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Abstract
Integer Grid Maps (IGM) are a class of mappings characterized by integer isolines that align up to unit translations and
rotations of multiples of 90 degrees. They are widely used in the context of remeshing, to lay a quadrilateral grid onto the
mapped surface. Computing an IGM is notoriously a challenging task, because it requires to solve a numerical problem with
mixed discrete and continuous variables which is known to be NP-Hard. As a result, state of the art methods rely on heuristics
that may occasionally fail to produce a valid quadrilateral mesh. Existing pipelines incorporate a final sanitization step which
attempts to fix such defects, but no guaranteees can be given in this regard. In this paper we propose a simple topological
construction that allows to reduce the problem of computing an IGM to the one of mapping a topological disk to a convex
domain. This is a much easier problem to deal with, because it does not endow integer translational and rotational constraints,
permitting to obtain a parameterization that is guaranteed to incorporate all the correct integer transitions and to not contain
degenerate or inverted elements. Despite provably correct, the so generated maps contain a considerable amount of geometric
distortion and a poor quad connectivity, making this technique more suitable for a robust initialization rather than for the
computation of an application-ready IGM. In the article we present the details of our construction, also analyzing its geometric
and topological properties.

CCS Concepts
• Computing methodologies → Mesh models;

1. Introduction

The generation of quadrilateral meshes is an important task in ge-
ometry processing and is widely exploited in many applicative
fields, spanning from animation to Computer-Aided Design, ar-
chitecture and many others [BLP*13]. Since the introduction of
seminal works such as [BZK09; KNP07], methods that employ a
parameterization to generate a quadrilateral mesh have established
themselves as a standard the facto, and are able to produce high
quality tessellations that endow a sparse singular structure and also
align to both principal curvatures and sharp features. Specifically,
the class of mappings that allow to lay a quadrilateral grid onto a
discrete surface are called Integer Grid Maps [BCE*13], or IGMs
in short.

The distinctive trait of an IGM is that it ensures continuity of the
integer level sets of the underlying mapping across cuts, obtained
by explicitly imposing translational and rotational alignment con-
straints by multiples of 90 degrees (Figure 1, right). When such
alignment constraints are observed and singularities arise at integer
locations, tracing the integer level sets of the mapping yields a pure
quadrilateral mesh. The presence of explicit constraints makes the
computation of the IGM an extremely challenging mixed-integer
problem that is known to be NP-Hard [BZK10]. Nevertheless,
modern mixed-integer solvers are still able to compute quality

regular seamless IGM

Figure 1: Regular mappings impose no continuity across cuts.
Seamless maps ensure that parametric isolines rotationally align
up to multiples of 90°, but the grids at opposite sides of the cut may
still expose translational misalignment. Integer Grid Maps ensure
both rotational and translational alignment, so that contouring the
integer isolines of the mapping yields a pure quad tessellation.

quadmeshes, but rely on heuristic approaches that do not offer guar-
antees of correctness and may unexpectedly fail to produce a valid
result (Section 2).

This work aims to provide a first ingredient towards the realiza-
tion of a provably robust pipeline for the generation of quadrilateral
meshes through the computation of IGMs. A major source of in-
spiration comes from recent approaches for the robust computation
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of injective simplicial mappings, such as [RPPS17; SS15; JSP17;
SYLF20; LYNF18].

At a high level, these robust methods all follow a similar pipeline
composed of two steps: (i) they generate an initial feasible solu-
tion that is guaranteed to be injective, albeit arbitrarily distorted;
(ii) they carefully improve such initial solution reducing geometric
distortion, making sure that map injectivity is preserved through-
out the process. The first step is typically obtained with Tutte or
similar alternatives [Tut63; SJZP19]. The second step is typically
implemented using barrier energies that grow to infinite when a tri-
angle becomes nearly degenerate, ensuring that all mesh elements
preserve their correct orientation, that was set to be globally coher-
ent in the initialization step.

The ultimate goal of this line of research is to reproduce a similar
pipeline for the generation of Integer Grid Maps, hence of quadri-
lateral meshes. In particular, in this paper we focus on the first step
of the pipeline, introducing a robust topological method for the ini-
tialization of a valid IGM. Note the creating an IGM poses addi-
tional challenges that are not handled by existing methods for the
computation of simplicial maps. In terms of validity, in addition to
the injectivity requirement one must also ensure that map singular-
ities arise at integer locations and that integer isolines are contin-
uous across map cuts. In terms of quality, in addition to the desire
to minimize geometric distortion one may also want to produce a
good topology, which typically means that the quadmesh should
contain few singular vertices which are well connected to one an-
other to form a coarse quad layout [Cam17].

The topological initialization proposed in this paper takes care of
all the validity requirements, ensuring that the mapping is injective
and that the integer parametric isolines yield a pure quadrilateral
mesh for shapes of any genus (Section 4). The fulfillment of the
quality requirements is addressed at the second step of the pipeline,
which is left to future works (Section 7).

2. Related works

Quadrilateral meshing is a vast topic with a long list of techniques
and applications. In the remainder of the section we will focus
on the methods that are most relevant to our work. For a broader
perspective, we point the reader to a comprehensive survey, such
as [BLP*13].

Integer Grid Maps. Pioneering works in the field [BZK09;
KNP07; RLL*06; BCE*13; TACD06] have established surface
mappings as a prominent method for the generation of quadrilateral
meshes. Integer Grid Mapings compute a mesh by solving a com-
plex mixed-integer problem that is known to be NP-Hard [BZK10].
In practice, various heuristics are employed to make the problem
tractable, exposing the output IGM to various imperfections. At-
tempts to remedy such defects are also heuristic. As an example,
in the original MIQ [BZK09] article the authors employ a greedy
rounding strategy for the integer constraints and the so called stiff-
ening (Sec. 5.4) to remove flipped elements, which consists in it-
eratively increasing the energy functional to locally penalize dis-
tortion. As stiffening alone was not enough, in [BCE*13] (Sec.
3.1) a set of linear anti-flip constraints that assign triangle vertices

to three disjoint semi-infinite convex sub-spaces is used. However,
these constraints are just a linearization of a more general non lin-
ear functional, and they restrict the orientation of mapped triangles,
possibly leading to unfeasible configuration spaces where all con-
straints cannot be globally satisfied altogether. Ebke and colleagues
introduced QEx [EBCK13], a powerful tool that is guaranteed to
extract a valid quad mesh if the underlying parameterization is lo-
cally injective, possibly not compliant with the singularities in the
mapping. State of the art solvers do not guarantee that the map-
ping is injective, nonetheless QEx is often still able to extract a
valid mesh, although no guarantees can be given in this regard. The
topological approach described in this paper cannot compete with
these methods in terms of topological and geometric quality of the
output quadmesh, but it is guaranteed to always produce an injec-
tive IGM from which a correct quadmesh can be trivially extracted.
To this end, it can be seen as a powerful initialization for a robust
IGM pipeline. For completeness, it should be noted that if a injec-
tive seamless mapping is known, global quantization [CBK15] can
provide integer transitions guaranteeing a correct result. Neverthe-
less, we believe that exploring alternative robust methods that take
care of all the necessary IGM requirements altogether is still an
interesting research topic.

Seamless maps. Global seamless mappings can be seen as a con-
tinuous relaxation of IGMs, because they only ensure that para-
metric isolines align up to rotations of multiples of 90, but do
not guarantee the continuity of integer isolines across cuts (Fig-
ure 1, middle). They can be used to fit tensor product higher or-
der surfaces [CZ17] or as an initialization step for the computa-
tion of an IGM through quantization [CBK15; LCBK19]. Liter-
ature in the field mostly deals with the generation of parametric
spaces that conform to a prescribed set of cone singularities or
holonomy signature [CSZZ19; CLW16; ZTZC20; Lev21; MZ12;
MZ13; MPZ14; SZC*22; BCW17]. Methods for seamless mapping
that support manifolds of arbitrary genus partially overlap with this
work, especially recent methods that use a combinatorial structure
to robustly initialize the parameter domain, which have been a ma-
jor source of inspiration for this work. Since an IGM is also a seam-
less map (but not vice-versa), our method can also be used to ini-
tialize such a mapping. However, the most modern methods are
equally robust (i.e. they guarantee injectivity) and also contain less
distortion and match prescribed cone singularities, therefore there
are no practical reasons to prefer our tool in this setting.

Polygon Quadrangulation. Our work is also loosely connected
with methods for the quadrangulation of simple polygons. Known
closed form methods for polygon quadrangulation input a pre-
scribed number of partitions for each polygon side and output a
quadrilateral meshing of the interior that conforms to it [Tar22;
TPS14]. With proper tuning, the integer continuity constraints of
IGMs can be translated into boundary conditions for these meth-
ods, obtaining a coarse quad tessellation that substitutes the tem-
plated coarse quadrilateral mesh that is laid over a simplicial map-
ping (Section 4.2). In our implementation we favored a templated
solution because it scales flawlessly to surfaces of any genus and
always provides a symmetric mesh topology, but recent methods
such as [Tar22] would equally provide valid solutions to our prob-
lem.
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Figure 2: The mapping ΦCPS creates a one-to-one correspondence
between a closed surface with genus g and a regular 4g−gon. Cut-
ting loops on the surface intersect at a mesh vertex and are fully dis-
joint elsewhere. The two images of each loop map to the edges of the
polygon according to the gluing scheme ℓ1, ℓ2, ℓ1, ℓ2, ℓ3, ℓ4, ℓ3, ℓ4
(normal form). The mesh interior is mapped using Tutte [Tut63].

3. Topological Background

In this section we briefly introduce a few notions from algebraic
topology that are relevant for this work. Readers interested in more
details about this topic can refer to [Ful97] or similar books.

Polygonal Schema. Any closed surface mesh M can be cut open
to form a topological disk and then flattened to the plane, obtaining
a mapping. The union of cutting arcs and their meeting nodes forms
the so called cut graph, which maps to a topological n−gon called
the polygonal schema of M [EH04]. The genus of M sets a lower
bound on the complexity of the polygonal schema. Specifically, it
can be proven that for a surface with genus g there exists no polyg-
onal schema with less than 4g sides, which is the minimal existing
schema and is called canonical [Bra21] (Figure 2).

Gluing Scheme. For surfaces with non trivial genus g > 0, each
side of the polygonal schema takes the form of a loop that cuts open
one of the shape handles along one direction (tangential or per-
pendicular). Specifically, if the schema is canonical the cut graph
designs a system of 2g loops that all emanate from the same ori-
gin and are fully disjoint elsewhere. Note how the fact that cutting
loops are fully disjoint ensures that the polygonal schema is min-
imal. In fact, if two loops were partially coincident, the polygonal
schema would contain two additional vertices (two copies of the
merging point between the two loops) and two additional sides. Ef-
ficient algorithms to compute a fully disjoint system of loops are
discussed in [Liv21]. Given a surface mesh M with genus g and a
system of loops LM =

{
ℓ1, ℓ2, . . . , ℓ2g

}
, there exist multiple ways to

map loop images to the sides of the canonical schema. In particular,
denoting with ℓi and ℓi two images of the same loop ℓi ∈ LM , the
gluing scheme

ℓ1, ℓ2, ℓ1, ℓ2, . . . , ℓ2g−1, ℓ2g, ℓ2g−1, ℓ2g

is called the normal form (see [Ful97], Chapter 17b).

Canonical poligonal schema are a topological invariant. So
far, this property has been exploited in computer graphics to
compute cross-parameterizations between pairs of homotopic
shapes [LBG*08; GJGQ05; WHL*08]. In the next section we will
show how a canonical polygonal schema with gluing scheme in
normal form can be used to trivially design an Integer Grid Map.

4. Method

Our method takes in input a closed mesh M with genus g > 1 and
returns a valid quadrangulation of it. The algorithm is based on the
composition of two mappings. In the first step we compute ΦCPS,
a mapping to the Canonical Polygonal Schema of M. In the sec-
ond step we compute ΦIGM , a mapping from the polygonal schema
to a regular grid, obtaining an Integer Grid Map. Both mappings
are guaranteed to be injective. Overall, the relationship between
the various embeddings and the mappings connecting them is as
follows:

M ←−−−−−→
ΦCPS

CPS ←−−−−−→
ΦIGM

regular grid

In the remainder of the section we provide details about the con-
struction of both ΦCPS and ΦIGM .

4.1. Computation of ΦCPS

An injective mapping between a closed surface and a flat polygon
can only be computed if the mesh is cut open to form a topologi-
cal disk. As mentioned in Section 3, mappings to a canonical (i.e.
minimal) polygonal schema require the cut graph to be a system of
2g loops that meet at a single point and are fully disjoint elsewhere.
We compute such a system as indicated in [Liv21]. Specifically, we
first compute an initial cut graph using the greedy homotopy basis
algorithm of Erickson and Whittlesey [EW05]. Since the loops pro-
duced by this method are not necessarily disjoint, we separate loops
that collapsed to the same chains of mesh edges using the edge split
strategy described in [Liv21], obtaining a system of fully disjoint
loops LM =

{
ℓ0, ℓ1, . . . , ℓ2g

}
. We then cut the mesh along LM , du-

plicating each loop and mapping the so generated topological disk
to a regular 4g−gon using the Tutte embedding [Tut63]. Due to the
convexity of the polygonal schema, this mapping is guaranteed to
be injective. A visual illustration of ΦCPS is shown in Figure 2.

4.2. Computation of ΦIGM

For this phase we heavily exploit the fact that the gluing scheme
associated to ΦCPS is in normal form. In fact, this form ensures
that the two copies of each loop are always close to each other in
the polygonal schema, and that there is only one other loop (i.e.,
CPS edge) in between them. As a result, the gluing scheme can be
decomposed into g fully disjoint subgroups

ℓ1, ℓ2, ℓ1, ℓ2︸ ︷︷ ︸
group 1

, ℓ3, ℓ4, ℓ3, ℓ4︸ ︷︷ ︸
group 2

, . . . , ℓ2g−1, ℓ2g, ℓ2g−1, ℓ2g︸ ︷︷ ︸
group g

Note that both images of each cutting loop appear only in one
group. This means that every single group isolates a component
of the mapping that is completely disjoint from the others. Since
the continuity conditions imposed by integer grid maps apply only
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Figure 3: Mapping ΦIGM for a surface with genus 4, obtained by chaining four copies of the local template shown in Figure 4. Similarly,
IGMs for surfaces with higher genus can be trivially obtained by inserting additional copies of the same template. Integer transitions are
highlighted with dashed lines. Note that the valence of the vertex at the center of the schema (yellow circle) grows linearly with the genus g,
and is 3g. Also note that all the boundary vertices in the polygonal schema are images of the same mesh vertex, which corresponds to the
origin of the system of loops. Its valence in the output quadmesh is 4g.

Figure 4: Topological template used to generate the map ΦIGM .
Every sequence of four adjacent sides ℓi, ℓ j, ℓi, ℓ j connects with the
center of the polygon to detach a wedge of the polygonal schema.
On top of this wedge is laid a quad layout (left) that defines a valid
integer grid map (right). Colored arrows show the edge flows of
the resulting quadrilateral mesh. The global mapping ΦIGM can be
obtained by composing multiple occurrences of this local mapping.

across boundaries, the global problem of computing an IGM can
be split into a sequence of smaller problems that are much easier to
deal with.

Every single group ℓi, ℓ j, ℓi, ℓ j defines a wedge of the polygo-
nal schema that is bounded by these four edges on the outside, and
by two segments connecting their endpoints with the polygon cen-
troid. An IGM for such a wedge can be computed by overlaying
the quadrilateral topological scheme depicted in the left part of Fig-
ure 4. The right part of the same figure shows how this translates
into an actual grid map with integer transitions. Computing a valid
global mapping for the whole surface is as easy as chaining multi-
ple copies of this template in order to reach the wanted genus. An
example for the case g = 4 is shown in Figure 3.

The actual mapping is computed by detecting – for each vertex
in ΦCPS(M) – the quad that contains it, and then using quadrilat-
eral inverse bilinear coordinates (Section 3 in [Flo15]) to express
its position as a function of the quad corners. Note that, for this
mapping to be correct, the vertices and edges of the topological
layout shown in Figure 4 must be part of the mesh M. In our im-
plementation we compute an arrangement between the polygonal
schema and the quad template [CLSA20], splitting mesh edges to

resolve intersections. Alternatively, one could apply some layout
embedding algorithm (e.g. [BSK21]) to convert the quad template
into chains of edges of M. However, considering the high valence
of the vertex at the center of the polygonal schema, it is unlikely
that a valid embedding could be computed without any refinement,
especially for high genus shapes.

5. Special cases

The mapping algorithm described so far works for any g ∈ [2,∞).
We discuss here the special cases of g = 0,1,2, which endow simi-
lar, but partly different, properties.

Genus 0. For genus zero surfaces there exists no polygonal
schema, hence the mapping ΦCPS cannot be constructed as de-
scribed in Section 4.1. A valid IGM for this class of shapes can
still be robustly generated if the mesh is mapped to a tileable para-
metric space. In [AL15] Aigerman and Lipman showed that sym-
metric patterns can be transferred onto a surface through mappings
to orbifold embeddings. Specifically, if the orbifold has four cone
landmarks, each of angle π, the embedding is also a quadrangula-
tion (see Figure 1 in their article).

Genus 1. The sum of inner angles of a simple polygon with n sides
is (n−2)π. Thus, every inner angle of a regular polygonal schema
is

(4g−2)π
4g

(1)

which for the case of g = 1 becomes π/2. Indeed, the canonical
polygonal schema of topological tori is a simple square with gluing
scheme ℓ1, ℓ2, ℓ1, ℓ2. Therefore, the two images of the same cutting
loop are aligned up to a rotation of π, which means that the mapping
ΦCPS is seamless (in the sense of Figure 1, middle). In addition
to this, the two images of each loop map to opposite sides of the
square, meaning that there is also a translational alignment, hence
ΦCPS is already a valid IGM (Figure 5). In this case, the mapping
ΦIGM can be simply set to the identity.

Genus 2. Also for surfaces having genus 2 ΦCPS is a seamless
map. In fact, the gluing scheme is ℓ1, ℓ2, ℓ1, ℓ2, ℓ3, ℓ4, ℓ3, ℓ4 and, ac-
cording to Equation 1, corner angles are 6π/8, which means that
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Figure 5: For the case of surfaces with genus 1 the mapping ΦCPS
is already an Integer Grid Map. This is because the canonical
polygonal schema is a square, hence the two images of each loop
are aligned up to a rotation of π and map to opposite sides of the
polygon, ensuring both rotational and translational alignment.

the two images of the same cutting loop are aligned up to a ro-
tation of 3π/2. However, differently from the case g = 1, there is
no translational alignment, hence the mapping is not a valid IGM
(Figure 6). For this reason, the case g = 2 does not require spe-
cial handling, and the mapping can be computed as for any other
surface with genus g > 2.

Interestingly, g = 1,2 are the only genera for which ΦCPS be-
comes seamless. This can be proved by simply observing that, fol-
lowing Equation 1, the rotation angle between two images of the
same loop can be written as

2
(4g−2)π

4g
= 2π− π

g
.

The term 2π can be omitted due to the periodicity of rotations. The
term π/g becomes smaller than π/2 for g > 2, and goes to 0 only
for g→∞. Thus, for any finite value of g > 2 there cannot exist a
rotational alignment by an integer multiple of π/2. □

6. Discussion

We implemented a C++ software prototype to construct the
mappings ΦCPS and ΦIGM . Our reference implementation
is freely available at https://github.com/mlivesu/
topological_IGM. Nevertheless, reproducing our method
from scratch requires little effort, mostly because many of the
necessary ingredients are already available in existing geome-
try processing toolkits. Specifically, we based our code on Cino-
lib [Liv19], which implements the greedy homotopy basis al-
gorithm [EW05], mesh refinement to obtain a valid system of
loops [Liv21], construction and mapping to the canonical polyg-
onal schema, inverse bilinear coordinates [Flo15], as well as the
portions of [CLSA20] that are necessary to robustly detect inter-
sections and split mesh edges to overlay the template in Figure 4
onto the ΦCPS mapping.

In Figure 7 we show some IGMs for surfaces of growing genus.
Note that our algorithm puts no limits on the geometric or topo-
logical complexity of the input surfaces, and is capable of scaling

Figure 6: For the case of surfaces with genus 2 the mapping ΦCPS
is seamless. In fact, the two images of the same loop are aligned up
to a rotation of 3π/2. Note that, differently from the case of genus
1, the mapping is not an IGM (see the translational misalignment
in the closeup). Surfaces of genera 1 and 2 are the only ones that
yield a seamless map. Mappings of surfaces of higher genus are
neither seamless nor IGMs.

to shapes with any genus, always providing strict theoretical guar-
antees of correctness. Namely, all mappings are guaranteed to not
contain degenerate or inverted elements, and the integer isolines of
ΦIGM design a topologically correct quadrangulation of the input
surface.

We emphasize once again that the method we propose is not
meant to produce an application ready IGM, bur rather to initial-
ize a provably correct IGM that is expected to undergo some robust
quality improvement step. Giving map validity for granted, in the
next subsections we report the main quality shortcomings of our
construction, which regard geometric distortion and mesh connec-
tivity.

6.1. Distortion

Apart from trivial cases such as the torus in Figure 5, mappings
to the canonical polygonal schema unavoidably suffer from severe
geometric distortion. This is partly due to an inverse correlation
between angles in the input surface and angles in the polygonal
schema that depends solely on the genus g and that badly affects
the mapping quality.

To understand this connection one should recall that the origin of
the system of loops in the input surface is a mesh vertex which has
2g loops (i.e. 4g incoming cuts). Cutting along all loops splits the
neighborhood of such vertex into 4g wedges that map to the cor-
ners of the polygonal schema. Starting from Equation 1 it is easy
to show that corner angles in the polygonal schema tend to π for
g→∞. Conversely, wedge angles in the input surface tend to 0
for growing values of g, because the solid angle at the origin of
the system is divided by a progressively bigger number of wedges.
As a result, the more g grows the more narrow wedges will stretch
because they are mapped to open corners of the polygonal schema.
As can be noticed from the two rightmost mappings in Figure 7
bundles of cutting loops may travel parallel to each other for long
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Figure 7: Integer Grid Maps obtained with our method for surfaces with genus in between 1 and 4 (left to right). For each example, cutting
loops are color mapped to the edges of the canonical polygonal schema. Thick black lines denote the topological construction used to overlay
the integer grid mapping.

distances in the input surface, generating a stretch that is not con-
fined to the local neighborhood of the origin of the system of loops,
but rather propagates to large areas of the mapping. Unfortunately,
this distortion is intrinsically encoded in this topological construc-
tion and cannot be avoided.

6.2. Connectivity

As widely discussed in [Cam17; BLP*13] many applications re-
quire quadrilateral meshes to endow a good connectivity, meaning
that the singular vertices of the mesh must have a controlled va-
lence (i.e. number of incoming edges) and are connected to one
another so as to decompose the surface into an atlas of few regular
grids. The topological construction in Section 4 falls short on this
requirement, because it tends to produce a singular structure that,
despite coarse, contains badly shaped charts that are bounded by
singular vertices with possibly very high valence.

Similarly to geometric distortion, the amount and valence of sin-
gular vertices fully depends on the mesh genus g. This relation can
be understood by analyzing Figure 3, which shows all (and only)
singular mesh vertices that are introduced by our topological con-
struction. Specifically, we count three different types of singular
vertices:

• i) all corners in the polygonal schema map to the same mesh
vertex in the input surface, which corresponds to the origin of
the system of loops. As a result, the valence of such vertex in
the output quadrilateral mesh depends on the genus g, and cor-

responds to the number of vertices in the polygonal schema plus
the incoming edges of the templated scheme, that is, 8g;

• ii) the center of the polygonal schema is the only point shared by
all the copies of the atomic template in Figure 4. Since such tem-
plate is repeated g times and each template increases its valence
by 3, the final valence of such a vertex in the output quadmesh is
3g;

• iii) the remaining singular vertices control the edge flow inside
the template shown in Figure 4, ensuring continuity across the
cutting loops. They arise only at the interior of each template,
therefore the genus g does not affect their valence, but only the
number of their occurrences. Specifically, since each copy of the
template requires 3 vertices with valence 3, the output mesh will
contain exactly 3g valence 3 vertices overall.

Note that vertices with high valence are typically unwanted,
e.g. because they put a tight bound on the quality of their in-
cident elements (see Figure 2 in [LPC22]). In many practical
cases, quadmeshes are expected to contain only vertices with va-
lence 3,4,5. Vertices with different valence can be split, trans-
forming them into multiple singular vertices of this restricted va-
lence [PZKW11]. Editing the mesh connectivity in order perform
such operation and obtain a good mesh topology is out of the scope
of this article.

7. Conclusions and Future Works

We have presented a novel topological construction to generate
provably correct integer grid maps for surfaces of any genus. The
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proposed method widely exploits tools from algebraic topology,
and is based on the composition between a mapping to the canon-
ical polygonal schema and a quadrilateral template that allows to
obtain the necessary integer continuity across cutting seams.

As anticipated in Section 1, the ultimate goal of this research is
to realize a provably robust pipeline for the computation of integer
grid maps, of which the mapping algorithm described in Section 4
is intended to be the first initialization step. Therefore not surpris-
ingly, the analysis of the geometric and topological properties of
our results in Section 6 revealed that the mappings are currently
overly distorted and endow a poor mesh connectivity. The improve-
ment of both aspects is the goal of the second step of the pipeline
and will be the principal subject for future works.

Note that differently from similar robust pipelines for provably
injective simplicial maps, for the case of an IGM the quality im-
provement regards not only geometric, but also topological aspects.

For the geometric aspects, barrier energies and line search
with rollback operators used in prior art already proved effec-
tive [RPPS17; SS15; JSP17; SYLF20; LYNF18]. For the improve-
ment of the mesh connectivity atomic topological operators such
as the ones described in [TPC*10; FTD21; BLK11; PZKW11] will
be explored. It is still unclear how these two ingredients could
be combined. A tempting option would be to interleave them,
optimizing for geometry and topology alternatively. Similar ap-
proaches were already used in the past, e.g. for the case of ab-
stract domains [TPP*11; ULP*15], although in that case topologi-
cal changes were only temporary and had the only function to en-
sure that all mesh vertices were free to move at least once in order
to reduce geometric distortion.

Finally, the extension of similar techniques to the third dimen-
sion (i.e. to generate hexahedral meshes) is an interesting avenue
for future works. In fact, volumetric integer grid maps has gained
attention in the hexmesh community, and their reliable computa-
tion is an important open challenge [PCS*22]. Unfortunately, the
canonical polygonal schema has no direct counterpart in the realm
of 3-manifolds, and it remains unclear whether similar topological
constructions could be exploited to realize an initial mapping on
top of which a templated hex transition could be installed. Besides
the difficulties in generating a suitable parametric space, it is also
worth reminding that robust methods to map a surface in a convex
domain do not extend to 3D (see Section 2 in [Liv20]), therefore
guaranteeing the map injectivity would be extremely challenging.
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