting to piece-wise linear methods, linear regression (LR)
seems to do slightly better than AGS and LSDD when the mesh is
quite refined with respect to signal frequency (Figure 7), and has a
superior behavior on anisotropic meshes (Figure 9). However, LR
suffers the most on boundaries (Figure 4), and is the most expensive
one, as it requires solving a linear system for each vertex, making it
hardly scalable on big meshes (Figure 12). On the other hand, AGS
and LSDD often show the same asymptotic behaviour (but AGS
has lower error). Considering computational cost, LSDD is similar
to LR, as it requires solving a linear system (though smaller) per
vertex, and it does not allow to pre-factor data to compute multi-
ple gradients for the same mesh and different fields (e.g. for time
evolving measures). To this end, PCE and AGS offer the best per-
formances, as they are both encoded in a sparse matrix that can
be pre-computed and used with any field defined on the mesh. Ex-
cluding the cost of computing the matrix, gradient computation is
as expensive as performing a matrix-vector multiplication, making
PCE and AGS extremely scalable on big meshes.

All in all, we conclude that the AGS method seems to be the best
implementative choice for industrial and research code in which
gradient estimation is relevant, as it combines the superior accuracy
of piece-wise linear gradient fields with the efficiency and scalabil-
ity of its computation via matrix vector product.

For future works, we aim at extending this study in a number
of ways. First and foremost, we aim to analyze the case d = 3, for
which we already did some preliminary tests that seem to agree
with results in 2D. Then, we are interested in considering estima-
tion on manifold domains and integral curve tracing problems. The
latter seem to be particularly interesting (and challenging) for the
piece-wise linear methods, were singularities may arise at any point
inside elements domain and not only at the mesh vertices.
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