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Abstract. Inspired by the recent growth of computational methods for
general polygonal and polyhedral meshes, this paper introduces Cinolib:
a novel header only C++ library for geometry processing. Cinolib dif-
ferentiates itself from similar toolkits in that it is specifically designed
to support a wide set of meshes, such as triangle, quadrilateral and gen-
eral polygonal surface meshes, as well as tetrahedral, hexahedral and
general polyhedral volumetric meshes. At the core of the library there
is a hierarchical data structure that factorizes the common properties
among the various meshes, allowing tools and algorithms to operate on
the widest possible set of meshes with a single implementation, thus
avoiding code repetition and facilitating bug fixing and software mainte-
nance. Cinolib is licensed with MIT, it currently counts more than 50K
lines of code and, besides the core structure, already comprises a vast set
of widespread tools for computer graphics and engineering.
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1 Introduction

Performing some computation on a geometric domain often requires a discretiza-
tion of it. In computer graphics and engineering complex geometric domains are
typically split into simpler elements seamlessly attached to one another, generat-
ing a so called mesh. For historical reasons, and because of their nice geometric
properties, most of the theory and practical algorithms are tailored for meshes
made of canonical elements, that is, triangles and quads for surfaces, and tetra-
hedra and hexahedra for volumes. However, the generation of meshes that satisfy
the minimum quality requirements imposed by the analysis they will undergo is
a complex problem, which may take up to 8 times the time necessary to perform
the analysis itself [13]. A recent trend in literature tries to extend the analysis to
general polygons and polyhedra, thus relaxing the constraints for meshing algo-
rithms, and ultimately simplifying the meshing problem. This is for example the
case of the PolySpline method [27] and the Virtual Element Method [36], which
can be seen as extensions of classical finite element methods to domains contain-
ing general polygonal and polyhedral elements. Mesh processing tools offered by
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the research community do not natively support this growth of computational
methods for general meshes: MeshLab [6] and the underlying VCG [15], as well
as ImatiSTL [2], are specifically designed for triangle meshes and besides visual-
ization offer little to none support for other surface meshes; libIGL [14] supports
both surfaces and volumes, but does not extend to general polygons or polyhe-
dra. Its extension to general polygons, libhedra [1], allows to represent a wider
class of meshes but still sacrifices flexibility to maintain a fixed memory layout,
and is devoted to surfaces only, without supporting general polyhedral meshes.
INRIA’s GEOGRAM [16] offers a wider support for volumetric meshes, but the
elementary cell elements must still be of a finite set of types (tets, hexa, prisms,
cones), and more complex elements can only be achieved by clustering together
multiple elementary elements. Finally, OpenVolumeMesh [3] extends to volumes
the DCEL approach of OpenMesh [3] and is quite general, but the two libraries
remain separated to one another, and do not offer a unified framework for the
processing of surfaces and volumes.

This paper presents Cinolib: a C++ mesh processing library which aims
to support the recent growth of computational methods for general meshes.
Differently from previous geometry processing tools, Cinolib is specifically de-
signed for general surface and volumetric meshes, and allows for an intuitive
and easy to maintain code-base, where algorithms and operators are imple-
mented once and applied to multiple mesh types, thus avoiding code repetition
and facilitating bug fixing and software maintenance. Cinolib is header only,
it is licensed with MIT, and is already publicly available on GitHub (https:
//github.com/mlivesu/cinolib). Using templates to define the attributes as-
sociated to each mesh element, it is both highly customizable and straightforward
to compile.

2 Software description

Cinolib’s flexibility is made possible by a hierarchical mesh data structure that
embraces both surfaces and volumes, and is at the core of the library (Sec-
tion 2.1). Overall, the library comprises around 50K lines of code, which include
both the core, and a variety of widespread geometry processing tools to support
mesh generation, visualization, analysis, and so forth (Section 2.2).

2.1 Architecture

In Cinolib the connectivity of each mesh is represented as a set of elements’ lists
and their adjacency, which are collocated in a hierarchical data structure that
comprises both surfaces and volumes. As depicted in Figure 1, the hierarchy is
a tree. The root summarizes all the properties that are common to any mesh,
whereas the leaves are the actual meshes the user can create, that is: triangle
meshes, quad meshes, general polygon meshes, tetrahedral meshes, hexahedral
meshes, and general polyhedral meshes (Figure 2). In between there is a middle
layer, which contains two nodes that summarize common properties which are
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Fig. 1. The mesh hierarchy at the base of Cinolib. Yellow boxes represent the meshes
available in the library; gray boxes are the abstract classes from which they inherit
the structure. Elements and adjacencies that are common to both surface and volume
meshes are stored at the root of the hierarchy (the p in AbstractMesh denotes a polygon
for a surface mesh, and a polyhedron for a volume mesh).

specific to surface meshes and volumetric meshes, respectively. The philosophy
of Cinolib is to make sure that algorithms operate at the highest possible level
in the hierarchy, so that they can be applied to the widest set of meshes with
a unique implementation. This has clear advantages, as it reduces the coding
effort and greatly simplifies bug fixing and software maintenance in general. As
a practical example the reader may think of the Dijkstra’s algorithm for shortest
path computation on a graph. If we consider the primal mesh, that is the graph
having as nodes the mesh vertices and as arcs the mesh edges, Dijkstra operates
indistinctively on surfaces and volumes. In Cinolib Dijkstra’s routines operate at
the root of the hierarchy, thus the same piece of code is used by all the meshes
supported in the library. Let us now consider the dual mesh, that is the graph
having one node per element, and one arc for each pair of adjacent elements.
Here there is a difference between surfaces and volumes, as elements are polygons
in the former, and polyhedra in the latter. To maximize compatibility between
surface and volume meshes a strict naming convention is used throughout the
whole library. Surface meshes are defined as lists of: verts (v), edges (e) and polys
(p); volume meshes are defined as lists of: verts (v), edges (e), faces (f) and polys
(p). The word polys appears both in surfaces and volumes, but denotes polygons
in the former and polyhedra in the latter. This double meaning of the term polys
is exploited in the hierarchy, which defines polys at the top level and allows
algorithms that work on the dual mesh and only require poly to poly adjacency
(p2p) to operate indistinctively on a surface or volumetric mesh. This is the case
of Dijkstra’s on the dual mesh, but also of methods to compute spanning trees
and various clustering algorithms that start associating a label to one element
and expand the cluster by conquering adjacent elements. All these algorithms
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Fig. 2. From left to right, top to bottom: triangle mesh, quadmesh, general polygon
mesh, tetmesh, hexmesh, general polyhedral mesh. All these meshes are supported by
Cinolib.

are implemented once, and used by all the surface and volumetric meshes in the
library. Similarly, all methods that apply only to surfaces (or volumes) but are
not specific to a particular mesh type, are implemented at the middle level of
the hierarchy, and the same code covers all the surface (or volumetric) meshes
supported in the library. This is the case of various operators that allow to edit
the mesh connectivity (e.g. addition/removal of mesh elements), computation of
gradients and iso contours of functions encoded at mesh vertices, and so forth.

2.2 Functionalities

Besides the mesh hierarchy, Cinolib offers a variety of tools and algorithms that
cover a wide specturm of ubiquitous operations in computer graphics and engi-
neering. This section provides a non exhaustive lists of its key features. Unless
stated differently, all the features are implemented directly in the code base and
do not depend from external software, making the library extremely easy to
compile and use

– Discrete Differential operators: many tools in computer graphics and
engineering require solving Poisson and Laplace problems, and make exten-
sive use of discrete differential operators defined on meshes. Cinolib provides
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discretizations of the most common differential operators (gradient, diver-
gence and laplacian) for all the meshes in the library, as well as wraps to
the linear solvers of Eigen [12], which is header only and therefore as easy
to compile as Cinolib. Specifically, the gradient operator supports both per
vertex and per poly gradient fields [24], and it is based on the Green-Gauss
method [32], which works on any type of polygons and polyhedra. The di-
vergence operator is obtained by simply transposing the matrix of the gra-
dient operator (see Section 3 in [18] for details), and the Laplace operator is
available with uniform weights for all the meshes, and with the ubiquitous
cotangent weights for triangle [26] and tetrahedral [19] meshes;

– Mesh generation and processing: Cinolib contains wraps to Triangle
[28] and Tetgen [29] for triangle and tetrahedral mesh generation, respec-
tively. It also provides mesh dualization to convert them into general polyg-
onal and polyhedral meshes, as well as other utilities such as topological
editing operators (e.g. add/remove polys, edge collapse, edge split), and sub-
division schemes (e.g. midpoint subdivision);

– Fields: defining scalar or vector fields on mesh vertices and polys is use-
ful both for mesh generation/processing and for scientific visualization (e.g.
error plots). Cinolib supports per vertex scalar fields, and also allows to
compute and visualize iso-lines of fields embedded on surface meshes, or
iso-surfaces of fields embedded on volumetric meshes. Thanks to the afore-
mentioned topological editing operators both iso-lines and iso-surfaces can
be optionally embedded in the mesh connectivity, splitting the edges they
traverse (Figure 3). Vector fields are also supported, as well as tools to pro-
cess and visualize integral lines that align to them (Figure 4);

Fig. 3. Level sets of a scalar field embedded on the vertices of a surface mesh (left)
and volumetric mesh (right). Curves and surfaces can be optionally embedded in the
mesh connectivity by splitting the edges they traverse (closeups). This latter operation
is currently supported only for triangle and tetrahedral meshes.

– Distances and paths: Cinolib contains various implementations of Breadth-
First Search (BFS) and shortest paths computation (using Dijkstra [9]). Both
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Fig. 4. Left: a scalar function embedded on the vertices of a surface mesh, and its (per
poly) gradient field. Right: four bundles of integral lines that emanate from the center
and align to the gradient field. The figure is taken from [24].

algorithms can run on both the primal and the dual mesh, support optional
constraints (e.g. barriers), and rely on a unique implementation for all the
meshes in the hierarchy. The library also contains an implementation of the
heat-based geodesics [7], which also operates at the root of the mesh hier-
archy and can be applied to any mesh in the library. Heat geodesics are
computed solving an initial value problem rather than a boundary problem.
This allows to factorize the matrix of the heat flow operator once, and then
solve the geodesic problem as many times the user wishes in real time by
means of a simple back-substitution (less than 0.005 seconds on the bunny
shown in Figure 5, which contains 14K vertices);

– Visualization/rendering: various tools for rendering and visualization are
offered to the user, spanning from triangulation of arbitrary polygons to plot
general polygonal/polyhedral meshes, to various colors schemes and 1D/2D
texture facilities. Popular color maps such as the HSV ramp (Figure 4) and
Parula (Figure 3), as well as textures commonly used to show error plots and
distortion maps in scientific papers (Figure 6) are also included in the library
and are available for all the meshes in the hierarchy. Additionally, Cinolib
provides an OpenGL canvas with trackball and perspective/orthograpic cam-
era, and includes a slicing tool that allows to cut any mesh with axis aligned
planes and show/hide only a portion of it (Figure 2). The computation of
ambient occlusion [25] for realistic and more revealing rendering of complex
3D scenes is also supported (Figure7);

– 3D printing: facilities for additive manufacturing are also included in the
library. Specifically, Cinolib allows to read a set of slices and transform them
into a polygon mesh that can be used for both visualization and analysis.
Since support structures are typically encoded as 1D lines and their ultimate
shape depends on the material and hardware used for print [20], a tool for



Title Suppressed Due to Excessive Length 7

Fig. 5. Left: shortest path between two mesh vertices of a general polygonal mesh,
computed with Dijkstra. Right: heat-based geodesics computed with [7].

their thickening and merging is included, so that the user can set the proper
thickening radius and check how supports will look like in the actual object
before the print happens (Figure 8);

– IO: Cinolib currently supports a wide set of popular file formats in the com-
puter graphics and engineering community, such as OFF, OBJ and IV for
surfaces, and MESH, VTU, VTK, TET for volumes. Since general polyhedral
meshes are not well supported by these formats, we also added IO facilities
for the HYBRID format defined by the authors of [11], as well as proposed a
new format (HEDRA) for such meshes. Additionally, Cinolib can read CLI
files for 3D printing facilities, and can read or write curve skeletons encoded
in various ad-hoc file formats used by the authors of relevant papers in the
field, such as [34,8,21,23];

– Utilities: additional utilities are also available, such as wraps for the min-
cut and graph-cut algorithms [4]; profiling utilities to measure timings and
improve performances; quality metrics for polygons (e.g. maximum inscribed
circle, minimum outer circle, kernel), tetrahedra and hexahedra (implement-
ing [33]); computation of coarse layouts for quad and hex meshes [5,30]; tools
for the analysis and processing of curve-skeletons (used in [19,35,22]), as well
as other features not included in this list due to space limits.

3 Illustrative Example

As discussed in Section 2.2, Cinolib provides an extensive set of tools and func-
tionalities. Illustrating all of them is out of the scope of the article. This section
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Fig. 6. Cinolib supports popular 2D textures to show distortion of UV maps, such
as checkerboards (top) and iso-lines (middle), but also textures loaded from external
image files (bottom).

proposes just a simple code sample that shows how to write a program to com-
pute a harmonic field on a general polygonal mesh. Harmonic functions are
at the base of many remeshing and parameterization techniques in computer
graphics [10,19]. Given a set of vertices where the function reaches its extrema,
computing a harmonic field f amounts to solving a Laplace equation ∆f = 0,
subject to Dirichlet boundary conditions on the (known a priori) function ex-
trema. Cinolib supports the computation of harmonic fields, as well as their vi-
sualization and inspection, with tools such as color maps, iso contours, gradients
and integral lines. In the following a simple program for the field computation
is shown:

#include <cinolib/gui/qt/glcanvas.h>

#include <cinolib/meshes/meshes.h>

#include <cinolib/harmonic_map.h>



Title Suppressed Due to Excessive Length 9

Fig. 7. Standard smooth shading may produce images of 3D scenes that are difficult
to parse for the observer (left). The use of ambient occlusion produces more realistic
images, where shadows help to better understand the geometry (right)

void main()

{

// load a general polygon mesh from file

cinolib::DrawablePolygonmesh<> m("./bunny.obj");

// setup the Dirichlet boundary conditions of the field. We

// are looking for a function that evaluates 0 at vertex v0

// and 1 at vertex v100

std::map<int,double> bc;

bc[0] = 0.0;

bc[100] = 1.0;

// compute a harmonic field f. The Laplace operator is discretized with uniform weights

cinolib::ScalarField f = harmonic_map(m, bc, 1, UNIFORM);

// copy the field on the mesh (for visualization)

f.copy_to_mesh(m);

// create and show an OpenGL canvas showing the mesh and the field

cinolib::GLcanvas gui;

gui.push_obj(&m);

gui.show();

}

As can be noticed from the lines above, the code is extremely concise yet in-
tuitive. Figure 9 shows the result it produces. The routine for computation of
harmonic fields, as well as many others based on discrete differential geometry
operators, work at the highest level of the mesh hierarchy. Therefore, a single
implementation can be re-used on many meshes, without the need to change a
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Fig. 8. Two versions of a sliced T-like shape sustained by four columns of supports.
External supports are typically encoded as piece-wise linear curves, and their ultimate
size and shape depends on the material and hardware used for the 3d print (e.g. the
size of the filament in FDM, or the laser beam in SLM/SLS). Cinolib offers function-
alities for loading and converting sliced data into polygon meshes that can be visually
inspected, as well as thickening and merging of support structures, to check how they
will look like in the final print. This figure is taken from [20], where these functional-
ities were used to convert sliced data into tetrahedral meshes for the simulation of 3d
printing processes.

single line of code, if not the one where the mesh is loaded. This feature was
used to produce all the results shown in [18].

4 Conclusions and future works

A new mesh processing C++ library is presented. Compared to alternative li-
braries, Cinolib is specifically designed to handle surface and volumetric meshes
made of general polygons and polyhedra. Its hierarchical mesh data structure
allows to easily develop algorithms that naturally scale to multiple mesh types,
without repetitions of code occurring. Although it tries to be as efficient as
possible, whenever generality and efficiency were in conflict, generality was al-
ways pursued. All in all, Cinolib is made by researchers for researchers, and
is specifically designed to promote code re-usability and to easily create soft-
ware prototypes that validate ideas and algorithms to be presented in scien-
tific papers. Cinolib is licensed with MIT, and is already publicly available on
GitHub (https://github.com/mlivesu/cinolib). We expect wide adoption
from researchers in computer graphics and engineering, specifically from the
ones that develop numerical methods and tools for hybrid mesh generation. The

https://github.com/mlivesu/cinolib
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Fig. 9. Example of the solution of a Laplace problem to compute a harmonic function
f on a general polygonal mesh of the Stanford Bunny. Colorization is given by the
popular Parula colormap, enriched with white bands to show the level sets of the
function. In thick red a iso-curve of the field is shown. The closeup shows details of
the tessellation and the (normalized) gradient ∇f , computed with the Green-Gauss
method, which applies to any polygon and polyhedron [32]. Right: the code used to
compute the field and draw it on the canvas. The harmonic map routine operates at
the highest level of the mesh hierarchy; substituting DrawableTrimesh with a different
type the very same code could be used to compute similar fields on any other mesh
supported by Cinolib, without changing a single line of code.

development of Cinolib is partially supported by the EU ERC Advanced Grant
CHANGE which, among other things, aims to improve the Virtual Element
Method for the solution of PDEs on surface and volumetric meshes made of
general polygons and polyhedra.

Future works: while this article gives an overview of the library as of today, Cino-
lib is constantly growing and incorporating new functionalities. At the moment
some of the tools exposed are supported only by simplicial meshes (e.g. tracing
integral lines, or incorporating level sets into the mesh connectivity). To this
end, future extensions will focus on moving such algorithms higher in the mesh
hierarchy in order to extend such functionalities to all the meshes. Regarding
new tools to be implemented, priority will be given to: the improvement of con-
nectivity editing operators for general meshes (after [11]) and for quad and hex
meshing (e.g. sheet/chord collapse); the implementation of a QP solver and of
Lagrange multipliers for constrained optimization; the implementation of tools
to create and process surface cross field and volumetric frame fields; the imple-
mentation of well-established methods for mesh deformation (e.g. [31]), and the
introduction of tools for cage- and skeleton-based animation.
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