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A B S T R A C T

Integer Grid Maps (IGMs) are a class of mappings characterized by integer isolines that
align up to unit translations and rotations of multiples of 90 degrees. They are widely
used in the context of remeshing, to lay a quadrilateral grid onto the mapped surface.
The presence of both discrete and continuous degrees of freedom makes the computa-
tion of IGMs extremely challenging. In particular, solving for all degrees of freedom
altogether leads to a mixed-integer problem that is known to be NP-Hard. Such a prob-
lem can only be solved heuristically, occasionally failing to produce a valid quadrilateral
mesh. In this paper we propose a simple topological construction that allows to reduce
the problem of computing a valid IGM to the one of mapping a topological disk to a
convex domain. This is a much easier problem to deal with, because it completely re-
moves the integer constraints, permitting to obtain a provably injective parameterization
that is guaranteed to incorporate all the correct integer transitions with a simple linear
solve. Not only the proposed algorithm is easy to implement, but it is also independent
from costly numerical solvers that are unavoidable in existing quadmeshing pipelines,
preventing their exploitation in open source or low-budget projects. Despite provably
correct, the so generated maps contain a considerable amount of geometric distortion
and a poor quad connectivity, making this technique more suitable for a robust ini-
tialization rather than for the computation of an application-ready IGM. In the article
we present the details of our construction, also analyzing its geometric and topological
properties.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction1

The generation of quadrilateral meshes is an important task2

in geometry processing and is widely exploited in many ap-3

plicative fields, spanning from animation to Computer-Aided4

Design, architecture and many others [1]. Since the introduc-5

tion of seminal works such as [2, 3] methods that employ a pa-6

rameterization to generate a quadrilateral mesh have established7

themselves as a standard the facto and are able to produce high8
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quality tessellations that endow a sparse singular structure, also 9

aligning to both principal curvatures and sharp features. The 10

class of mappings that allow to lay a quadrilateral grid onto a 11

discrete surface are called Integer Grid Maps (IGM) [4]. 12

The distinctive trait of an IGM is that it ensures continuity 13

of the integer level sets of the underlying map across cuts, ob- 14

tained by explicitly imposing translational and rotational align- 15

ment constraints by multiples of 90 degrees (Figure 1, right). 16

When such alignment constraints are observed and singulari- 17

ties arise at integer locations, tracing the integer level sets of 18

the mapping yields a pure quadrilateral mesh. The presence 19

of explicit constraints makes the computation of the IGM an 20
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http://www.elsevier.com/locate/cag


2 Preprint Submitted for review / Computers & Graphics (2023)

regular seamless IGM

Fig. 1. Left: regular mappings impose no continuity across cuts. Middle:
seamless maps ensure that parametric isolines rotationally align up to in-
teger multiples of 90°, but the grids at opposite sides of the cut may still
expose translational misalignment. Right: Integer Grid Maps ensure both
rotational and translational alignment, so that contouring the integer iso-
lines of the mapping yields a pure quad tessellation that is completely obliv-
ious of the underlying mapping cuts.

extremely challenging mixed-integer problem that is known to1

be NP-Hard [5], resulting in brittle pipelines that do not offer2

guarantees of correctness and may unexpectedly fail to produce3

a valid result. Solving for rotational and translational alignment4

separately allows to guarantee the validity of the IGM [6], but5

this approach still relies on expensive commercial solvers for6

which an equivalent free counterpart does not really exist, pre-7

venting open source or low-budget projects to implement a fully8

robust quadmeshing pipeline (Section 2).9

This work aims to provide a first ingredient towards the re-10

alization of a provably robust pipeline for the generation of11

quadrilateral meshes through the computation of IGMs. In ad-12

dition to validity requirements, we take into consideration also13

the simplicity of the approach and its external dependencies.14

Our ultimate goal is to design a quadmeshing pipeline that does15

not depend on costly numerical solvers, so that it can be easily16

installed within any commercial or open source tool.17

A major source of inspiration comes from recent approaches18

for the robust computation of injective simplicial mappings,19

such as [7, 8, 9, 10, 11]. At a high level, these robust meth-20

ods all follow a similar pipeline composed of two steps: (i) they21

generate an initial feasible solution that is guaranteed to be in-22

jective, albeit arbitrarily distorted; (ii) they carefully improve23

such initial solution reducing geometric distortion, making sure24

that injectivity is preserved throughout the process. The first25

step is obtained with Tutte or similar alternatives [12, 13]. The26

second step is typically implemented using barrier energies that27

grow to infinite when a triangle becomes nearly degenerate, en-28

suring that all mesh elements preserve their correct orientation,29

that was set to be globally coherent in the initialization step.30

We wish to reproduce a similar pipeline for the generation of31

Integer Grid Maps, hence of quadrilateral meshes. In particular,32

in this paper we focus on the first step of the pipeline, introduc-33

ing a robust topological method for the initialization of a valid34

IGM. Note that creating an IGM poses additional challenges35

that are not handled by existing methods for the computation of36

simplicial maps. In terms of validity, in addition to the injec-37

tivity requirement one must also ensure that map singularities38

arise at integer locations and that integer isolines are continu-39

ous across cuts. In terms of quality, in addition to the desire to40

minimize geometric distortion one may also want to produce a41

good topology, which typically means that the quadmesh con-42

tains few singular vertices of low valence, connected to one an- 43

other so as to form a coarse quad layout [14, 1]. 44

The topological initialization proposed in this paper takes 45

care of all the validity requirements, ensuring that the mapping 46

is injective and that the integer parametric isolines yield a 47

pure quadrilateral mesh for shapes of any genus (Section 4). 48

The fulfillment of the quality requirements is addressed at 49

the second step of the pipeline, which is left to future works 50

(Section 7). 51

52

This work extends the conference article [15], which was 53

previously presented at STAG 2022, obtaining the Best Paper 54

Award. This new version extends the previous article in various 55

aspects, namely: 56

1. better clarifying the positioning of the proposed methodol- 57

ogy w.r.t. the state of the art in the field (Sections 1 and 2); 58

2. showing that in some cases the originally proposed topo- 59

logical construction was not applicable, due to the gluing 60

scheme not being in normal form (Figure 5)); 61

3. providing a modification of the original algorithm that 62

fixes this issue, ensuring applicability to any possible input 63

manifold (Section 4.1); 64

4. providing a comprehensive analysis of the output mesh 65

quality (Section 6); 66

5. incorporating additional considerations on extensions and 67

future works (Section 7). 68

2. Related works 69

Quadrilateral meshing is a vast topic with a long list of tech- 70

niques and applications. In the remainder of the section we will 71

focus on the methods that are most relevant to our work. For 72

a broader perspective, we point the reader to a comprehensive 73

survey, such as [1]. 74

Integer Grid Maps. Pioneering works in the field [2, 3, 16, 4, 75

17] have established surface mappings as a prominent method 76

for the generation of quadrilateral meshes. Integer Grid Map 77

methods compute a mesh by solving a complex mixed-integer 78

problem that is known to be NP-Hard [5]. In practice, various 79

heuristics are employed to make the problem tractable, expos- 80

ing the output IGM to various imperfections. Attempts to rem- 81

edy such defects are also heuristic. As an example, in the origi- 82

nal MIQ [2] article the authors employ a greedy rounding strat- 83

egy for the integer constraints and the so called stiffening (Sec. 84

5.4) to remove flipped elements, which consists in iteratively 85

increasing the energy functional to locally penalize distortion. 86

In a subsequent work [4], greedy rounding was substituted with 87

a dedicated branch-and-bound solver and stiffening replaced by 88

a set of linear anti-flip constraints that assign triangle vertices to 89

three disjoint semi-infinite convex sub-spaces (Sec. 3.1 in [4]). 90

However, the branch-and-bound solver is still heuristic and is 91

known to take even days of computation for complex models 92

or to occasionally fail to find a valid solution [6]. Furthermore, 93

the anti-flip contraints for the preservation of injectivity are just 94

a linearization of the full (non linear) functional, hence they re- 95

strict the orientation of mapped triangles, possibly leading to1
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unfeasible configuration spaces where all constraints cannot be2

globally satisfied altogether. Ebke and colleagues introduced3

QEx [18], a powerful tool that is guaranteed to extract a valid4

quad mesh if the underlying parameterization is locally injec-5

tive, possibly not compliant with the singularities in the map-6

ping. State of the art solvers do not guarantee that the mapping7

is injective, nonetheless QEx is often still able to extract a valid8

mesh, although no guarantees can be given in this regard.9

If an injective seamless mapping is known, global quantiza-10

tion [6] can provide integer transitions that are guaranteed to11

fulfill the integer continuity requirements of an IGM. Further-12

more, recent research has shown that robust high quality feature13

preserving quad meshes can also be computed by completely14

avoiding the construction of a map [19]. Both these meth-15

ods internally solve global integer problems with a commercial16

tool (Gurobi) that performs remarkably better than open source17

counterparts, hence it cannot be practically replaced.18

The topological approach described in this paper cannot19

compete with any of the aforementioned methods in terms of20

topological and geometric quality of the output, but it only re-21

quires a linear solve, it does not depend on any commercial22

solver and it is guaranteed to always produce an injective IGM23

from which a provably correct quadmesh can be trivially ex-24

tracted. To this end, it can be seen as a powerful initialization25

for a robust IGM pipeline that can be included in any toolkit,26

both commercial and open source.27

Seamless maps. Global seamless mappings can be seen as a28

continuous relaxation of IGMs, because they only ensure that29

parametric isolines align up to rotations of multiples of 90, but30

do not guarantee the continuity of integer isolines across cuts31

(Figure 1, middle). They can be used to fit tensor product higher32

order surfaces [20] or as an initialization step for the compu-33

tation of an IGM through quantization [6, 21]. Literature in34

the field mostly deals with the generation of parametric spaces35

that conform to a prescribed set of cone singularities or holon-36

omy signature [22, 23, 24, 25, 26, 27, 28, 29, 30]. Methods37

for seamless mapping that support manifolds of arbitrary genus38

partially overlap with this work, especially recent methods that39

use a combinatorial structure to robustly initialize the parame-40

ter domain, which have been a major source of inspiration for41

this work. Since an IGM is also a seamless map (but not vice-42

versa), our method can also be used to initialize such a map-43

ping. However, the most modern methods are equally robust44

(i.e. they guarantee injectivity) and also contain less distortion45

and match prescribed cone singularities, therefore there are no46

practical reasons to prefer our tool in this setting.47

Polygon Quadrangulation. Our work is also loosely connected48

with methods for the quadrangulation of simple polygons.49

Known closed form methods for polygon quadrangulation in-50

put a prescribed number of partitions for each polygon side51

and output a quadrilateral meshing of the interior that conforms52

to it [31, 32]. With proper tuning, the integer continuity con-53

straints of IGMs can be translated into boundary conditions for54

these methods, obtaining a coarse quad tessellation that substi-55

tutes the templated coarse quadrilateral mesh that is laid over56

a simplicial mapping (Section 4.2). In our implementation 57

Fig. 2. The mapping ΦCPS creates a one-to-one correspondence between a
closed surface with genus g and a regular 4g−gon. Cutting loops on the
surface intersect at a mesh vertex and are fully disjoint elsewhere. The
two images of each loop map to the edges of the polygon according to the
gluing scheme `1, `2, `1, `2, `3, `4, `3, `4 (normal form). The mesh interior is
mapped using Tutte [12].

we favored a templated solution because it scales flawlessly to 58

surfaces of any genus and always provides a symmetric mesh 59

topology, but recent methods such as [31] would equally pro- 60

vide valid solutions to our problem. 61

3. Topological Background 62

In this section we briefly introduce a few notions from alge- 63

braic topology that are relevant for this work. Readers inter- 64

ested in more details about this topic can refer to [33] or similar 65

books. 66

Polygonal Schema. Any closed surface mesh M can be cut 67

open to form a topological disk and then flattened to the plane, 68

obtaining a mapping. The union of cutting arcs and their meet- 69

ing nodes forms the so called cut graph, which maps to a topo- 70

logical n−gon called the polygonal schema of M [34]. The 71

genus of M sets a lower bound on the complexity of the polyg- 72

onal schema. Specifically, it can be proven that for a surface 73

with genus g there exists no polygonal schema with less than 74

4g sides, which is the minimal existing schema and is called 75

canonical [35] (Figure 2). 76

Gluing Scheme. For surfaces with non trivial genus g > 0,
each side of the polygonal schema takes the form of a loop that
cuts open one of the shape handles along one direction (tan-
gential or perpendicular). Specifically, if the schema is canoni-
cal the cut graph designs a system of 2g loops that all emanate
from the same origin and are fully disjoint elsewhere. Note
how the fact that cutting loops are fully disjoint ensures that
the polygonal schema is minimal. In fact, if two loops were
partially coincident, the polygonal schema would contain two
additional vertices (two copies of the merging point between
the two loops) and two additional sides. Efficient algorithms to
compute a fully disjoint system of loops are discussed in [36].
Given a surface mesh M with genus g and a system of loops
LM =

{
`1, `2, . . . , `2g

}
, there exist multiple ways to map loop
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2) stitch along loop 1) cut along loop 3) cut along loop 4) stitch along loop 5) loops      ,      are in normal form

Fig. 3. Given a polygonal schema and an ordered sequence of non consecutive sides `α, `β, `α, `β (here separated by four generic chains of sides A, B,C,D),
it is always possible to substitute the string `α, `β, `α, `β with four consecutive sides `γ, `δ, `γ, `δ by applying a sequence of cut and stitch operations. Using
the same construction for all similar patterns yields a polygonal schema in normal form.

images to the sides of the canonical schema. In particular, de-
noting with `i and `i two images of the same loop `i ∈ LM , the
gluing scheme

`1, `2, `1, `2, . . . , `2g−1, `2g, `2g−1, `2g

is called the normal form (see [33], Chapter 17b). 77

Canonical polygonal schema are a topological invariant. So1

far this property has been exploited in computer graphics to2

compute cross-parameterizations between pairs of homotopic3

shapes [37, 38, 39]. In the next section we will show how4

a canonical polygonal schema with gluing scheme in normal5

form can be used to trivially design an Integer Grid Map.6

4. Method7

Our method takes in input a closed mesh M with genus g >
1 and returns a valid quadrangulation of it. The algorithm is
based on the composition of two mappings. In the first step we
compute ΦCPS , a mapping to the Canonical Polygonal Schema
of M with gluing scheme in normal form. In the second step
we compute ΦIGM , a mapping from the polygonal schema to
a regular grid, obtaining an Integer Grid Map. Both mappings
are guaranteed to be injective. Overall, the relationship between
the various embeddings and the mappings connecting them is as
follows:

M ←−−−−−−−→
ΦCPS

CPS ←−−−−−−−→
ΦIGM

regular grid

In the remainder of the section we provide details about the8

construction of both ΦCPS and ΦIGM .9

4.1. Computation of ΦCPS10

An injective mapping between a closed surface and a flat11

polygon can only be computed if the mesh is cut open to form12

a topological disk. As mentioned in Section 3, mappings to a13

canonical (or minimal) schema require the cut graph to be a14

system of 2g loops that meet at a single point and are fully dis-15

joint elsewhere. We compute such a system as indicated in [36].16

Specifically, we first initialize a cut graph using the greedy ho-17

motopy basis algorithm of Erickson and Whittlesey [40]. The18

loops produced by this method are not necessarily disjoint. We19

therefore separate portions of loops that travel along the same 20

chains of mesh edges using the edge split strategy discussed 21

Fig. 4. Left: edges that directly connect vertices belonging to adjacent loops
(thick dashed lines) create barriers that prevent the tracing of additional
loops that travel towards the origin. Right: splitting all such edges always
guarantees the existence of a valid path.

in [36] (Sec. 4.1), obtaining a system of fully disjoint loops 22

LM =
{
`0, `1, . . . , `2g

}
. If loops in LM are arranged in normal 23

form, we cut the mesh along each loop and map the surface to 24

a regular 4g−gon using the Tutte embedding [12]. A visual il- 25

lustration of ΦCPS is shown in Figure 2. Due to the convexity 26

of the polygonal schema, this mapping is guaranteed to be in- 27

jective. In case LM does not yield a gluing scheme in normal 28

form, prior to cutting and mapping we proceed as indicated in 29

the next paragraph. 30

Gluing Scheme. The homotopy basis algorithm [40] does not 31

guarantee that loops are ordered so as to generate a polygonal 32

schema in normal form. Luckily, given a polygonal schema 33

with any gluing scheme, it is always possible to modify the or- 34

dering of its sides to enforce the normal form. A sequence of cut 35

and stitch operations that produce the desired result were origi- 36

nally introduced by Fulton in [33] (Section 17b, page 238) and 37

are shown in Figure 3. Despite mathematically correct this ap- 38

proach is overly complex from a geometry processing perspec- 39

tive, because it operates on the flattened schema (hence requires 40

computing multiple mappings), yet because since we operate on 41

an explicit mesh representation a considerable amount of mesh 42

surgery is necessary to cut and weld together the various pieces 43

of the polygon. 44

Here we propose an alternative solution that exploits the du- 45

ality between edges in the polygonal schema and loops in the 46

homotopy basis, obtaining an equivalent algorithm that operates 47

directly on the input manifold without requiring any cutting or 48

mapping. The main idea is that the cut and stitch operations1
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Fig. 5. Given a polygonal schema not in normal form (left column) we obtain a normal form (right column) by iteratively updating pairs of loops in the
homotopy basis. Each update operation is equivalent to the Fulton scheme shown in Figure 3, but for efficiency it is executed directly on the input manifold.
Closeups in the middle line show the radial loop sorting around the origin of the homotopy basis. The polygonal schemata shown in the bottom line are
used to illustrate changes in the gluing scheme but their computation is not necessary to apply the algorithm.

shown in Figure 3 become much more efficient and easier to2

implement if executed in the input mesh. Specifically:3

• cutting the polygonal schema along a curve is equivalent to4

tracing a new loop on the mesh, which can be done with a5

simple Dijkstra traversal constrained to visit only vertices6

that are not already participating in another loop. This7

avoids duplicating vertices and updating triangles in the8

data structure. Note that vertex constraints may prevent9

the existence of a solution. Splitting edges that directly10

connect vertices belonging to adjacent loops ensures that a11

solution can always be found (Figure 4);12

• welding the polygonal schema along two copies of the13

same loop is equivalent to simply discarding such loop,14

unmarking the edges that participate in it. This avoids15

merging pairs of existing vertices and updating triangles16

in the data structure.17

As can be noticed in the first column of Figure 5, the radial
sorting of the basis loops around the origin of the system does

not match with the gluing scheme in the polygonal schema.
Therefore, to apply the Fulton’s algorithm directly on the in-
put mesh it is necessary to devise, from the radial sorting, the
gluing scheme that will arise after cutting and flattening. The
function f that puts these two orderings in correspondence is
defined as

f :=

 gs(0) = rs(0)
gs(i + 1) = next

rs

(
gs(i)

) (1)

where rs denotes the radial sorting, gs the gluing scheme, and18

the next operator denotes the next loop in rs after the one passed 19

as argument. Interestingly, when the gluing scheme is in normal 20

form the radial sorting and the gluing scheme coincide (right 21

column in Figure 5). This correspondence is indeed bijective, 22

in fact the inverse function f −1 that maps the gluing scheme into 23

the radial sorting is also equal to f , meaning that these functions 24

are closed w.r.t. the normal form. 25

Figure 5 shows the complete sequence of operations for a man- 26

ifold with genus 3. Note that the loops generated by iteratively1
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Fig. 6. Mapping ΦIGM for a surface with genus 4, obtained by chaining four copies of the local template shown in Figure 8. Similarly, IGMs for surfaces
with higher genus can be trivially obtained by inserting additional copies of the same template. Integer transitions are highlighted with dashed lines. Note
that the valence of the vertex at the center of the schema (yellow circle) grows linearly with the genus g, and is 3g. Also note that all the boundary vertices
in the polygonal schema are images of the same mesh vertex, which corresponds to the origin of the system of loops. Its valence in the output quadmesh is
4g.

Genus

Ti
m

e 
(s

ec
.)

0.0001

0.01

1

100

1 20

Fig. 7. Time necessary to impose a gluing scheme in normal form for a
sequence of cubes with growing number of handles (from 1 to 20). Vertical
scale is logarithmic.

applying the Fulton’s algorithm tend to be overly complex, also2

inducing a considerable amount of distortion in the mapping3

(bottom right corner). In terms of performances, fixing the glu-4

ing scheme on meshes with growing genus seems to have an ex-5

ponential impact on running times (Figure 7), which are mostly6

dominated by the mesh refinement necessary to ensure that new7

loops can always be traced. Nevertheless, the proposed algo-8

rithm is guaranteed to always produce a normal form and the9

mapping is guaranteed injective.10

4.2. Computation of ΦIGM11

For this phase we heavily exploit the fact that the gluing
scheme associated to ΦCPS is in normal form. In fact, this form
ensures that the two copies of each loop are always close to each
other in the polygonal schema, and that there is only one other
loop (i.e., CPS edge) in between them. As a result, the gluing
scheme can be decomposed into g fully disjoint subgroups

`1, `2, `1, `2︸       ︷︷       ︸
group 1

, `3, `4, `3, `4︸       ︷︷       ︸
group 2

, . . . , `2g−1, `2g, `2g−1, `2g︸                  ︷︷                  ︸
group g

Note that both images of each cutting loop appear only in one12

group. This means that every single group isolates a compo-13

nent of the mapping that is completely disjoint from the others.14

Since the continuity conditions imposed by integer grid maps15

Fig. 8. Topological template used to generate the map ΦIGM . Every se-
quence of four adjacent sides `i, ` j, `i, ` j connects with the center of the
polygon to detach a wedge of the polygonal schema. On top of this wedge
is laid a quad layout (left) that defines a valid integer grid map (right). Col-
ored arrows show the edge flows of the resulting quadrilateral mesh. The
global mapping ΦIGM can be obtained by composing multiple occurrences
of this local mapping.

apply only across boundaries, the global problem of computing 16

an IGM can be split into a sequence of smaller problems that 17

are much easier to deal with. 18

Every single group `i, ` j, `i, ` j defines a wedge of the polyg- 19

onal schema that is bounded by these four edges on the outside, 20

and by two segments connecting their endpoints with the poly- 21

gon centroid. An IGM for such a wedge can be computed by 22

overlaying the quadrilateral topological scheme depicted in the 23

left part of Figure 8. The right part of the same figure shows 24

how this translates into an actual grid map with integer transi- 25

tions. Computing a valid global mapping for the whole surface 26

is as easy as chaining multiple copies of this template in order 27

to reach the wanted genus. An example for the case g = 4 is 28

shown in Figure 6. 29

The actual mapping is computed by detecting – for each ver- 30

tex in ΦCPS (M) – the quad that contains it, and then using 31

quadrilateral inverse bilinear coordinates (Section 3 in [41]) to 32

express its position as a function of the quad corners. Note that, 33

for this mapping to be correct, the vertices and edges of the 34

topological layout shown in Figure 8 must be part of the mesh 35

M. In our implementation we compute an arrangement be- 36

tween the polygonal schema and the quad template [42], split- 37

ting mesh edges to resolve intersections. Alternatively, one 38

could apply some layout embedding algorithm (e.g. [43]) to 39

convert the quad template into chains of edges of M. However, 40

considering the high valence of the vertex at the center of the 41
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Fig. 9. For the case of surfaces with genus 1 the mapping ΦCPS is already
an Integer Grid Map. This is because the canonical polygonal schema is a
square, hence the two images of each loop are aligned up to a rotation of
π and map to opposite sides of the polygon, ensuring both rotational and
translational alignment.

polygonal schema, it is unlikely that a valid embedding could1

be computed without any refinement, especially for high genus2

shapes.3

5. Special cases4

The mapping algorithm described so far works for any g ∈5

[2,∞). We discuss here the special cases of g = 0, 1, 2, which6

endow similar, but partly different, properties.7

Genus 0. For genus zero surfaces there exists no polygonal8

schema, hence the mapping ΦCPS cannot be constructed as de-9

scribed in Section 4.1. A valid IGM for this class of shapes can10

still be robustly generated if the mesh is mapped to a tileable11

parametric space. In [44] Aigerman and Lipman showed that12

symmetric patterns can be transferred onto a surface through13

mappings to orbifold embeddings. Specifically, if the orbifold14

has four cone landmarks, each of angle π, the embedding is also15

a quadrangulation (see Figure 1 in their article).16

Genus 1. The sum of inner angles of a simple polygon with n
sides is (n− 2)π. Thus, every inner angle of a regular polygonal
schema is

(4g − 2)π
4g

(2)

which for the case of g = 1 becomes π/2. Indeed, the canonical17

polygonal schema of topological tori is a simple square with18

gluing scheme `1, `2, `1, `2. Therefore, the two images of the19

same cutting loop are aligned up to a rotation of π, which means20

that the mapping ΦCPS is seamless (in the sense of Figure 1,21

middle). In addition to this, the two images of each loop map to22

opposite sides of the square, meaning that there is also a transla-23

tional alignment, hence ΦCPS is already a valid IGM (Figure 9).24

In this case, the mapping ΦIGM can be simply set to the identity.25

Genus 2. Also for surfaces having genus 2 ΦCPS is a seamless26

map. In fact, the gluing scheme is `1, `2, `1, `2, `3, `4, `3, `4 and,27

according to Equation 2, corner angles are 6π/8, which means28

that the two images of the same cutting loop are aligned up to29

a rotation of 3π/2. However, differently from the case g = 1,30

there is no translational alignment, hence the mapping is not a31

Fig. 10. For the case of surfaces with genus 2 the mapping ΦCPS is seamless.
In fact, the two images of the same loop are aligned up to a rotation of 3π/2.
Note that, differently from the case of genus 1, the mapping is not an IGM
(see the translational misalignment in the closeup). Surfaces of genera 1
and 2 are the only ones that yield a seamless map. Mappings of surfaces of
higher genus are neither seamless nor IGMs.

valid IGM (Figure 10). For this reason, the case g = 2 does not 32

require special handling, and the mapping can be computed as 33

for any other surface with genus g > 2. 34

Interestingly, g = 1, 2 are the only genera for which ΦCPS be-
comes seamless. This can be proved by simply observing that,
following Equation 2, the rotation angle between two images of
the same loop can be written as

2
(4g − 2)π

4g
= 2π −

π

g
.

The term 2π can be omitted due to the periodicity of rotations. 35

The term π/g becomes smaller than π/2 for g > 2, and goes to 0 36

only for g→ ∞. Thus, for any finite value of g > 2 there cannot 37

exist a rotational alignment by an integer multiple of π/2. � 38

6. Discussion 39

We implemented a C++ software prototype to construct 40

the mappings ΦCPS and ΦIGM . Our reference implementa- 41

tion is freely available at https://github.com/mlivesu/ 42

topological_IGM. Nevertheless, reproducing our method 43

from scratch requires little effort, mostly because many of the 44

necessary ingredients are already available in existing geom- 45

etry processing toolkits. Specifically, we based our code on 46

Cinolib [45], which implements the greedy homotopy basis 47

algorithm [40], mesh refinement to obtain a valid system of 48

loops [36], construction and mapping to the canonical polyg- 49

onal schema, the manifold Fulton’s algorithm to impose the 50

normal form, inverse bilinear coordinates [41], as well as the 51

portions of [42] that are necessary to robustly detect intersec- 52

tions and split mesh edges to overlay the template in Figure 8 53

onto the ΦCPS mapping. 54

In Figure 11 we show some IGMs for surfaces of growing 55

genus. Note that our algorithm puts no limits on the geometric 56

or topological complexity of the input surfaces, and is capa- 57

ble of scaling to shapes with any genus, always providing strict 58

theoretical guarantees of correctness. Namely, all mappings are 59

guaranteed to not contain degenerate or inverted elements, and 60

https://github.com/mlivesu/topological_IGM
https://github.com/mlivesu/topological_IGM
https://github.com/mlivesu/topological_IGM
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Fig. 11. Integer Grid Maps obtained with our method for surfaces with genus in between 1 and 4 (left to right). For each example, cutting loops are color
mapped to the edges of the canonical polygonal schema. Thick black lines denote the topological construction used to overlay the integer grid mapping.

Fig. 12. List of singular vertices in the output quad mesh that are intro-
duced by our topological construction. With g we denote the input mesh
genus (in this case g = 2). Any additional output vertex would be con-
structed by refining the thick quads, hence will be regular.

the integer isolines of ΦIGM design a topologically correct quad-1

rangulation of the input surface.2

We emphasize once again that the method we propose is not3

meant to produce an application ready IGM, bur rather to ini-4

tialize a provably correct IGM that is expected to undergo some5

robust quality improvement step, both topologically and geo-6

metrically. Giving map validity for granted, in the next subsec-7

tions we report on the main properties of our construction.8

6.1. Connectivity9

The quadmeshes generated with out approach contain three10

types of irregular vertices, the occurrence and valence of which11

depends on the mesh genus g. Overall, there are 3g+2 irregular12

vertices, shown in Figure 12 and described here below13

• CPS center (yellow): the center of the CPS maps to an14

output vertex in the quadmesh that has valence 3g. This is 15

because each transition scheme (Figure 8) contributes with 16

3 incoming edges and, for a mesh with genus g, exactly g 17

transition schemes are neeeded; 18

• CPS corners (blue): the corners of the CPS represent the 19

origin of the homotopy basis and all map to the same ver- 20

tex in the output mesh. Considering that the schema for a 21

manifold with genus g is a 4g−gon and that the transition 22

schemes introduce one additional incoming edge to each 23

CPS corner, the overall valence of such a vertex is 8g; 24

• others (pink): in addition to the vertices above, each tran- 25

sition scheme necessitates three irregular vertices to drive 26

the edge flow and connect the two copies of each loop (Fig- 27

ure 8). Differently form the two types before, in this case 28

the vertex valence is fixed to 3 and the mesh genus only af- 29

fects the overall number of such irregular vertices, which 30

is 3g. 31

Vertices with high valence are typically unwanted, hence the 32

so generated connectivity is not of high quality. This is because 33

these vertices put a tight bound on the geometric quality of their 34

incident elements (see e.g., Figure 2 in [47]). In many prac- 35

tical cases quadmeshes are expected to contain only irregular 36

vertices of valence 3 and 5, possibly connected to one another 37

so as to decompose the surface into a coarse atlas of regular 38

grids [14, 1]. Topological operators to enhance the valence and 39

connectivity of a given quadmesh exist in the literature [48, 49], 40

but performing such operation to obtain a better mesh topology 41

is out of the scope of this article. 42
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0

>10

Fig. 13. Distribution of geometric distortion heavily depends on the positioning of the origin of the homotopy basis (left column, yellow circles). As a rule
of thumb, it is always convenient to position the origin nearby the shape’s handles (bottom line), thus avoiding the creation of long and narrow bundles of
loops that connect the origin to each handle, accumulating unnecessary distortion nearby the corners of the polygonal schema (top right). Distortion plots
are based on the ARAP energy [46].

6.2. Distortion 43

Apart from trivial cases such as the torus in Figure 9, map-1

pings to the canonical polygonal schema often suffer from se-2

vere geometric distortion. This depends mostly on two reasons,3

that we analyze in the following paragraphs.4

5

Impact of the homotopy basis. Mapping to a polygonal schema6

requires cutting each handle along two topologically orthogo-7

nal directions (tangentially and transversally). In practice, this8

means that positioning the origin of the system of loops closed9

to the mesh handles is always a good idea, because it reduces10

the length of the cuts hence the possibility for loops to travel11

in tight bundles towards the origin, creating narrow passages12

that will inevitably stretch in the polygonal schema. A pictorial13

illustration of this effect is shown in Figure 13, where a poor14

positioning of the origin of the homotopy basis clearly accumu-15

lates unnecessary distortion around the corners of the flattening.16

Similar considerations could also be applied to the whole ge-17

ometry of the loops. The greedy homotopy basis algorithm18

is designed to create loops with minimal length, but geodesics19

tend to concentrate around areas of minimal curvature (Sec. 2.220

in [50]) thus promoting the generation of narrow passages also21

distant from the origin of the basis. Systems of loops that yield22

a mapping with lower geometric distortion could likely be cre- 23

ated by incorporating a different metric into the greedy homo- 24

topy basis algorithm [40], namely substituting the geodesic dis- 25

tance with a distortion aware metric or with a repulsive energy 26

that pushes loops away from each other [51]. Such a modifica- 27

tion is technically feasible and was recently explored in [52] to 28

align the homotopy basis with the cut locus of a distance field. 29

Impact of mesh genus. The number of handles negatively im- 30

pacts geometric distortion, especially nearby the origin of the 31

system of loops. To understand this connection one should re- 32

call that the origin of the system is a mesh vertex which has 33

2g loops (i.e. 4g incoming cuts). Cutting along all loops splits 34

the neighborhood of such vertex into 4g wedges that map to the 35

corners of the polygonal schema. Starting from Equation 2 it is 36

easy to show that corner angles in the polygonal schema tend 37

to π for g → ∞. Conversely, wedge angles in the input sur- 38

face tend to 0 for growing values of g, because the solid angle 39

at the origin of the system is divided by a progressively bigger 40

number of wedges. As a result, the more g grows the more nar- 41

row wedges will map to open corners of the polygonal schema, 42

introducing inevitable stretching. 43
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7. Conclusions and Future Works 44

We have presented a novel topological construction to gen-1

erate provably correct integer grid maps for surfaces of any2

genus. The proposed method widely exploits tools from al-3

gebraic topology, and is based on the composition between a4

mapping to the canonical polygonal schema and a quadrilateral5

template that allows to obtain the necessary integer continuity6

across cutting seams. Differently from existing robust meth-7

ods, our topological construction does not rely on commercial8

solvers and can be readily deployed on both commercial and9

open source frameworks.10

As anticipated in Section 1 the ultimate goal of this research11

is to realize an application ready pipeline for the computation12

of integer grid maps, of which the algorithm described in Sec-13

tion 4 is intended to be only the initialization step. Therefore14

not surprisingly, the analysis of the geometric and topological15

properties of our results in Section 6 revealed that the mappings16

are currently overly distorted and endow a poor mesh connec-17

tivity. The improvement of both aspects is the goal of the sec-18

ond step of the pipeline and will be the principal subject for19

future works.20

For the geometric distortion, barrier energies and line search21

with rollback operators recently introduced for robust injective22

mapping already proved effective [7, 8, 9, 10, 11]. For the im-23

provement of the mesh connectivity atomic topological opera-24

tors such as the ones described in [53, 49, 54, 48] will be ex-25

plored. Specifically, the vertex split operator allows to reduce26

vertex valence by one, whereas the quad collapse operator al-27

lows to increase the valence by one (Figure 2 in [48]). It is still28

unclear how these ingredients could be combined. A tempting29

solution would be to interleave them, optimizing for geome-30

try and topology alternatively. Similar approaches were already31

used in the past, e.g. for the case of abstract domains [55, 56],32

although in that case topological changes were only temporary33

and had the function to ensure that all mesh vertices were free34

to move at least once in order to reduce geometric distortion.35

Finally, the extension of similar techniques to the third di-36

mension (i.e. to generate hexahedral meshes) is an interesting37

avenue for future works. In fact, volumetric integer grid maps38

has gained attention in the hexmesh community, and their reli-39

able computation is an important open challenge [57]. Unfor-40

tunately, the canonical polygonal schema has no direct counter-41

part in the realm of 3-manifolds, and it remains unclear whether42

similar topological constructions could be exploited to realize43

an initial mapping on top of which a templated hex transition44

could be installed. Besides the difficulties in generating a suit-45

able parametric space, it is also worth reminding that the meth-46

ods we use to map a surface in a convex domain do not extend47

to 3D. The question whether the Tutte embedding could be ex-48

tended to tetrahedral meshes has been open for a long time.49

Very recent findings show that despite this seems to be possi-50

ble for a restricted class of topologies, the problem admits no51

solution for practically relevant meshes [58]. The difficulties52

of extending alternative mapping approaches to the volume set-53

ting are also discussed in [59] (Section 2). We therefore expect54

that guaranteeing the map injectivity on volumes would be ex-55

tremely challenging.56
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