
STAG: Smart Tools and Applications in Graphics (2017)
A. Giachetti, P. Pingi and F. Stanco (Editors)

Heat Flow Based Relaxation
of n Dimensional Discrete Hyper Surfaces

Marco Livesu

CNR IMATI (Genoa, Italy)

Figure 1: Boundaries between adjacent regions in discrete segmentations can be geometrically poor, exposing a typical jagged behaviour
(left). We relax discrete boundaries by approximating them with level sets (right, red curves) of continuous functions (middle).

Abstract
We consider the problem of relaxing a discrete (n−1) dimensional hyper surface defining the boundary between two adjacent
n dimensional regions in a discrete segmentation. This problem often occurs in computer graphics and vision, where objects
are represented by discrete entities such as pixel/voxel grids or polygonal/polyhedral meshes. A common approach consists in
assigning to each element of the domain a value (or label). Elements sharing the same label belong to the same region, whereas
elements with different labels belong to different regions. Segmentation boundaries are therefore only intrinsically defined, and
amount to the union of the interfaces between adjacent elements having different label, which tend to be geometrically poor
and expose a typical jagged behavior. We propose a relaxation scheme that replaces the original boundary with a smoother
version of it, defined as the level set of a continuous function. The problem has already been considered in recent years, but
current methods are specifically designed to relax curves on discrete 2-manifolds embedded in R3, and do not clearly scale to
multiple discrete representations or to higher dimensions. Our biggest contribution is a smoothing operator that is based only
on three canonical differential operators: namely the Laplacian, gradient and divergence. These operators are ubiquitous in
applied mathematics, are available for a variety of discretization choices, and exist in any dimension. To the best of the author’s
knowledge, this is the first intrinsically dimension-independent method, and can be used to relax curves on 2-manifolds, surfaces
in R3, or even hyper-surfaces in Rn. As such, not only it is useful to refine the boundaries of discrete segmentations, but also
for applications like data mining, where clustering in high dimensional spaces often occur, and the refinement of the clusters’
boundaries may be beneficial for classification algorithms.

1. Introduction

Labeling (or segmenting) an object is a fundamental operation in
computer graphics and vision, widely used in applications such as
analysis of medical images, object recognition and detection.

The majority of segmentation algorithms work on discrete
domains, such as regular grids [BVZ01], polygonal [LVS∗13,
RBG∗09, MPS∗04] and polyhedral [LAPS17, AMSF08] meshes.
A common approach consists in assigning to each element of the
domain a value (or label). Elements sharing the same label belong
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Figure 2: A gallery of results produced using our method.

to the same region, whereas elements with different labels belong
to separate regions. As a consequence, boundaries between adja-
cent regions are only intrinsically defined, and amount to the union
of the interfaces between adjacent elements.

Given a n dimensional object and a labeling defined on it, the
boundary between adjacent regions is a (n−1) dimensional hyper
surface. As a concrete example one may consider a binary parti-
tion of a discrete two dimensional surface (e.g. a triangle mesh):
the boundary between the two regions is the chain of edges having
polygons with opposite labels at its sides. The same goes for three-
dimensional objects (e.g. a tetrahedral mesh): the boundary is the
set of faces having polyhedra with opposite labels at its two sides.
Indeed, the boundary is one dimensional if the object is two dimen-
sional, and is two dimensional if the object is three dimensional.

Depending on the quality of the discretization, both in terms of
number, regularity, and shape of each element in the domain, the
boundaries between adjacent regions can be geometrically poor,
showing a typical jagged behaviour (Figure 1). In this article we
focus on this very specific problem, and propose a neat method to
relax jagged discrete boundaries, replacing them with smooth, yet
geometrically faithful, versions of them.

Our most important contribution is a method which is completely
agnostic both on the discrete representation used for the domain,
and on the dimension of the space in which it operates. To do so,
we define our smooth hyper surfaces as level sets of continuous
functions. We take inspiration from [CWW13], and generate such
functions relying on three classical discrete differential operators:
namely the laplacian, the gradient and the divergence. These opera-
tors are ubiquitous in applied mathematics, have been implemented
for a variety of discretization choices, and exist in any dimension.

Our method is efficient and easy to implement. We believe it has
great potential not only for classical applications, like refining the
boundaries of a discrete segmentation, but also for applications like

data mining, where clustering problems in high dimensional spaces
often occur, and the refinement of the clusters’ boundaries may be
beneficial for classification algorithms.

2. Related Works

The problem of having jagged boundaries in discrete segmentations
is well known in literature. Most of the segmentation algorithms
are not capable of producing smooth boundaries [Sha08]. An ex-
ception are the concavity-aware segmentations [AZC∗12], which
exploit harmonic functions to natively generate smooth cuts. Some
other methods achieve boundary smoothness in post processing,
implementing additional steps in their pipeline [JLCW06,LLS∗04].
Whenever the segmentation algorithm of choice is not capable of
producing smooth boundaries by itself, smoothness between ad-
jacent regions can be achieved using third party algorithms. The
method discussed in [KT09] is very similar in spirit to our ap-
proach, as it is based on the level sets of continuous functions.
However, it produces smooth curves that tend to escape from their
original position (see Figures 1a and 4b from the original paper).
Our method produces smooth boundaries that faithfully follow
their discrete counterparts, improving geometric fidelity. Panozzo
et al. [PBDSH13] introduced a method to project B-Spline curves
on discrete surfaces using the Phong projection. This tool could
in principle be used to define smooth segmentation curves, but
the user should define and place the control points that define the
smooth curve. Iawonn and colleagues [LGRP14] proposed an iter-
ative Laplacian smoothing algorithm that at each iteration reduces
the local boundary curvature. In [LL02] a local parameterization
method for defining geometric features in triangle meshes is pro-
posed. The method is based on the concept of snakes, pioneered by
Kass and colleagues in [KWT88]. All these methods specifically
address discrete 2-manifolds embedded in R3, and do not directly
extend to higher dimensions. To the best of our knowledge ours
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Figure 3: Overview of our method: (a) we input a discrete segmentation with a jagged boundary ζ; (b) heat diffuses from ζ, producing
a function u; (c,d) the vector field X is defined as ∇u/‖∇u‖ on the yellow region, and −∇u/‖∇u‖ on the blue region; (e) the field X is
smoothed, producing a new vector field X ′; (f) the field X ′ is integrated, producing a function φ that evaluates as consistently as possible
along ζ; (g) the output smoothed boundary is defined as a level set of φ.

is the first intrinsically dimension-independent method, and can be
used to relax discrete curves on 2-manifolds, surfaces in R3, or even
hyper-surfaces in Rn.

Diffusion. Solutions to the heat equation have been extensively
used in computer graphics and vision to compute segmentations
[BPVR11], geodesic distances [CWW13,BF15], Voronoi diagrams
[HHA17] and compare shapes [BBK∗10]. A in depth review of the
applications and computational methods used to compute diffusion
distances is beyond the scope of this paper. We point the reader
to [Pat16] for a recent survey on this topic.

3. Method

For the sake of clarity and ease of illustration we introduce our
system considering as input a triangle mesh M, representing our
discrete domain, and a chain of edges representing a discrete curve
ζ defined on it (Figure 3). We also assume that ζ is either a closed
curve, or its endpoints are both at the boundary of M, if any. We
remind the reader that, as long as the laplacian, gradient and di-
vergence operators are available, the same algorithmic steps apply
to any other dimension or discretization choice. The hyper-surface
smoothing method can be decomposed in the following four dis-
tinct algorithmic steps:

1. Diffuse the heat flow u̇ = ∆u starting from ζ for some time t
(Figure 3b);

2. Initialize the vector field X as ∇u/‖∇u‖ in one region, and
−∇u/‖∇u‖ in the other region (Figure 3d);

3. Smooth X , producing a new vector field X ′ (Figure 3e);
4. Integrate X ′ in the least squares sense, producing a function φ

that aligns to X ′ and at the same time evaluates consistently
along ζ (Figure 3f).

The smoother contour will then be a level set of φ (Figure 3g).

In the remainder of the section we provide more information on
each step, also discussing implementation details on the discretiza-
tion of differential operators for triangle meshes, and proposing a
convenient unified representation for the gradient and divergence
operators, which also applies to general polygonal and polyhedral
meshes.

Heat Flow. The first step of the algorithm consists in placing heat
charges along the boundary ζ and let them diffuse over time, ac-
cording to the flow

∂u
∂t

= ∆u. (1)

We perform implicit time integration using the backward Euler
method, as described in [DMSB99]. This amounts to solving the
following equation

(I− t∆)u = 0∣∣ζ=1
. (2)

In our discrete setting we substitute the identity (I) with a diago-
nal mass matrix that associates to each vertex in the mesh one third
of the sum of the areas of its incident triangles, and the Laplacian
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Figure 4: The function φ computed solving Equation 5 (left) and
two level sets of it (middle, right). As can be noticed the function
does not align with the segmentation boundary. This depends from
the fact that smoothing the field X ′ does not give any guarantee
that φ will evaluate consistently throughout the whole boundary. In
general, it does not.

operator (∆) with the cotangent operator, defined on each vertex vi
as

∆(vi) = ∑
j∈N(i)

(cotαi j + cotβi j)(v j− vi) (3)

Here N(i) represents the vertices v j adjacent to vertex vi, and
αi j,βi j the angles opposite to edge (vi,v j) [MDSB03]. For the time
step t, we used the squared average edge length of M, as suggested
in [CWW13].

Discrete Gradient and Divergence. Differently from [CWW13],
which uses different discretizations for the gradient and divergence
operators, we use a convenient unified representation. Let î jk be the
triangle connecting the vertices vi,v j,vk. We define the piece-wise
constant gradient∇u as follows

∇î jk =
1

2A

[
(u j−ui) · (vi− vk)

⊥+(uk−ui) · (v j− vi)
⊥
]
, (4)

where ui is the value of u evaluated at vertex i, (vi− vk)
⊥ is the

oriented edge (vi,vk) rotated by 90◦ counter clockwise (i.e. using
the triangle normal as rotation axis), and A is the triangle area.

Assuming M contains #F triangles and #V vertices, the gradient
operator can be efficiently packed into a 3#F× #V matrix G. This
representation has a twofold advantage: the first is that by mul-
tiplying G for a column vector containing the function values at
each vertex in the mesh, a 3#F long column vector containing the
serialized gradient can be efficiently computed by matrix vector
multiplication; the second is that the transposed matrix G> imple-
ments the divergence operator, meaning that multiplying G> with
a vector containing a serialized vector field, gives the divergence
of the field. This translates to an extremely compact implementa-
tion, easier to code and debug. Notice that by substituting the gra-
dient computation in Equation 4 with a more general strategy (e.g.
the Green-Gauss gradient method [SBK14]) this twofold use of the
matrix G extends also to general polygonal and polyhedral meshes.

Field Processing. The gradient of the heat flow ∇u is a vector
field that points towards the boundary ζ from any point in the do-
main (Figure 3c). Our goal is to generate a field that traverses ζ in a

smooth way. To do so, we first initialize a vector field X , consider-
ing ∇u/‖∇u‖ on one region and −∇u/‖∇u‖ on the other region
(Figure 3d); then, we smooth the field, in order to alleviate the sharp
turns induced by the discrete jagged boundary. We simply perform
a few iterations of laplacian smoothing on the dual mesh, meaning
that each triangle takes as vector the average between itself and the
vectors associated to its edge-adjacent triangles. Typically a few
iterations (three in all our examples) are enough to produce a suf-
ficiently smooth field X ′ that crosses the boundary without hav-
ing sharp turns (Figure 3e). More aggressive smoothing strategies
(e.g., more iterations) can be performed in order to further relax the
boundary and allow it to deviate from ζ.

Field Integration. The last step consists in generating the function
φ that aligns to the smoothed vector field X ′. The output segmenta-
tion boundary will then be a level set of φ (Figure 3g). At this point
one may think that, similarly to [CWW13], φ corresponds to the
function that has X ′ as gradient, which can be computed by solving
the Poisson problem

∆φ =∇X ′. (5)

However, even though the function traverses ζ in a smooth way,
there can be no level set which approximates the discrete bound-
ary well. This is because smoothing the gradient of the function
does not give any guarantee on the fact that the function will eval-
uate consistently throughout the whole boundary ζ. In the general
case, it does not; especially if ζ is non smooth and low curvature
everywhere, but rather has some curvature peak and is pretty flat
elsewhere (Figure 4).

We instead solve for a function φ that aligns to X ′ only in the
least squares sense, while at the same time tries to evaluate as con-
sistently as possible along ζ. Specifically, we look for the function
φ that minimizes

argmin
φ

∥∥∥∆φ−∇X ′
∥∥∥2

+λ

∥∥∥φ(ζ)− 1
2

∥∥∥2
, (6)

where 1
2 is the function value that we want to replicate along ζ.

Notice that 1
2 provides a reference to the best fitting level set, but it

could potentially be substituted with any other value. Since we are
dealing with the differential properties of the field, the scalar func-
tion will shift accordingly. Minimizing 6 corresponds to solving a
linear system Aφ = b, with

A =

(
∆

Mζ

)
b =

(
∇X ′

1
2

T

)
. (7)

Here Mζ is a sub-matrix having as many lines as the number of
vertices in ζ. Each line is null everywhere, and has a single 1 en-
try corresponding to a vertex in ζ. On the right hand side 1/2T

is a column vector containing as many 1
2 as the number of ver-

tices in ζ. We solve the system using weighted least squares, ac-
cording to the normal equations (ATWA)φ = (ATW )b. The matrix
W = (1 λ)T is diagonal and associates weight 1 for each row corre-
sponding to ‖∆φ−∇X ′‖2 and weight λ for each row correspond-
ing to ‖φ(ζ)−1/2‖2. Figure 5 shows how the value of λ influences
the level sets of φ. As can be noticed, for λ = 0 there is still some
rough approximation error, whereas for higher values the function
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Figure 5: Computing a function φ starting from a smoothed vector field X ′ (Equation 5) does not give any guarantee that it will evaluate con-
sistently throughout the whole segmentation boundary. In Equation 6 we weigh the alignment with the guiding field X ′ with the requirement
of evaluating as consistently as possible along the boundary. The parameter λ weights the importance of this latter term in the energy. Here
we show the level sets of different functions produced considering growing values of λ. As can be noticed, for λ≥ 0.25 a level-set capable of
interpolating the discrete boundary well always exists.

is well aligned with with the segmentation boundary while still be-
ing smooth. In a sense, this is the only parameter exposed to the
user, who can decide to relax the boundary as preferred by reduc-
ing the value of λ.

4. Results

We implemented our hyper surface smoothing algorithm as a single
threaded C++ application on a MacBook Pro equipped with a 2,9
GHz Intel Core i5 and 16GB of RAM, using CinoLib [Liv17] for
geometry processing and Eigen [GJ∗10] as linear solver.

From a computational point of view the algorithm amounts to
solving two linear systems, one for the heat flow, and the other for

the field integration. All the other steps (gradient computation and
smoothing) introduce negligible delays. Timings are satisfactory:
for medium sized meshes (less than 50K faces) the whole compu-
tation happens in a fraction of a second, and is therefore compatible
with interactive use.

In Figures 1, 2, 3 and 5 we show several results obtained with our
implementation. At the moment we implemented only a version for
triangle meshes. We plan to improve our prototype in order to be
able to work with other discrete entities.

Being based on widespread discrete differential operators in-
cluded in many freely available geometry processing libraries, the
algorithm is quite easy to implement. From a usability point of view
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the method is pretty intuitive, meaning that everything works as ex-
pected without requiring complex parameter tuning. Nevertheless,
advanced users can fine tune the results by acting on two param-
eters: the scalar λ that balances between field alignment and con-
sistent function evaluation along the boundary (Figure 5), and the
amount of smoothing performed on the gradient space, which may
produce functions that tend to escape from the original boundary,
if needed.

5. Conclusions and Future Works

We introduced a novel smoothing operator to relax the boundaries
of discrete segmentations. The operator is inspired by the heat flow
geodesic algorithm described in [CWW13], from which it inherits
a number of remarkably good properties, such as the ability to scale
on different discrete domain representations, and to generalize to n
dimensional spaces.

The prototype we implemented to generate the results shown
throughout the paper can process only triangle meshes. We are cur-
rently working to extend the code base to be able to process also
pixel images, as well as general polygonal and polyhedral meshes.

For future works, at the moment this method is capable of
smoothing discrete boundaries shared between pairs of regions. In-
deed, one interesting question that we plan to investigate further is
how to extend it to more complex scenarios, where more than two
regions are involved at the same time.
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