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Figure 1: We input the boundary representation of two topological spaces A and B, and output a compatible meshing of both domains.
Meshes My and Mg have same connectivity and different embedding, thus defining a piece-wise linear bijective map fu : Mg <> Mp.

Abstract

Mapping a shape to some parametric domain is a fundamental tool in graphics and scientific computing. In practice, a map
between two shapes is commonly represented by two meshes with same connectivity and different embedding. The standard
approach is to input a mesh embedded in one domain plus a set of prescribed positions for its boundary vertices in the other
domain, and compute the position of the interior points in the mesh. For the 2d case, there are numerous robust tools that
follow this scheme. However, theoretical issues prevent them to scale to 3d domains, thus the robust generation of volumetric
maps remains an important open scientific problem. Inspired by basic principles in mesh generation, in this paper we present
the reader a novel point of view on mesh parameterization. We consider connectivity as an additional unknown, and assume
that our inputs are just two boundaries that enclose the domains we want to connect. We compute the map by simultaneously
growing the same mesh inside both shapes in an advancing front fashion. This change in perspective allows us to recast the
parameterization problem as a mesh generation problem, granting access to a wide set of mature tools that are typically not
used in this setting. Our practical outcome is a provably robust yet trivial to implement algorithm that maps non convex planar
shapes to convex ones. Perhaps more interestingly, we speculate on possible extensions to planar maps between non convex
domains, and to volumetric maps as well, listing the major challenges that arise. Differently from prior methods, our analysis
leaves us reasonable hope that an extension to volumes is possible.

1. Introduction

A one-to-one map between two topological spaces A and B is a
function f : A <> B that connects points in both domains. When
it comes to actual coding, the realization of this mathematical
idea is typically implemented using simplicial meshes to represent
topological spaces. Specifically, given two simplicial complexes
My, Mp that discretize A and B, the piece-wise linear map fj; con-
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necting them is implicitly defined by their shared connectivity. If
both meshes do not contain degenerate elements, boundaries do not
self intersect and all triangles have coherent orientation, these con-
ditions are sufficient to grant a natural bijection fy; : My <> Mp
[Lip14]. In fact, any point p € My is identified by a mesh element
and a unique set of barycentric coordinates that locate p inside it.
Exploiting the shared connectivity, the image p = fys(p) can be lo-
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cated in Mp by considering the same mesh element and the same
barycentric coordinates. Switching M4 with Mp allows to navigate
the map in the opposite direction.

Algorithms for the parameterization of a given mesh My to some
target domain B typically input M4 and the value of fjs for each
boundary vertex p € dMy, such that they jointly interpolate the
boundary dB. Then, these methods internally compute fy; for the
interior vertices of My, completing the embedding of Mp. The
most widely used strategy to accomplish this task amounts to de-
fine some energy — often encoding the distortion of the map — and
then minimize it with numerical optimization. To this end, methods
mainly differ for the types of energies they use and the numerical
scheme used to minimize them.

In this paper we offer the reader a novel view on the mapping
problem, which allows us to unlink it from this classical formu-
lation based on numerical optimization. Keeping in mind that the
ultimate goal is to produce two meshes M4, Mp that discretize two
target topological spaces and also share the same connectivity, we
observe that an alternative way to formulate this problem consists
in assuming as input two boundary representations of the spaces
we want to connect, and to generate the wanted map by simulta-
neously growing the same mesh inside both domains. Differently
from prior methods, in this case the amount of interior vertices and
the way they are connected with each other and with the boundary
vertices is not fixed a priori, but rather becomes an additional un-
known. Although this may seem a complexification of the problem,
it actually opens the space of solutions, allowing to design a mesh
that is not tailored for one space only and then forcefully imposed
in the other space, but is rather a good compromise for both spaces.
Furthermore, this tiny shift in perspective allows us to recast the
parameterization problem as a mesh generation problem, granting
access to a wide set of mature tools that are typically not used in
this setting.

In this article we set the basics principles of this idea, and demon-
strate it in the context of planar maps. Specifically, we show that
trivial polygon triangulation schemes can be used to initialize a bi-
jective map between any simple polygon and a target convex do-
main. Solving the planar mapping problem may not seem partic-
ularly exciting, because solutions to this problem were known al-
ready in 1963, when Tutte published his famous article on barycen-
tric mapping [Tut63]. The reason why we are still interested at
studying novel solutions to this problem (and the main motivation
for this work), is that known techniques do not extend to 3d. For
the Tutte case this was shown multiple times via counter exam-
ples [CDL95,DVPVO03], but even modern approaches such as Pro-
gressive Embeddings [SJZP19] raise major theoretical challenges
going one dimension up (Section 2). As of today, the problem of
initializing a valid simplicial map between two topologial spaces of
dimension d > 3 is still open, and all we have is heuristic solutions
that are based on numerical optimization of complex functionals,
which do not provide guarantees of success [DAZ*20, SFL19].

We argue that our novel formulation of the mapping problem
gives rise to a family of algorithms that seem to have potential to
scale to higher dimensions. In Section 5 we dive a bit more into the
details of possible extensions to 3d convex domains, and to maps
between non convex domains as well, listing additional challenges

that arise. Nevertheless, simplicial mesh generation is a rather ma-
ture field, with solid algorithms both for 2d and 3d. This gives us
reasonable hope that such challenges could be overcome.

2. Background

In this section we discuss methods for robust surface mappings that
are closest to us, also motivating why they cannot be extended to
volumes.

The Tutte embedding [Tut63] was introduced in 1963 in the con-
text of graph drawing, and was popularized in the graphics com-
munity by Floater in 1997, showing that any convex combination
of neighbor vertices can be used to define the map [Flo97]. Ever
since, a plethora of different methods have been proposed in the
field, extending the original idea to topological tori and disk-like
meshes with multiple boundaries [GGT06], as well as porting it
to other spaces, such as Euclidean [AL15], hyperbolic [AL16] and
spherical [AKL17] orbifolds. Despite numerous attempts, it was
shown multiple times that the barycentric mapping does not extend
to 3d. This is shown with a concise counter example in Figure 2;
other failure cases are reported in [CDL95, DVPV03]. It is thought
that under some assumptions that restrict the class of admissible
graph topologies a 3d extension could still be possible [CDL95],
but we are not aware of any success to this regard.

The Tutte embedding offers theoretical guarantees but — if
pushed to the extreme — concrete implementations may fail to pro-
duce a valid mapping because of the limited precision of floating
point systems. In [SJZP19] Shen and colleagues propose an alterna-
tive method, called Progressive Embeddings, which offers the same
theoretical guarantees of Tutte, but is less sensitive to floating point
implementations and also introduces less distortion in the map. The
Progressive Embeddings algorithm is inspired by the progressive
meshes concept [Hop96], and is based on the ability to deconstruct
the topology of a triangle mesh by an ordered sequence of edge col-
lapses, and to reconstruct the same mesh in another embedding with
a sequence of vertex splits in the opposite order. Also this approach
does not extend to 3d, the reason being twofold: (i) simplicial com-
plexes in dimensions d > 3 may not be fully collapsible with a se-
quence of edge collapses, and even deciding whether a tetrahedral
mesh is collapsible is NP Complete [Tan16, MFO8, ADGL14]. The-
ory says that after a finite set of barycentric subdivisions any sim-
plicial complex becomes collapsible [AB19], but still one should
navigate the exponential space of all possible collapsing sequences
to find a valid solution. Attempting to deconstruct a tetmesh along
a heuristically computed collapsing sequence does not seem a good
strategy either [LN19]. We personally tried many combinations of
subdivisions and collapses, but always got stuck at some incollapsi-
ble configuration even on simple meshes (Figure 3); (ii) one may
try to transform the input mesh into a mesh with different connec-
tivity and known collapsing sequence via flip operators, but again
this does not work because the graph of all possible triangulations
of a given point set is connected for d = 2 [Law72, OB08], but
there exist counter examples for the 3d case that show that it is
disconnected for tetrahedralizations [DFMO04]. All in all, these is-
sues basically kill any hope that similar ideas could be extended to
tetrahedral meshes.

A variety of methods offer the ability to perform a cross pa-
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Figure 2: Splitting a tetrahedron into four sub tets, and then split-
ting any of the so generated interior faces yields a simplicial com-
plex with four boundary vertices (black) and two inner vertices
(white). Keeping the boundary fixed, under the barycentric map-
ping proposed by Tutte [Tut63] the two inner vertices map to the
same position. Therefore, the edge v4vs (in red) and all the tets
incident to it are collapsed, breaking the bijectivity of the map.

rameterization between two surface meshes of same topology.
They employ composition of maps to intermediate domains such
as coarse base complexes [KS04, SAPHO4] or some polygonal
schema [WZ14,Liv20, YZL"20]. These methods internally employ
standard techniques (e.g. Tutte, or some derivation of it) to gener-
ate the underlying maps, therefore could potentially benefit from
our contribution, and are orthogonal to it.

For the volumes, many methods formulate the mapping as an op-
timization problem. As for the 2d case, topology is fixed in input,
and differences arise in the energies and numerical schemes used.
We count mainly two family of approaches: (i) methods that in-
put an invalid map and project it into the feasible space of solutions
by fixing inverted elements [AL13,KABL14,SFL19,DAZ*20]; (ii)
methods that input a valid solution — typically highly distorted —
and iteratively improve the quality of the map by following the gra-
dient of barrier energies that grow to infinity if an element becomes
nearly degenerate or flips its orientation [RPPSH17]. The former
do not provide any guarantee, because they may fail to even enter
the feasible space. The latter guarantee the generation of a valid
map if correctly initialized. In 2d the initialization step can be com-
puted with [Tut63, SJZP19]. We are not aware of any 3d method
that can provably generate a valid initial solution. Robustly initial-
izing a volumetric map is the ultimate goal and main motivation for
the mesh generation approach proposed in this paper.

A simplified version of the volume mapping problem was pro-
posed in [CSZ16]. This method is based on foliations, and allows to
map a genus zero simplicial mesh to a cube or a sphere. Users can
select the type of foliation (e.g. radial for the mapping to a sphere)
but cannot input a complete map between the surfaces using per
vertex boundary conditions. Moreover, generating a valid piece-
wise linear map requires to perform aggressive mesh refinement,
greatly increasing output mesh size even when mapping simple ob-
jects.

3. Method

In this section we introduce our novel surface mapping algorithm.
We take as input two boundary representations of the domains
A and B we want to connect, and we output a bijective function
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Figure 3: Starting from a tetrahedralization of a sphere (left) and
attempting to remove all interior edges along a random collapsing
sequence yields a topology that cannot be further simplified (right),
because any edge violates the link condition [DEGN9S]. In the at-
tempt to generate a collapsible mesh, any time we were stuck we
also applied one step of barycentric subdivision, and then started
again to collapse edges. After each iteration, the size of the incol-
lapsible mesh we obtained was higher than the one at the iteration
before.

f:A < B. Domain A must be a simply connected planar region,
possibly containing concavities; domain B must be strictly convex.
Both domains must come in the form of two closed chains of ver-
tices, and are assumed to have the same number of elements, and
not to contain any vanishing edge. Under these assumptions, there
exists a one to one map f; : dA <> 0B between them. Our goal is
to extend such map from the boundary to the interior of both do-
mains. The output of the algorithm amounts to two triangle meshes
— My, Mp — that share the same connectivity, intrinsically defining
a piece-wise linear map fys : My <+ Mp that can be navigated as
described in Section 1.

As briefly stated in the introduction, our key ingredient is a re-
formulation of the mapping problem in terms of mesh generation.
In particular, we take inspiration from advancing front meshing al-
gorithms such as [L6h96, MW95], which start from a boundary (or
initial front) describing an empty region to be meshed, and obtain
the output mesh by progressively attaching new elements to such
front, until it completely vanishes. Our key observation is that if
we consider as initial fronts two regions we want to connect, and
we define a sequence of advancing moves that are compatible with
both fronts, we will obtain the same meshing for the two domains,
hence a mapping between them. Compared to classical approaches,
our special setting imposes three important differences:

1) we work simultaneously in two domains, therefore advancing
moves must be valid in both fronts, and must be applied follow-
ing the same order;

2) at any time during execution, there must be a one to one corre-
spondence between fronts in both domains, which must there-
fore be homotopic and contain the same number of vertices and
edges;

3) assuming the absence of degenerate or flipped elements, any
meshing is ok, regardless of the quality of its elements. This
differentiates from classical mesh generation algorithms, which
largely concern about per element quality

The first condition ensures that all mesh elements we introduce
have their own linear map connecting their two copies in both do-
mains. The second condition ensures that the algorithm does not
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get stuck by creating topological mismatches in the fronts, which
would prevent the completion of a valid global map. The third con-
dition is just optional, but certainly applies to our case: we are only
interested in initializing a valid map, without caring about geomet-
ric distortion. Methods that wish to generate a low distortion map
may also leverage techniques for high quality advancing front mesh
generation, but this is outside of the scope of this paper.

The algorithm works as follows: we initialize two fronts Fy, Fp
with the two closed input chains of vertices defining the boundaries
of A and B. Since each chain defines a simply connected polygon,
we can use a simple triangulation scheme to advance the front, such
as trivial earcut [Ebe08]. Specifically, we detect convex front ver-
tices in F (i.e. vertices having inner angle lower than ), and check
whether the triangle they form with their left and right neighbors
contains any other vertex of Fy. If this is not the case, it means that
the triangle is a valid ear, which can be cut (i.e. removed) from the
front, yielding a simpler polygon with one vertex less. Whenever a
valid ear is found, the corresponding vertex is removed from both
F, and Fp. Note that Fp is initialized with Vp, hence by our ini-
tial assumption is convex, and any of its vertices forms a valid ear.
Moreover, any ear cut from it will preserve the convexity of Fp,
because removing a point from a convex polygon yields a simpler
convex polygon. This greatly simplifies the meshing process, be-
cause allows us to produce two meshes simultaneously by caring on
the validity of each move only in one of the fronts (F4). The itera-
tive process continues as long as the size of the fronts is greater than
3. Once |F4| = |Fp| = 3, we can complete the meshing by adding
a triangle lid that vanishes both fronts. An algorithmic description
of the method is given in 1. Figure 4 shows all the iterations for a
simple example. Figure 1 shows a more complex mapping between
a thickened space filling curve and a circle.

Convergence. Since everything is based on the triangulation of a
simple polygon, and the ear test is performed only in F}, the process
is guaranteed to converge. This is ensured by the famous theorem
that states that any polygon has at least two valid ears [Mei75],
which is also the theoretical foundation for the earcut algorithm we
employed.

Complexity. The complexity of the algorithm fully depends on
the triangulation method of choice. For simplicity and ease of
reproduction we opted for the earcut implementation present in
Cinolib [Liv19]. Recent studies have shown that earcut is optimal
(i.e. deterministic linear) on a restricted class of inputs [LCSA20],
though on general simple polygons it has O(n3 ) complexity if
naively implemented, and can at most achieve O(nz) with a smarter
implementation [EET93, Ebe08]. The mapping algorithm we pro-
pose is not strictly linked to earcut, which could virtually be substi-
tuted with any other triangulation algorithm, obtaining a different
asymptotic complexity.

Robustness. The whole method is based around well established
algorithms, and is guaranteed to converge to a valid solution for any
input that fulfills our input requirements. Since any planar polygon
can be triangulated without additional points, our mapping does not
necessitate to add vertices in the meshes along the way. This makes
the whole procedure extremely robust also from an implementative
point of view, because no approximations introduced by the floating
point system are possible. Besides the input point coordinates —

which are exact by definition — the only computations involving
floating points regard the diagonal test to detect valid ears in Fy.
To this end, exact point in triangle tests based on robust geometric
predicates [She97] have been available in the meshing community
since decades. All in all, this makes our algorithm robust without
compromises, both theoretically and in practice.

ALGORITHM 1:
Input: two closed lists of vertices Vy4, Vg, such that both chains form
simple polygons, V3 is convex, and |V4| = |V3|.
Output: two triangle meshes M4 (V4,T) and Mp(Vg, T) having same
connectivity 7', thus defining a bijection fys : My <> Mp

My = (Va,0);

Mp = (Vg,0);

initialize front F; with Vy;

initialize front Fg with Vg;

while |Fy| > 3 do
find an index i such that triangle v;_1,v;,vi+1 is a valid ear in Fy;
insert triangle centered at i in both M4 and Mp;
Fy=Fy\is
Fg=Fp\i;

end

fill the triangular hole in M, with verts in Fy;

fill the triangular hole in Mp with verts in Fp;

return My, Mp;

4. Pushing the advancing front idea further

The declared ultimate objective of this research is to create a vol-
umetric extension of the algorithm proposed in Section 3, in some
way. In this section we speculate about two possible future direc-
tions, namely: a tentative extension of the earcut method to vol-
umes, and the possibility to extend the mapping method to pairs of
non convex domains, both in 2d and 3d.

4.1. Volumetric Earcut

In 2d the action of cutting an ear amounts to remove a convex ver-
tex, substituting it with a straight segment that connects its two
neighbors. Not only this operation is uniquely defined, but also de-
creases the inner angle of the neighbor vertices, preserving their
convexity and, in turn, the convexity of the entire domain (if origi-
nally present). In 2d we deliberately exploit this property to restrict
the quest for the next valid advancing move to one front only. For
volumes, the situation is equivalent if and only if the convex vertex
has valence 3. In such a case, cutting an ear amounts to delete the
vertex, substituting it with a plane that interpolates its three neigh-
bors, which is uniquely defined. This operation preserves the con-
vexity of the domain as well, because dihedral angles can only de-
crease, and is the perfect dual of its 2d counterpart. Unfortunately, if
the number of neighbors is higher than 3 (which is the most typical
case for tetrahedral meshes) the operation of cutting an ear is not
well defined, because the neighbor vertices may not be coplanar,
and — even if they were — there would be multiple ways to triangu-
late them. One may still think to remove the vertex and triangulate
the so generated pocket (some interesting ideas on how to tessel-
late these regions can be found in [CS94]), but if the neighbors are
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Figure 4: Our pipeline starts with two simple planar polygons (left). We the initialize two fronts (boundaries of the red shaded areas),
which we progressively tessellate by adding triangles centered at front vertices that form valid ears (white circles) in both domains. Upon
convergence, we obtain two meshes with same connectivity and different embedding (right).

not coplanar some of the possible tessellations will not preserve
convexity, which is a crucial property for the algorithm. All in all,
considering the non uniqueness of the earcut operation, the fact that
some tessellations do not preserve convexity, and the fact that some
other configurations may not be applicable in the starting (possibly
non convex) domain, there may be configurations where the moves
that are valid in one front are not valid for the other, causing a dead-
lock. We believe that the basic idea could still be ported to volumes,
but a well defined ear cutting strategy that must be devised, possibly
involving the insertion of new points in the domain, which ensure
both convexity and uniqueness. To this end, it becomes crucial to
devise methods that provably require a finite number of additional
points — granting converge in a finite number of steps — and are also
numerically stable (e.g. when defining the coordinates of the newly
generated points).

4.2. Non convex domains

Another appealing extension of the mapping algorithm presented
in Section 3 regards the ability to generate maps between two non
convex shapes, either planar or volumetric. Interestingly, both ex-
tensions raise the same crucial challenge, which is the necessity
to insert additional (Steiner) points in the domains to complete the
meshing.

For the volumetric case vertex insertion is a classical prob-
lem, and indecomposable polyhedra that cannot be tetrahedralized
without Steiner points were already known almost one century
ago [Sch28]. Conversely, any planar domain can provably be trian-
gulated without Steiner points [Mei75], but in our specific setting it
is easy to verify that even two copies of a simple polygon with dif-
ferent vertex rotations do not admit a compatible remeshing, which
instead can be found by inserting additional points inside the do-
main (Figure 5).

Considering its importance in the volumetric setting, vertex in-
sertion has been widely studied and — from a theoretical stand-
point — the topic is largely understood [GS15]. In practice, since
computer programs often operate on numerical systems with fi-
nite precision, even the most advanced software available rely on
heuristics for the computation of the coordinates of newly gener-
ated points, making this a critical step in any geometry processing
pipeline [CLSA20].
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Figure 5: Top: two copies of the same polygon with different vertex
rotations may not admit a compatible remeshing. In this example
each convex vertex in the left star maps to a concave vertex in the
right star, and vice versa. Therefore, the intersection between valid
ears (white circles) in the left and right polygons is empty. Bottom:
inserting one point inside both domains (red circles) allows to tri-
angulate both polygons with the same connectivity.

The necessity to add points in the domain to complete the mesh
heavily affects our approach, which in Section 3 assumed the con-
vexity of one front across all iterations to greatly simplify the al-
gorithm, permitting us to validate each move just in one of the two
fronts. Advancing two fronts simultaneously in two non convex do-
mains requires to always verify the validity of each move in both
of them, with increased chances to get stuck in a deadlock config-
uration where no further move is possible. These cases can be un-
locked by inserting additional Steiner points (Figure 5, bottom), but
this re-opens a number of classical computational geometry ques-
tions that were answered for the meshing of a single domain and —
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to the best of our knowledge — have no answer for the special case
of compatible remeshing. Specifically:

e in case of a deadlock caused by two fronts that are indecom-
posable polyhedra, is it always possible to create a new move
by adding one Steiner point in each domain? If not, what is
the bound in the number of Steiner points that are necessary to
grant the existence of a new valid move to advance both fronts
simultaneously?

e what if the deadlock is caused by the empty intersection between
the valid moves in the two fronts, but considering each front
alone a move exists? Is this case analogous to the point before?

e what is the best positioning of a Steiner point in the context of
simultaneous advancing front meshing? Can the coordinates of
such point be expressed by rational numbers? This has huge
practical importance, because it would guarantee that these
points could be correctly positioned by a computer program
(this is not the case for irrational numbers)

e is there a bound on the global number of Steiner points
necessary to simultaneously triangulate two polyhedra? For
single volumes, we know from theory that this number is
bounded by O(1) from below (see the Schénhardt polyhe-
dron [Sch28] and the subsequent generalization provided by
Bagemihl [Bag48]), and by (’)(nz) from above (by the Chazelle
polyhedron [Cha84]). Should we expect similar bounds to exist
also for pairs of shapes?

e can we guarantee that compatible advancing front meshing
always convergences?

Looking at previous literature for the meshing of a single do-
main we are tempted to be optimistic about the existence of rea-
sonable (i.e. polynomial) bounds in the number of Steiner points,
and the possibility to always unlock a deadlock configuration in
O(1). Nevertheless, precise and theoretically sound answers to all
these questions should be provided in order to grant robust tools for
the generation of volumetric or non convex planar mappings.

5. Conclusions

We have proposed a novel algorithm to robustly initialize a map
between two simple polygons, when one of them is strictly convex.
Our method is both theoretically sound and practically robust, but
has little practical relevance because equally robust methods were
already known for the 2d case [Tut63,SJZP19].

The interesting part (and main motivation) for this article is the
proposal of a novel paradigm for the robust initialization of sim-
plicial maps, which is rooted in the principles of advancing front
mesh generation. We assume the input to be just a boundary rep-
resentation of the domains to be connected, and we consider the
mesh connectivity as an additional unknown. We then formulate
the mapping as a mesh generation problem, where one wants to
construct the same mesh in two different embeddings. This differ-
entiates from classical approaches, which assume the topology of

the mesh to be fixed, and solve the problem of positioning the inte-
rior vertices of a given mesh inside target domain.

We are mainly interested in this novel approach in the hope that
similar ideas could be extended to volumes, because alternative ro-
bust 2d approaches such as barycentric mapping [Tut63] and Pro-
gressive Embeddings [SJZP19] cannot extend to 3d. To this end,
we have shown that in case of planar maps between non convex
shapes and also in the volumetric case additional challenges arise,
and have provided a set of open questions that need to be answered
by the computational geometry community to secure robust maps
of this kind.

At the moment it is impossible to say whether a 3d exten-
sion would be computationally feasible, but the literature and wide
availability of efficient tools for volume mesh generation leaves us
reasonable hopes that in the near future a mapping method of this
kind could be implemented.
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