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A B S T R A C T

We consider the problem of relaxing a discrete (n− 1) dimensional hyper surface defin-
ing the boundary between two adjacent n dimensional regions in a discrete segmenta-
tion. This problem often occurs in computer graphics and vision, where objects are rep-
resented by discrete entities such as pixel/voxel grids or polygonal/polyhedral meshes,
and the resulting boundaries often expose a typical jagged behavior. We propose a relax-
ation scheme that replaces the original boundary with a smoother version of it, defined
as the level set of a continuous function. The problem has already been considered in
recent years, but current methods are specifically designed to relax curves on triangu-
lated discrete 2-manifolds embedded in R3, and do not clearly scale to multiple discrete
representations or to higher dimensions. Our biggest contribution is a smoothing op-
erator entirely based on three canonical differential operators: namely the Laplacian,
gradient and divergence. These operators are ubiquitous in applied mathematics, are
available for a variety of discretization choices, and exist in any dimension. To the best
of the author’s knowledge, this is the first intrinsically dimension-independent method,
and can be used to relax curves on 2-manifolds, surfaces in R3, or even hyper-surfaces
in Rn. We demonstrate our method on a variety of discrete entities, spanning from tri-
angular, quadrilateral and polygonal surfaces, to solid tetrahedral meshes.

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction1

Labeling (or segmenting) an object is a fundamental oper-2

ation in computer graphics and vision, widely used in applica-3

tions such as analysis of medical images, object recognition and4

detection.5

The majority of segmentation algorithms work on discrete6

domains, such as regular grids [1], polygonal [2, 3, 4, 5] and7

polyhedral [6, 7] meshes. A common approach consists in8

assigning to each element of the domain a value (or label).9

Elements sharing the same label belong to the same region,10

whereas elements with different labels belong to separate re-11

gions. As a consequence, boundaries between adjacent regions12

∗Corresponding author: Tel.: +39-010-64-75-624;
e-mail: marco.livesu@gmail.com (Marco Livesu)

are only intrinsically defined, and amount to the union of the 13

interfaces between adjacent elements. 14

Given a n dimensional object and a labeling defined on it, the 15

boundary between a pair of adjacent regions is a (n− 1) dimen- 16

sional hyper surface. As a concrete example one may consider 17

a binary partition of a discrete two dimensional surface (e.g. 18

a triangle mesh): the boundary between the two regions is the 19

chain of edges having polygons with opposite labels at its sides. 20

The same goes for three-dimensional objects (e.g. a tetrahedral 21

mesh): the boundary is the set of faces having polyhedra with 22

opposite labels at its two sides. Indeed, the boundary is one 23

dimensional if the object is two dimensional, and is two dimen- 24

sional if the object is three dimensional. 25

Depending on the quality of the discretization, both in terms 26

of number, regularity, and shape of each element in the domain, 27

the boundaries between adjacent regions can be geometrically 28

poor, showing a typical jagged behaviour (Figure 1). In this 29
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Fig. 1. Boundaries between adjacent regions in discrete segmentations can be geometrically poor, exposing a typical jagged behaviour (left). We relax
discrete boundaries by approximating them with level sets (right, red curves) of continuous functions (middle).

article we focus on this very specific problem, and propose a1

neat method to relax jagged discrete boundaries, replacing them2

with smooth, yet geometrically faithful, versions of them.3

Our most important contribution is a method which is com-4

pletely agnostic both on the discrete representation used for the5

domain, and on the dimension of the space in which it oper-6

ates. To do so, we define our smooth hyper surfaces as level7

sets of continuous functions. We take inspiration from [8], and8

generate such functions relying on three classical discrete dif-9

ferential operators: namely the Laplacian, the gradient and the10

divergence. These operators are ubiquitous in applied mathe-11

matics, have been implemented for a variety of discretization12

choices, and exist in any dimension.13

Our method is efficient and easy to implement. We believe it14

has great potential not only for classical applications, like refin-15

ing the boundaries of a discrete segmentation, but also for ap-16

plications like data mining, where clustering problems in high17

dimensional spaces often occur, and the refinement of the clus-18

ters’ boundaries may be beneficial for classification algorithms.19

This article extends [9], providing: (i) a more general for-20

mulation to compute gradients of polygonal and polyhedral21

meshes;(ii) a discussion on some connectivity issues that may22

arise in discrete meshes and produce unpredictable behaviour;23

(iii) a wider set of examples on meshes of various type and di-24

mensionality; (iv) a study on performances (running times); (v)25

a study on how user parameters influence the smoothing opera-26

tor.27

2. Related Works28

The problem of having jagged boundaries in discrete seg-29

mentations is well known in literature. Most of the segmenta-30

tion algorithms are not capable of producing smooth boundaries31

[10]. An exception are the concavity-aware segmentations [11],32

which exploit harmonic functions to natively generate smooth33

cuts. Some other methods achieve boundary smoothness in34

post processing, implementing additional steps in their pipeline35

[12, 13]. Whenever the segmentation algorithm of choice is not36

capable of producing smooth boundaries by itself, smoothness37

between adjacent regions can be achieved using third party al-38

gorithms. The method discussed in [14] is very similar in spirit39

to our approach, as it is based on the level sets of continuous40

functions. However, it produces smooth curves that tend to es-41

cape from their original position (see Figures 1a and 4b from42

the original paper). Our method produces smooth boundaries 43

that faithfully follow their discrete counterparts, improving ge- 44

ometric fidelity. Panozzo et al. [15] introduced a method to 45

project B-Spline curves on discrete surfaces using the Phong 46

projection. This tool could in principle be used to define smooth 47

segmentation curves, but the user should define and place the 48

control points that define the smooth curve. Iawonn and col- 49

leagues [16] proposed an iterative Laplacian smoothing algo- 50

rithm that at each iteration reduces the local boundary curva- 51

ture. In [17] a local parameterization method for defining ge- 52

ometric features in triangle meshes is proposed. The method 53

is based on the concept of snakes, pioneered by Kass and col- 54

leagues in [18]. All these methods specifically address discrete 55

2-manifolds embedded in R3, and do not directly extend to 56

higher dimensions. To the best of our knowledge ours is the 57

first intrinsically dimension-independent method, and can be 58

used to relax discrete curves on 2-manifolds, surfaces in R3, 59

or even hyper-surfaces in Rn. 60

Diffusion. Solutions to the heat equation have been extensively 61

used in computer graphics and vision to compute segmentations 62

[19], geodesic distances [8, 20], Voronoi diagrams [21] and 63

compare shapes [22]. An in depth review of the applications 64

and computational methods used to compute diffusion distances 65

is beyond the scope of this paper. We point the reader to [23] 66

for a recent survey on this topic. 67

3. Method 68

Our method inputs a discrete object and a segmentation that 69

partitions it in two separate components. The output is a 70

smoothed version of the discrete boundary that separates the 71

two components, defined as the level set of a continuous func- 72

tion. The goal is therefore the generation of a smooth function 73

that roughly aligns with the discrete segmentation boundary. To 74

do so, we first solve a diffusion problem that propagates some 75

heat from the boundary to the rest of the domain. We then start 76

from the gradient of the heat flow and we process it in order to 77

design the gradient of our target function. We eventually inte- 78

grate the resulting vector field to produce such function. 79

A careful reader may notice that this work is heavily in- 80

spired from [8], where a similar approach was used to compute 81

geodesic distances on discrete meshes. Indeed, the basic steps 82

of the algorithm are the same, although for geodesic distances 83
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Fig. 2. Overview of our method: (a) we input a discrete segmentation with a jagged boundary ζ; (b) heat diffuses from ζ, producing a function u; (c,d) the
vector field X is defined as ∇u/‖∇u‖ on the yellow region, and −∇u/‖∇u‖ on the blue region; (e) the field X is smoothed, producing a new vector field X′; (f)
the field X′ is integrated, producing a function φ with level sets that globally align to ζ; (g) the output smoothed boundary is defined as a level set of φ.

the target function is the Eikonal equation, whereas in this arti-1

cle we target a completely different function, and so the way we2

process the gradient of the heat flow and integrate it to produce3

our target function is completely different.4

For the sake of clarity and ease of illustration we introduce5

the algorithm considering as input a surface mesh representing6

our discrete domain, and a chain of edges representing a dis-7

crete curve ζ defined on it (Figure 2). We also assume that ζ8

partitions the domain in two disjoint regions. We remind the9

reader that as long as the Laplacian, gradient and divergence10

operators are available, the same algorithmic steps apply to any11

dimension or discretization choice.12

The hyper-surface smoothing method can be decomposed in13

the following four distinct algorithmic steps:14

1. Diffuse the heat u̇ = ∆u starting from ζ for some time t15

(Figure 2b);16

17

2. Initialize the vector field X as ∇u/‖∇u‖ in one region, and18

−∇u/‖∇u‖ in the other region (Figure 2d);19

20

3. Smooth X, producing a new vector field X′ (Figure 2e);21

22

4. Integrate X′ in the least squares sense, producing a func-23

tion φ that aligns to X′ and has level sets that globally align24

to ζ (Figure 2f).25

The output of the algorithm is the function φ, and the26

smoothed contour will then be a level set of it (Figure 2g).27

In the remainder of the section we provide more informa-28

tion on each algorithmic step, also discussing implementation29

details regarding the discretization of differential operators. In30

particular, we propose a convenient unified representation for31

the gradient and divergence operators which applies to any 32

polygonal and polyhedral mesh. 33

Step 1: heat flow. The first step of the algorithm consists in 34

placing heat charges along the boundary ζ, letting them diffuse 35

over time, according to the flow 36

∂u
∂t

= ∆u. (1) 37

We perform implicit time integration using the backward Eu- 38

ler method, as described in [24]. This amounts to solving the 39

following equation 40

(I − t∆)u = 0∣∣∣ζ=1
. (2) 41

In our discrete setting we used the squared average edge 42

length of the mesh as time step t, as suggested in [8]. We also 43

substitute the identity (I) with a diagonal mass matrix that asso- 44

ciates to each vertex in the mesh the sum of the areas/volumes 45

of each incident element (polygon/polyhedron), divided by the 46

number of vertices participating in each such element. Depend- 47

ing on the type of mesh at hand we used different discretizations 48

of the Laplace operator (∆). For triangle meshes we used the 49

cotangent operator, defined on each vertex vi as 50

∆(vi) =
∑
j∈N(i)

(cotαi j + cot βi j)(v j − vi) (3) 51

with N(i) being the vertex one ring of vi, and αi j, βi j the angles 52

opposite to edge (vi, v j) [25]. We also used the cotangent Lapla- 53

cian for tetrahedral meshes [6], which is defined on each vertex 54

vi as 55

∆(vi) =
∑
j∈N(i)

(1
6

∑
t∈N(i, j)

|t(p,q)| cot φt(p,q)

)
(v j − vi). (4) 56
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Again N(i) is the vertex one ring of vi, and N(i, j) is the fan of1

tetrahedra having (vi, v j) as edge. For each such tetrahedron t,2

t(p, q) is the edge (vp, vq) ∈ t opposite to (vi, v j), and |t(p,q)|, φt(p,q)3

are its length and dihedral angle, respectively.4

For all the other meshes shown in the paper, we used the5

combinatorial Laplacian [26]. Notice that different discretiza-6

tions of the Laplace operator (e.g. [27] for general polygonal7

meshes) may produce smoother fields, thus having a positive8

impact on the output result.9

Step 2: field initialization. The gradient of the heat flow (∇u)10

is a vector field that points towards the boundary ζ from any11

point in the domain (Figure 2c). Our goal is to generate a field12

that traverses ζ in a smooth way. To do so, we generate a vector13

field X defined as ∇u/‖∇u‖ in one region, and −∇u/‖∇u‖ in the14

other region (Figure 2d). The field will then be smoothed in the15

subsequent step of the algorithm.16

For the computation of the gradient ∇u we use the Green-
Gauss method, which provides a sound theoretical basis for gra-
dient computation on any type of discretized closed volume or
surface [28]. According to the Green-Gauss method, the aver-
age gradient of a scalar function u in a closed volume V can be
written as:

∇u =
1
V

‹
u~n dA

where A is the surface area and ~n the outgoing surface unit
normal. We can rewrite the equation for a discrete polyhedral
mesh, obtaining:

∇u =
1
V

|F|∑
f =1

u~n f A f

Here |F| is the number of faces in the polyhedron, u is the arith-17

metic average of u over the vertices of face f , and ~n f and A f18

are the outgoing unit normal and area of f , respectively. Sim-19

ilarly, the computation of the gradient for a closed surface can20

be obtained by considering areas instead of volumes, and edge21

lengths instead of face areas.22

Assuming our discrete object is composed of |P| polygons23

(or polyhedra) and |V | vertices, the gradient operator can be effi-24

ciently packed into a 3|P|×|V |matrix G. This representation has25

a twofold advantage: the first is that by multiplying G for a col-26

umn vector containing the function values at each vertex in the27

mesh, a 3|P| long column vector containing the serialized gradi-28

ent can be efficiently computed by matrix vector multiplication;29

the second is that the transposed matrix G> implements the di-30

vergence operator, meaning that multiplying G> with a vector31

containing a serialized vector field, gives the divergence of the32

field. This translates to an extremely compact implementation.33

In our experiments we used the implementation provided in the34

CinoLib [29].35

Step 3: field smoothing. We smooth the vector field X in or-36

der to alleviate the sharp turns induced by the discrete jagged37

boundary, producing a new copy of it (X′). Specifically, we38

perform a few iterations of Laplacian smoothing on the dual39

mesh, meaning that each discrete element Xi takes as vector the40

Fig. 3. The function φ computed solving Equation 6 (left) and two level
sets of it (middle, right). As can be noticed the function does not align
with the segmentation boundary. This depends from the fact that smooth-
ing the field X′ does not give any guarantee that φ will evaluate consis-
tently throughout the whole boundary, especially when aggressive smooth-
ing schemes are applied. In this case we applied 1000 iterations of Lapla-
cian smoothing, introducing a remarkable deviation from the boundary.

average between itself and the vectors associated to its adjacent 41

elements N(i): 42

X′i =
wiXi +

∑
j∈N(i) w jX j

‖wiXi +
∑

j∈N(i) w jX j‖
(5) 43

In all our examples we used uniform weights w everywhere. As 44

shown in Figures 1 and 9 this simple smoothing scheme per- 45

forms well both for regular and irregular tessellations. If nec- 46

essary, adaptive weighting strategies may be used for uneven 47

tessellations, for example weighting proportionally to areas or 48

volumes. Three to five iterations are usually enough to pro- 49

duce a sufficiently smooth field that crosses the boundary with- 50

out having sharp turns (Figure 2e). More aggressive smoothing 51

strategies (e.g., more iterations) can be performed to further re- 52

lax the boundary, allowing it to deviate more from ζ (Figure 8). 53

Step 4: field integration. The last step consists in generating 54

the function φ that aligns to the smoothed vector field X′. The 55

output segmentation boundary will then be a level set of φ (Fig- 56

ure 2g). At this point one may think that, similarly to [8], φ 57

corresponds to the function that has X′ as gradient, which can 58

be computed by solving the Poisson problem 59

∆φ = ∇X′. (6) 60

However, even though the function traverses ζ in a smooth 61

way, there can be no level set which approximates the discrete 62

boundary well. This is because smoothing the gradient of the 63

function does not give any guarantee on the fact that the func- 64

tion will globally align to the whole boundary ζ. In the general 65

case, it does not (Figure 3). We instead solve for a function 66

φ that not only aligns to X′, but also has level sets that glob- 67

ally align with ζ. Specifically, we look for the function φ that 68

minimizes 69

arg min
φ

∥∥∥∥∆φ − ∇X′
∥∥∥∥2

+ λ
∥∥∥∥φ(ζ) −

1
2

∥∥∥∥2
, (7) 70

where 1
2 is the function value that we want to replicate nearby ζ. 71

Notice that 1
2 provides a reference to the best fitting level set, but 72

it could potentially be substituted with any other value. Since 73

we are dealing with the differential properties of the field, the 74
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Fig. 4. When a triangle has more than one edge exposed on the segmenta-
tion boundary (left), all its three vertices will receive equal heat, leading to
a flat function within the triangle (middle) and, thus, an undefined gradient
(right). This may lead to unpredictable behaviour during the subsequent
smoothing and integration. We avoid these pathological configurations by
padding the mesh along its boundary, that is splitting elements in order to
make sure that each element has at least one non boundary vertex.

Fig. 5. Smoothly halving a solid sphere. The boundary smoothing algo-
rithm scales on any dimension. Here we consider a bi-partitioned tetrahe-
dral solid sphere (left) and use our continuous function φ (middle) to define
a smooth cut surface (right).

scalar function will shift accordingly. Minimizing equation 71

corresponds to solving a linear system Aφ = b, with2

A =

(
∆

Mζ

)
b =

(
∇X′

1
2

T

)
. (8)3

Here Mζ is a sub-matrix having as many rows as the number4

of vertices in ζ. Each row is null everywhere, and has a single5

1 entry corresponding to a vertex in ζ. On the right hand side6

1/2T is a column vector containing as many 1
2 as the number of7

vertices in ζ. We solve the system using weighted least squares,8

according to the normal equations (AT WA)φ = (AT W)b. The9

matrix W = (1 λ)T is diagonal and associates weight 1 for each10

row corresponding to ‖∆φ − ∇X′‖2 and weight λ for each row11

corresponding to ‖φ(ζ) − 1/2‖2. Figures 1, 5, and 6 show some12

examples of functions φ computed with this method.13

4. Connectivity issues14

The method as presented so far may fail if all the vertices15

of a discrete element belong to the segmentation boundary. An16

example is given in Figure 4, where two out of three edges of17

a triangle are boundary. Notice that the same may happen on18

volume meshes, e.g. when two out of four faces of a tetra-19

hedron are boundary. These situations are critical because in20

the first step of the algorithm all boundary vertices receive the21

same heat. The heat function is therefore flat within the element22

and its gradient undefined, thus leading to unpredictable results23

when averaged with its neighbours and finally integrated. The24

situation can be easily recovered by padding the mesh along25

0

1

Fig. 6. The algorithm is independent from the discretization. Left to right
column: three different segmentations, embedded in the connectivity of
a triangular, quadrilateral, and polygonal mesh respectively. Bottom: the
best fitting level sets associated to each boundary and relative insets to show
small details.

the segmentation boundary. Padding is a common procedure in 26

mesh optimization. It is used to ensure that each element has 27

at least one unconstrained vertex so as to guarantee enough de- 28

grees of freedom for the optimization [30]. Similarly, we aim to 29

ensure that each element has at least one non boundary vertex, 30

so as to avoid flat functions and ill-defined gradients. We split 31

each pathological element in the mesh, adding a new vertex at 32

its barycenter and connecting all its vertices with such vertex. 33

As a result, all the generated sub-elements will have at least one 34

vertex (the newly created one) unconstrained, leading to a non 35

flat function and a well-defined gradient. Notice that this oper- 36

ation can be hidden to the user: the padded mesh is a temporary 37

entity that will be deleted right after computing the smoothed 38

segmentation boundary. 39

5. Results 40

We implemented our hyper surface smoothing algorithm as 41

a single threaded C++ application on a MacBook Pro equipped 42

with a 2,9 GHz Intel Core i5 and 16GB of RAM. We used Cino- 43

Lib [29] for geometry processing and Eigen [31] to solve linear 44

systems. In Figures 1, 2 and 9 we show a variety of results 45

obtained with our implementation. 46

Performances. From a computational point of view step one 47

(heat flow) and step four (field integration) are the most time 48

consuming steps of the algorithm, and amount to solving one 49
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Fig. 7. Two alternative segmentations for the triple torus and relative smoothed boundary. Notice that in both cases the hyper surfaces have non-trivial
topology (top: high genus; bottom: multiple connected components). Our method automatically produces level sets that adapt to the topology of the
boundary to be approximated.

linear system each. All the other steps (field initialization and1

smoothing) introduce negligible delays. Detailed time splits for2

meshes of increasing size are reported in Table 1. As can be no-3

ticed, for medium sized meshes the algorithm runs in a fraction4

of a second and is therefore compatible with interactive use.5

Independence from tessellation. We demonstrate indepen-6

dence from the discretization choice in Figure 6, where meshes7

with different discrete element are processed, ranging from the8

widespread triangles, to quadrilaterals and general polygons.9

Independence from dimension. In Figures 5 and 7 we show10

three examples of boundary smoothing on three dimensional11

(i.e. solid) meshes. As previously mentioned the algorithm12

scales to arbitrarily higher dimensional spaces. To this end, a13

potential application may be the definition of smooth hyper-14

surfaces that mark the boundaries between different clusters in15

high dimensional data [32] (e.g. for classification). These clus- 16

tering problems often arise in data mining and machine learn- 17

ing. An interesting property of our method is that the differen- 18

tial operators we rely on are purely intrinsic [33], meaning that 19

the computational effort depends only on the dimension of the 20

data itself, and not the dimension of the space in which data is 21

embedded. 22

Topology control. In Figure 7 we show two examples of solid 23

bi-partitions where the boundary between the two regions has 24

non trivial topology (e.g., high genus, multiple connected com- 25

ponents). These cases do not require special handling: our 26

method automatically produces level sets that adapt to the topol- 27

ogy of the boundary to be relaxed. Holes and disconnected 28

components naturally arise wherever necessary. Notice that the 29

algorithm does not allow the user to explicitly control the topol- 30

ogy of the level sets, and no guarantees can be provided in this 31

sense. However, from our experiments this seems to be more a 32
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λ = 0 λ = 0.05 λ = 0.1 λ = 0.5 λ = 1

5 iters

10 iters

50 iters

100 iters

Fig. 8. Combined study of the two parameters from which the algorithm depends: the number of smoothing iterations (rows) and λ, which promotes
consistent function evaluation throughout the original jagged boundary (columns). As can be noticed the algorithm is pretty stable. For λ ≥ 0.5 (two
rightmost columns) the method consistently offers a faithful approximation of the original boundary, regardless the number of smoothing iterations. To
reduce fidelity and promote smoothness, the user can choose λ < 0.5 and progressively increase the smoothing iterations (bottom left part of the grid).

theoretical than a practical limitation: we never observed differ-1

ences in topology between a discrete boundary and its smoothed2

counterpart.3

Parameter tuning. The algorithm depends from two parame-4

ters: the number of smoothing iterations of the field X, and the5

scalar λ, which balances between field alignment and consistent6

evaluation of the function φ throughout the discrete boundary.7

In Figure 8 we show a study of how different combinations of8

these two parameters affect our boundary relaxation scheme.9

The method is easy to control: for λ ≥ 0.5 it consistently offers10

a faithful approximation of the original boundary, regardless the11

number of smoothing iterations. Progressively smoother ver-12

sions of the boundary, with increasing deviation from the origi-13

nal one, can be produced using λ < 0.5 and growing the number14

of smoothing iterations.15

Implementation. Being based on widespread discrete differen-16

tial operators included in many freely available geometry pro-17

cessing libraries, the algorithm is quite easy to implement. If18

differential operators are overloaded to work with different dis-19

crete entities while maintaining the same C++ interface, the20

algorithm can be implemented only once and used with any21

discrete object. We exploited general programming to produce22

a unique implementation that we used to produce all the re-23

sults shown in this article, including triangle, quadrilateral and24

polygonal meshes as well as polyhedral meshes. We publicly25

Num. Heat Flow Field creation Smoothing Integration TOT
verts (s) (s) (s) (s) (s)

1K 6 × 10−3 4 × 10−5 3 × 10−3 9 × 10−3 16 × 10−3

4K 2 × 10−2 1 × 10−4 9 × 10−4 5 × 10−2 72 × 10−3

15K 9 × 10−2 2 × 10−4 2 × 10−3 0.37 0.46
60K 0.57 1 × 10−3 1 × 10−2 3.7 4.3

250K 3.62 4 × 10−3 5 × 10−2 27.5 31.2
1M 29.6 1 × 10−2 0.19 295.3 325.1

Table 1. Time performances of the boundary smoothing method, tested on
a mesh containing 1K vertices, and progressively refined up to 1M vertices.
The most time consuming parts are the computation of the heat flow and
and the vector field integration, which involve the resolution of a linear
system each. The generation of the field and its smoothing (always 3 it-
erations for this experiment) introduce negligible overhead. We used the
built-in LLT solver provided by Eigen for linear systems. Better perfor-
mances could be obtained by adopting faster (possibly parallel) solvers.

release our implementation at the following address: https: 26

//github.com/maxicino/HyperSurfaceSmoothing. 27

6. Conclusions and Future Works 28

We introduced a novel smoothing operator to relax the 29

boundaries of discrete segmentations. The operator is inspired 30

by the heat geodesic method [8], from which it inherits the abil- 31

ity to scale on different discrete domain representations and to 32

generalize to high dimensional spaces. 33

We experimentally validated our method on a variety of dis- 34

crete entities, ranging from triangle/quad/polygon meshes to 35

https://github.com/maxicino/HyperSurfaceSmoothing
https://github.com/maxicino/HyperSurfaceSmoothing
https://github.com/maxicino/HyperSurfaceSmoothing
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Fig. 9. A gallery of results produced using our method.

tetrahedral meshes. We also studied the influence of the param- 36

eters that control the algorithm, showing its stability and ease1

to control.2

Limitations and future works. At the moment this method can3

be used to relax discrete boundaries shared between pairs of4

regions. Indeed, one interesting question that we plan to inves-5

tigate further is how to extend it to more complex scenarios,6

where more than two regions are involved at the same time.7

We observe that when more than two regions are involved the8

boundary not only contains (n−1) dimensional components, but9

also (n − 2) dimensional ones. As a simple example one may10

think of three boundary curves meeting at a common point, or11

three boundary surfaces meeting at a common curve (see e.g.12

Figure 6 in [6]). How to globally smooth such complex bound-13

aries assembly remains an open challenge that we wish to tackle14

in future works.15

As suggested by one of the reviewers of the preliminar ver-16

sion of this work [9], it would be interesting to edit the gener-17

ation of the function φ in order to finely control the geometry18

of the cut. A candidate application could be 3D printing, where19

big objects need be split in order to fit the printing chamber,20

and the cut must be computed so as not to generate overhangs21

with respect to the building direction [34]. The suitability of22

our framework to solve problems of this kind is currently un-23

der investigation. A direction that seems promising is the con-24

trol of the local surface orientation at integration time, obtained25

by restricting the angle between the printing direction and the26

function gradient.27
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