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Figure 1: We optimize poorly shaped hex meshes (a), with multiple inverted (red) elements (b), to produce high-quality, inversion-free outputs
(c) using an edge-cone (d) based framework. The log-scale histogram insets highlight the improvement in worst element quality. Quality is
measured using minimal Scaled Jacobian, with 1 being optimal and negative values corresponding to inverted elements.

Abstract

The usability of hexahedral meshes depends on the degree to which
the shape of their elements deviates from a perfect cube; a single
concave, or inverted element makes a mesh unusable. While a
range of methods exist for discretizing 3D objects with an initial
topologically suitable hex mesh, their output meshes frequently
contain poorly shaped and even inverted elements, requiring a further
quality optimization step. We introduce a novel framework for
optimizing hex-mesh quality capable of generating inversion-free
high-quality meshes from such poor initial inputs. We recast hex
quality improvement as an optimization of the shape of overlapping
cones, or unions, of tetrahedra surrounding every directed edge
in the hex mesh, and show the two to be equivalent. We then
formulate cone shape optimization as a sequence of convex quadratic
optimization problems, where hex convexity is encoded via simple
linear inequality constraints. As this solution space may be empty,
we therefore present an alternate formulation which allows the solver
to proceed even when constraints cannot be satisfied exactly. We
iteratively improve mesh element quality by solving at each step a
set of local, per-cone, convex constrained optimization problems,
followed by a global energy minimization step which reconciles
these local solutions. This latter method provides no theoretical
guarantees on the solution but produces inversion-free, high quality
meshes in practice. We demonstrate the robustness of our framework
by optimizing numerous poor quality input meshes generated using
a variety of initial meshing methods and producing high-quality
inversion-free meshes in each case. We further validate our algorithm
by comparing it against previous work, and demonstrate a significant
improvement in both worst and average element quality.
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1 Introduction

Hexahedral meshes are the finite element discretization of choice in
multiple engineering domains [Blacker 2000; Shepherd and Johnson
2008; Owen 2009]. The reliability of the finite element simulation is
highly dependent on the mesh element quality, or the degree to which
they deviate from a perfect cube [Pébay et al. 2007]. Simulation re-
sults depend on both average and minimum element quality [Labelle
and Shewchuk 2007; Pébay et al. 2007]. Even a single inverted, or
non-convex element, makes a mesh unusable for simulation. The
generation of quality hexahedral meshes is typically a two step
process which first generates an initial mesh whose connectivity
is designed to fit the input at hand, and then modifies the vertex
positions so as to optimize the mesh element shape while keeping
the connectivity fixed [Owen 2009]. The initial meshes that serve as
input to the optimization step frequently contain numerous poorly
shaped, and even inverted, elements. We introduce a new mesh
optimization method which takes an initial low quality hex mesh
as input and generates an inversion-free high quality mesh closely
conforming to the input surface geometry. This conformity is impor-
tant for the finite element analysis to capture the true behavior of the
meshed object. Our method recasts mesh optimization as a sequence
of convex, easy to optimize problems and produces high-quality
meshes starting from inputs with numerous inversions and a range
of diverse connectivities representative of the commonly used initial
hex mesh generation approaches (Section 4).

Hex mesh optimization is an open, challenging research prob-
lem [Knupp 2001; Shepherd and Johnson 2008; Ruiz-Gironés et al.
2014b]. Existing state-of-the-art methods focus on directly optimiz-
ing a range of hex shape quality metrics such as minimal [Knupp
2001; Brewer et al. 2003] or average [Ruiz-Gironés et al. 2014b]
scaled Jacobian, or condition number [Knupp 2003; Brewer et al.
2003]. Optimizing shape quality directly is difficult since both the
quality metrics and the element-convexity constraints, expressed as
a function of vertex positions, are non-linear; the resulting solution
space is non-convex, which in turn motivates these frameworks to
employ Gauss-Seidel schemes that update one vertex position at a
time.Our indirect, global approach, significantly improves on the
results of these methods as demonstrated in Sections 2 and 4.

The key observation behind our optimization framework is that we
can formulate shape quality improvement in an easier to optimize
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Figure 2: A hexahedron is convex if all the tetrahedra associated
with its corners (a) have positive volume; hex quality is maximized
when the edges at each corner are orthogonal to one another. The
set of tetrahedra defining the hex mesh quality can be iterated on by
traversing the tets in the cones surrounding each directed edge (b).
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Figure 3: (a) Edge-cone quality is maximized when its axis is par-
allel to the base face normals, decreasing as the angle between the
normals and the axis grows (b), a cone becomes inverted (red) once
the angle between at least one base face and the axis grows above
90

�; (c) some base configurations may not allow an inversion free
axis direction.

form and explicitly constrain the minimal element quality within the
mesh by changing the atomic elements we operate on. To this end,
we note that the quality of a hexahedron is traditionally measured
by analyzing the eight tetrahedra defined by the outgoing edges
of each of its eight corner vertices [Pébay et al. 2007] (Figure 2a).
In an ideal hex element, each directed edge originating from the
corner is parallel to the normal of the face formed by the other hex
edges originating from the same corner. A hex is inverted whenever
the angle between even one edge direction and its corresponding
face normal is over 90�. This observation motivates us to consider
the hex mesh quality in terms of the relationships between these
paired directed-edge and face-normal directions (Figure 3). Each
such directed-edge and face pair forms a tetrahedron, and a union of
such tetrahedra around the directed edge forms what we call a cone
(Figures 1d, 2b). The cones of tetrahedra surrounding each directed
edge in the mesh contain all the corner tetrahedra of its hex elements.
We can therefore express mesh quality via the difference between
the directions of the directed edges which form the axes of the cones
and the normals of the triangular faces at their base. If these angles
are under 90� for all the faces, for all cones in the mesh, the mesh is
inversion free.

Instead of optimizing the shape of the mesh hexahedra, we opti-
mize its equivalent - the shape of the edge-cones (Figures 1d, 2b).
By recasting the optimization in terms of cone shape, and specifi-
cally the directions of the cone axes with respect to their bases, we
formulate mesh quality optimization as a closed form constrained
optimization problem. We demonstrate that mesh quality can then
be optimized using an iterative algorithm, where at each iteration
we minimize a convex quadratic function with linear inequality con-
straints which express the requirement for the angles between the
axis and the face-normals within each cone to be under 90�. When
this algorithm reaches a solution, the resulting mesh vertex positions
are guaranteed to satisfy the inequalities and form an inversion-free
mesh (Section 3).

However, this global algorithm can terminate without producing a
solution; depending on the initial vertex positions, an intermediate
constrained problem may become unsatisfiable (Figure 3c). The
question of whether a given mesh connectivity allows for an inver-
sion free mesh remains open [Shepherd and Johnson 2008] and such
failure cases may be indicative of an empty solution space. However,
in practice we observed that in most cases an inversion-free solu-
tion can be achieved by temporarily relaxing the constraints on the
intermediate solutions. We therefore relax the stringent global con-
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Figure 4: Our method untangles meshes on which previous methods
fail. (a,d) Inverted (red) elements in input Armadillo mesh (Figure 1);
results of Mesquite [Brewer et al. 2003] without (b) and with (c)
surface preservation. (e) Result of [Ruiz-Gironés et al. 2014a], (f)
our result. As the zoomed in areas show the earlier method fails
to untangle hexahedra with valid surface quad faces, and inverts a
previously convex hex.

straints, replacing the global constrained optimization setting with
an iterative local-global approach (Section 3.1.2). At each iteration
we first solve a collection of independent local convex constrained
optimization problems, computing an optimal inversion-free target
axis direction for each edge cone with respect to the current geome-
try; if and when the solution space of a local problem is empty, we
proceed using an unconstrained solution. We then update the vertex
positions across the mesh using a global update step that moves ver-
tices so that mesh edge orientations maximally conform to the target
axis directions. The global step penalizes high local deviation from
the desired target directions by using an incrementally reweighed
penalty function guiding the optimization away from solutions with
inverted elements. The resulting functional is quadratic, enabling
robust and easy minimization.

The cone-based quality optimization formulation is augmented with
surface preservation constraints, as well as additional quadratic reg-
ularization terms designed to stabilize the solution when the initial
vertex positions are particularly poor (Section 3.2). For a typical
mesh, with up to 200K hexahedral elements, the combined local-
global framework requires less than 5 global iterations to converge
to an inversion-free, high quality mesh in under 2 minutes. Further-
more the framework can be easily augmented to further improve the
worst element quality, by gradually increasing the threshold in the
local inequality constraints we solve for and tightening the target
alignment in the global solution step (Section 3.6).

We validate our optimization framework by applying it to a range of
initial meshes with different connectivity patterns created by recent
meshing techniques, as well as to artificially corrupted versions of
these meshes created by a combination of hex-element rotation and
vertex displacement (Section 4). In all cases our method converges
to an inversion-free, good quality mesh. We compare our approach
to current state-of-the-art methods, showcasing the improvement in
the average and worst element quality.

2 Related works

Our work builds upon recent advances in hexahedral meshing and
mesh optimization, and is closely related to recent methods for
low-distortion volumetric parameterization.



Hexahedral Meshing. Blacker [2000] highlights the importance
of hex meshing to finite element simulation, referring to it as the
”holy grail” of meshing research. Comprehensive surveys of hexahe-
dral meshing methods can be found in [Shepherd and Johnson 2008;
Owen 2009]. Recent methods can successfully create initial hexahe-
dral meshes of reasonable quality employing grid-based [Schneiders
1996], octree-based [Marechal 2009], dual-graph [Tautges et al.
1996], swept [Miyoshi and Blacker 2000], frame-field based [Nieser
et al. 2011; Li et al. 2012], and PolyCube-based [Gregson et al. 2011;
Livesu et al. 2013; Huang et al. 2014] approaches. All these meth-
ods follow the initial mesh generation with a quality optimization
step which employs one of the methods reviewed below. Section 4
demonstrates our method’s application to the unoptimized outputs
of a range of such approaches.

Shape Metrics Practitioners use a range of shape metrics, such as
minimal or average scaled Jacobian [Pébay et al. 2007], to measure
the quality of a hexahedral mesh, all aiming to estimate the degree to
which the mesh elements differ from canonical cubes. These metrics,
e.g. Minimal Scaled Jacobian (MSJ), are typically designed to have
a value of one when quality is optimal, and to be negative when a
hex is inverted. The main property these metrics try to capture is
the degree to which the solid angles at the corners of each hex differ
from the canonical 90� angles. The cone-shape metric we optimize
maximizes the alignment between the cone axes and the normals of
the base faces. Maximizing the alignment for each of the three cones
each tetrahedron participates in is essentially equivalent to optimiz-
ing the canonical angles at the corners. Algorithms using traditional
shape metrics also take into account disparity in hex edge lengths,
prioritizing equilateral cube elements over elongated box-shaped
ones and targeting edge lengths that conform to a user-specified siz-
ing function. Our framework achieves this effect by optimizing the
lengths of the edges toward their estimated target lengths computed
to be similar for topologically parallel edges within each hex and for
consecutive edges in face-adjacent hexes (Section 3.4).

Mesh Optimization Methods for mesh optimization [Owen 2009;
Shepherd and Johnson 2008] are designed to improve the quality
of the mesh elements while keeping the connectivity fixed and pre-
serving the meshed domain boundary surface as much as possible.
They strive to simultaneously achieve two goals: improving worst
element quality - in particular correcting, or untangling, inverted
elements - and optimizing the average mesh element quality. A large
range of methods, e.g. [Freitag Diachin et al. 2006; Aigerman and
Lipman 2013; Sastry and Shontz 2014], focus on tetrahedral mesh
optimization. These results are not applicable as-is to hex meshes,
motivating a separate line of research specifically targeting hex-mesh
optimization, as reviewed by [Wilson 2011].

Moving vertices to some weighted average, or center, of their
neighbors [Frey and George 2007; Zhang et al. 2009] is one of
the oldest optimization approaches,, but it frequently results in in-
verted elements in concave mesh regions [Owen 2009]. Several
methods [Vartziotis and Papadrakakis 2013; Knupp 2003] use an
inversion-free mesh as a starting point, and relocate vertices one at a
time while constraining each move to avoid inversions. In practice
many raw hex-meshing outputs contain inverted elements, limiting
the utility of this approach. In addition, by constraining the interme-
diate solutions at all times to remain in the inversion-free space, such
method can converge to a local, far from optimal solution. Recently,
Vartziotis and Himpel [2014] have proposed new formulations of
optimization designed for mixed element meshes, but have yet to
demonstrate those on a hexahedral or hex-dominant input. Sun et
al. [2012] propose an optimization method specific for grid-based
meshing.Our work addresses general mesh topology and preserves
the input connectivity; we demonstrate its robustness across a vast
range of inputs (Section 4).

The most common optimization approaches for correcting inverted

hex elements use Gauss-Seidel style optimization operating one
vertex at a time. Knupp [2001] proposes a dedicated method for
correcting inverted hex elements, but highlights the difficulty of the
problem and acknowledges that this method fails on many inputs.
The widely used Mesquite library [Brewer et al. 2003] uses a combi-
nation of the algorithms in [Knupp 2001] and [Knupp 2003] to first
untangle a hex mesh and then improve its quality iteratively moving
one vertex at a time. Recent research [Wilson 2011; Ruiz-Gironés
et al. 2014a; Wilson et al. 2012; Ruiz-Gironés et al. 2014b] uses
iterative local Gauss-Seidel approaches to simultaneously correct
inverted elements and improve the overall element quality. They
use shape metrics specifically designed to prevent convex elements
from becoming inverted. Our indirect global framework successfully
untangles inputs that these methods fail on (Figure 4).

The use of global non-linear methods for optimizing mesh qual-
ity was investigated by Sastry et al [Sastry and Shontz 2009] and
Wilson [Wilson 2011] for tetrahedral and hexahedral meshes respec-
tively. Both concluded that global methods that directly optimize
hex shape metrics as a function of vertex positions are typically less
robust than the Gauss-Seidel approach, and frequently converge to
poorer solutions.

Marechal [2009] computes the closest optimal hex (cube) for each
individual hexahedron, and gradually moves mesh vertices towards
the average of the obtained optimal vertex positions. The formula-
tion balances shape quality against boundary surface preservation.
As the author notes, using this method to achieve the hex quality
necessary for accurate finite element simulation frequently requires
large deviation from the input surface. Thus this method typically
terminates with barely convex meshes, with Minimal Scaled Ja-
cobian (MSJ) around 0.01; this quality is not sufficient for many
simulation tools [Pébay et al. 2007].

Section 4 compares our results against those generated by the main
methods above. We show that our method generates outputs with
better average and worst element quality, while closely preserving
the input surface geometry, and can produce inversion free outputs
when others fail to do so.

Simplicial and Polynomial Map Optimization. Recent work on
computation and optimization of maps between simplicial com-
plexes (triangles and tetrahedra), e.g. [Aigerman and Lipman 2013;
Schüller et al. 2013] is applicable to triangle and tetrahedral mesh op-
timization. E.g. Aigerman et al. [2013] successfully approximate an
input tet mesh with multiple inverted elements with an inversion-free
one. These methods use local-global approaches which interleave
local solutions of a hard optimization problem with global solu-
tions of simpler, linear or quadratic ones. A tempting solution for
hex optimization would be to represent a hex mesh via a union of
8 overlapping tets and apply one of these methods. As discussed
in Section 4, this formulation fails to reach the desired solution
on many inputs. Our method is inspired by these algorithms and
takes a similar local-global approach, but is designed specifically
for hexahedral meshes. It successfully optimizes models that this
mapping-based alternative fails on (Section 4).

Paille et al. [2013] optimize a mapping between an input surface
and a higher-order polynomial hexahedral mesh with near perfect
element shape, increasing the order of the hex elements as they
progress to improve quality and surface fitting. The method is not
applicable to standard linear hex meshes; while the higher-order
elements may be inversion-free and high quality, the underlying
linear mesh elements may be inverted (Section 4).

3 Formulation

As noted earlier, the quality of a hex mesh is measured using the
shape of its eight corner tetrahedra (Figure 2a). These tetrahedra can
be re-organized by grouping together each set of tetrahedra which



form a cone around a common oriented edge (Figure 2b). By travers-
ing the cones around each oriented edge, we consider the same set of
tets as traversing all corner tets of each mesh hexahedron. Contrary
to all previous approaches which considered hex element quality
directly, we formulate mesh quality optimization using the edge-
cones as our atomic elements. As we show below, this alternative
view avoids some of the pitfalls of earlier approaches, allowing for
effective and robust mesh optimization.

Our formulation centers around a shape optimization term aimed at
generating non-inverted tetrahedra inside each cone surrounding a
directed edge and is framed in terms of the relationship between the
directed edge, or axis, at the center of the cone and its base (Section
3.1). We cast cone shape optimization in a simple to optimize form,
and design an iterative dedicated solver suitable for this task. The
cone shape optimization term is augmented with a global regularity
term aiming to stabilize the optimization process when the initial
geometry is too unreliable to estimate axis directions locally (Section
3.2). We maintain the boundary surface geometry via additional,
quadratic optimization terms discussed in Section 3.3 and describe
the combined solution framework in Section 3.5.

Definitions Let H be a hexahedral mesh with vertices V(H) and
edges E(H) respectively. For each directed mesh edge (v

i

, v
j

) we
use the notation e

ij

as a shorthand to denote the vector v
j

�v
i

. Thus
while the equations below are frequently expressed in terms of e

ij

the variables we optimize for are the underlying vertex positions.
All equations are ultimately solved per-coordinate unless otherwise
specified.

3.1 Cone Shape Optimization

Let e
ij

2 E be a directed edge. If we consider the collection of
all hexes H containing e

ij

, let Q = {q
k

} be the umbrella of quads
belonging to H containing i and not j, and let T = {t

k

} be the
triangular fan defined by all vertices on Q that are connected to v

i

,
with the understanding that T has a winding order consistent with
the winding order of the quads of Q, and that t|T | = t0 (Figure 2b).
Denoting the vertices of t

k

as u
k

, v
i

, u
k+1, in order for the tetra-

hedron e
ij

, u
k

, u
k+1 to have a positive volume, v

j

must lie on the
positive side of the supporting plane of the triangle v

i

u
k

u
k+1 - for

every triangle in T (Figure 3). The shape of each tetrahedron, e.g. its
scaled Jacobian, is optimized if the edge is aligned with the triangle
normal n

k

.

Given a quadratic term E
boundary

expressing the conformity of the
mesh boundary to the input surface (Section 3.3), we express mesh
shape optimization balancing edge-cone quality against boundary
preservation as computing vertex positions v

i

that minimize
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as a function of vertex positions,
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The energy term intentionally counts the opposite directions of each
edge separately, as the tightness of the constraints on these directions
may significantly differ.

Given the typical size of real-world meshes, optimizing this formu-
lation directly using standard non-linear optimization methods is

impractical. In particular, the normalization by edge length (Equa-
tions 1, 4) may lead to ill-defined gradients and Hessians further
complicating optimization. Inspired by the successful use of iterative
local-global methods for other mesh processing tasks [Sorkine and
Alexa 2007; Aigerman and Lipman 2013], we therefore design a
targeted solver which makes this non-linear optimization tractable.

We observe that for typical input meshes, the lengths of the edges
in the target output mesh can be pre-estimated based on either user-
specified optimal sizing or the input mesh geometry and connectivity
(Section 3.4). Using these estimated lengths L

ij

in Equation 2
reduces it to a simple quadratic function:
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and reduces Equation 4 to a simpler quadratic form
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3.1.1 Global Formulation

Given this simpler formulation, we can solve the constrained opti-
mization problem above using the following iterative solver.

1. Compute triangle normals n
k

for each cone triangle of each
directed edge (Equation 6).

2. Compute new vertex positions v
i

by minimizing

E
Qcone

+ E
boundary

(7)

subject to the constraints

e
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k

> 0, 8e
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2 E, t
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using the approximate normals n
k

computed in step 1. Note
that this is a quadratic minimization problem with linear
inequalities, solvable with standard quadratic programming
methods. The problem is convex and has a unique minimum.

3. Repeat until convergence, i.e. until the vertex positions no
longer change.

If and when the method converges, the resulting output mesh is guar-

anteed to have no inverted elements; when the process terminates,
the vertex positions - and hence the normals - no longer change, and
accordingly the non-inversion constraints (Equation 8) hold for the
normals of the output mesh.

While simple and elegant, this algorithm may terminate prema-
turely failing to find a set of vertex positions that satisfies all the
non-inversion constraints in Equation 8 at the same time. Such a
situation can arise in the scenarios visualized in Figure 3c or in the
case of degenerate base triangles, whose normals computed using
Equation 6 have zero length. Such scenarios can and do occur in
practice if the initial mesh is badly tangled. Note that since triangle
normals can and do change as mesh vertices move, the fact that a cur-
rent set of normals does not allow for a solution does not necessarily
imply that a solution does not exist for the given mesh topology.

3.1.2 Local-Global Framework

We therefore design a more robust iterative solution framework
which relaxes the inversion constraints just enough to avoid forming
an empty solution space at any point. Specifically, we break the
iterative optimization process into local and global steps.

In the local step, we find target edge directions for each cone axis
which satisfy the non-inversion constraints with respect to the base
triangle normals computed by the previous global step. If no local



solution exists that satisfies the constraints, the local step returns an
unconstrained solution, as discussed below. In the global step we
solve for new vertex positions that align the resulting mesh edges as
closely as possible with the newly-computed target directions. To
ensure that the method does not terminate prematurely, the global
step uses penalty functions to minimize the occurrence of inversions
rather than hard constraints.

Local Step. For each interior directed edge e
ij

, we compute a
target direction n̂

ij

such that

n̂
ij

= argmin

|T (e
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The last convex term replaces the explicit, but non-convex, require-
ment for n̂

ij

to have unit length. The normals n
k

are computed from
the current, fixed, vertex positions using Equation 6 and are nor-
malized to have unit length. The resulting vectors n̂

ij

are similarly
normalized. Note that if all we required is for the dot product n̂

ij

·n
k

to be positive, we could eliminate the last constraint (Equation 11),
as from an optimization perspective it would make no difference
what the length of the solution was. However, if we intend to use a
higher than zero threshold ", set as discussed in Section 3.6, then we
must limit the length explicitly to avoid the vectors from satisfying
the threshold by scaling.

This is a classic quadratic convex optimization problem with lin-
ear and quadratic inequality constraints on the three coordinates
of n̂

ij

. It can be solved efficiently and robustly using standard
quadratic programming tools such as [Gurobi Optimization 2013].
Moreover, in most input configurations the simple average of the
base triangle normals (the minimizer of Equation 9) satisfies the
constraints as-is; therefore, to speed-up computation, we employ
the QP solver only if this basic solution violates the constraints.
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Since this is a constrained problem, a di-
rection that satisfies all the non-inversion
constraints may not always exist (Fig-
ure 3c). However, the advantage of a local-
ized solution is that one can still proceed
with the global iterations in a meaningful
way.

If no inversion-free solution exists we re-
turn either the current edge direction or the

normal average (the minimizer of Equation 9) basing the decision
on the largest angle ↵

ij

(see inset) between that vector’s direction
and the base face normals. We select the direction for which this
angle is smallest. We make the same selection if one of the face
normals has zero length. Since our optimization seeks for all edges
to have a known target length and indirectly optimizes base triangle
angles, such degenerate configurations are typically resolved during
the first iteration of our method. For surface edges, we use a slightly
modified formulation discussed in Section 3.3.

Global Step. Our global step computes new mesh vertex positions
using the locally computed target edge directions, and aims to align
the mesh edges with these directions by minimizing

E = E
Qcone

+ E
boundary

(12)

augmented by penalty functions that keep the new edge directions
close enough to the target ones so as to avoid inversions. We use
penalty functions for this task instead of explicit constraints in order
to allow the method to proceed to the next iteration in cases where
such constraints cannot be immediately satisfied.

Penalty Scheme. Traditional penalty schemes are formulated as
augmenting a minimized energy function ˆE with weighed penalty
terms EP

i

which replace the hard constraints,

E =

ˆE +

X

i

WP

i

EP

i

(13)

where WP

i

are individual penalty weights [Nocedal and Wright
2006]. The methods then repeatedly minimize the augmented func-
tion, while increasing the weights WP

i

till the constrains are satisfied.
Our observation is that we can use this same scheme but with an
implicit upper bound on the weights WP

i

, such that if the constraints
are not strictly satisfied we can still proceed with the next iteration
of our local/global framework.

We introduce per-cone penalty terms aimed to keep the edge direc-
tions sufficiently close to the target ones. Our penalty formulation
is based on the observation that the norm of the difference between
unit-length vectors is above 1 when the angle between them is ob-
tuse, and less than one, when the two are relatively close (under
60

�). Thus for larger angles, a high order monomial of this norm
serves as a simple penalty whose cost increases dramatically as the
angle increases, strongly discouraging any solution where the new
edge directions deviate far enough from the target to the point where
a tetrahedron in the edge-cone becomes inverted. At the same time,
the maximal distance between unit-length vectors is 2, providing a
natural upper bound on the size of the penalty. Our penalty scheme
is therefore guaranteed to terminate as the penalty cannot increase
indefinitely. To keep the optimized functional quadratic, we separate
the monomial into a quadratic term, which we treat as a penalty
function

EP

ij

= k e
ij

ˆL
ij

� n̂
ij

k2 (14)

and a higher-order weight term wP

ij

which is updated between
penalty iterations, and is never decreased. The computation of
the normalization factors ˆL

ij

is described below. The weights wP

ij

are initially set to 1. After a solution is obtained, we update the
penalty weights by setting

wP

ij

= max(wP

ij

, k e
ij

ˆL
ij

� n̂
ij

k6). (15)

The choice of power six was empirical. We found that lower values
did not sufficiently penalize large angular deviations, leading to
decrease in solution quality, while larger powers reduced numeric
stability: increasing the power increases the ratio between the largest
and smallest elements of the gradient matrix of our energy function,
which in turn increases its condition number.

When selecting the normalization factor ˆL
ij

, focusing on angle only
argues for considering a pure directional difference - i.e. normalizing
the current edge by its length at the beginning of the global step.
However, this choice is sub-optimal if and when the current length
is very different from the target, as the current length may be a
poor predictor of the length after optimization, one expected to get
closer to the target. We anticipate this change by setting ˆL

ij

=

(ke
ij

k+ L
ij

)/2, where ke
ij

k is the current edge length.

We also note that the degree to which we want the edge and its target
direction to be aligned depends on the geometry of cones computed
in the local step. Specifically, we consider the largest angle ↵

ij

between the target axis direction and the cone’s base triangle normals
used in the local step. To minimize inversion likelihood, when ↵

ij

is
below 90

�, the alignment between the edge and the target direction
should become tighter as the angle grows. We therefore multiply all
weights wP

ij

by the following function of this angle,

W (↵
ij

) = 1 + 10e
� cos↵

2

ij

2�

2 (16)



to penalize deviation more when the cone is ”tighter”. We set
� = 0.3 using the three sigma rule for the weight to drop to 1 when
the angle is zero allowing for larger deviation.

Our combined penalty scheme optimizes at each iteration the fol-
lowing quadratic function,

E = E
Qcone

+ E
boundary

+ E
penalty

(17)

E
penalty

=

X

ij

W (↵
ij

)wP

ij

EP

ij

(18)

We repeat the minimization and weight update steps (Equation 15)
until the vertex positions or the combined energy function no longer
change. Note that, as expected from penalty terms, the weights
W (↵

ij

)wP

ij

never decrease. Lastly we observe that a penalty should
be applied only if the target directions satisfied the inequalities in the
local step (i.e. ↵

ij

< 90

�). If this constraint is not satisfied we skip
the corresponding edge in the sum above. The combined penalty
scheme typically requires 5 or fewer linear iterations to converge.

3.2 Global Regularization

(a) (b)

Figure 5: (a) Topologically paral-
lel edges; (b) consecutive edges.

The formulation as described so
far converges to a high quality
mesh when initialized from a
good starting point (e.g. models
such as clef2 or the bust in Fig-
ure 6). However the framework
can become unstable when the
initial mesh contains large num-
bers of inverted elements (e.g.
part29, Figure 6). In this sce-

nario multiple solution spaces for the local step (Section 3.1.2) can
be either empty, or highly constrained, resulting in very different
target directions for the two half-edges e

ij

and e
ji

belonging to the
same edge. We stabilize the solution framework by introducing a reg-
ularization term aimed at generating more unified edge directions for
adjacent mesh edges which leverages the structure of the hexahedral
mesh. We observe that for high quality hex meshes the directions of
topologically parallel edges within the same hex (Figure 5a) and of
consecutive edges on face-adjacent hexes (Figure 5b) are expected
to be quite similar. Optimizing for direction similarity of such edges
helps guide the target edge directions across the mesh toward a more
uniform solution, stabilizing the algorithm, motivating our regularity
term,

E
regularize

=

X

e2E

1

|P (e)|
X

e

p

2P (e)

k e

L
e

� e
p

L
p

k2 +

X

e2E

1

|C(e)|
X

e

c

2C(e)

k e

L
e

� e
c

L
c

k2 (19)

Here e
p

2 P (e), are the edges topologically parallel to e and
e
c

2 C(e) are its consecutive edges. We normalize all vectors by
target edge lengths to optimize for the desired length proportion.
Note that while this regularizer is very useful in stabilizing the
solution and speeding convergence, it is not a substitute to the cone
optimization. Optimizing E

regularize

alone would result in meshes
with inverted elements on most inputs.

3.3 Boundary Surface Preservation

A key requirement in mesh optimization is to preserve the outer
surface of the mesh. The simplest, and most frequently used way to
achieve this is to fix the positions of the surface vertices, e.g. [Ruiz-
Gironés et al. 2014a; Brewer et al. 2003]. Our system supports this
option, when the surface needs to be preserved exactly. However,
such positional constraints are frequently too restrictive, as often

mesh quality can be improved by allowing surface vertices to slide
along the boundary surface, see Figure 1). Moreover, in some
configurations (see the degenerate and near degenerate elements
on the Dragon model, Figure 11) one cannot obtain an inversion-
free mesh without allowing the mesh vertices to deviate from the
surface. Thus we propose a boundary formulation that balances
surface preservation against mesh quality.

To optimize the quality of hexahedra along the surface, we include
in our set of cones the partial cones around each surface edge. As
we aim for surface edges to remain on the surface, in our local step
(Section 3.1.2), we modify Equation 9 for surface edges:

n̂
ij

= argmin

|T (e
ij

)|X

k=1

(n̂
ij

� n
k

)

2
+ �n

ij

· n̆ (20)

where n̆ is the average of the original surface normals at v
i

and v
j

and � = 10. The treatment of boundary edges in the global step is
similar to that of interior edges.

Expressing exact or approximate surface preservation in closed form
(instead of just preserving the current locations) requires an ana-
lytic surface definition, which is rarely available. Thus to constrain
vertices to remain on or close to the surface we use a local surface
approximation. We distinguish between regular surface vertices
v 2 S, feature vertices v 2 F , and corners (vertices at the junction
of multiple features) v 2 C. To preserve the surface we use three
types of per-vertex energy terms, selected by vertex type:

E
boundary

=

X

v2S

�(n̂ · v +

ˆd)2 + (21)

X

v2F

(↵(v � (v̂ + aˆt))2 + a2
) +

X

v2C

↵(v � v̂)2

Here v̂ is the reference, or closest, surface position for each vertex,
<n̂, ˆd> is the implicit equation of the plane passing through v̂ and
orthogonal to the input surface normal n̂ at that point, and ˆt is the
feature tangent at v̂. a is an auxiliary variable added to the system
to enable feature constraints. We use ↵ = 20 as the feature and
corner weight. The boundary term is quadratic, thus augmenting
our combined energy functions with it does not affect the problem
convexity.

3.4 Optional Preprocessing

Our framework uses target, or optimal, edge lengths in a number of
places in the formulation above. In most meshing frameworks, such
targets are typically provided by users and are based on simulation
needs. Absent this high-level knowledge, when the mesh density
is by design non-uniform (e.g. for meshes created with octree-
based methods), the input edge lengths provide the most plausible
estimation of the target edge length. If the mesh density is expected
to be uniform, we can provide a better initial length estimate by
leveraging the existing surface mesh sizing. We note that in general
one expects mesh size changes to be gradual, indicating a preference
for similar lengths on both topologically parallel and consecutive
edges, and that as we seek a uniformly sized mesh, the average edge
length in the current mesh L

A

serves as a good initial approximation
of target interior mesh edge lengths. These observations combined
motivate the following formulation for obtaining target edge lengths
L

e

E
length

=

X

e2S

0

(L
e

� kek)2 +
X

e2E\S0

(L
e

� L
A

)

2

+

X

e

p

2P (e)

(L
e

� L
p

)

2
+

X

e

c

2C(e)

(L
e

� L
c

)

2. (22)



where S0 are the surface edges and kek are original edge lengths.
The resulting edge lengths balance the expectation of uniformity
against the desire to preserve the current surface edge lengths.

Once our solver converges, the resulting set of edge lengths better
reflects the established balance between preservation of the initial
target lengths and the desire for high element quality. As such, these
lengths serve as better targets if one wishes to further improve the
mesh quality. The optimization can be either simply restarted with
these new lengths, or alternatively target lengths can be updated
selectively, reflecting the local mesh element quality, by linearly
interpolating between the target L

e

and current kek edge lengths,

L
e

= (1� w) · L
e

+ wkek (23)

Here w is a Gaussian function of the smallest hex element MSJ q of
any hex connected to the target edge:

w = e�0.5·( q

�

)2 (24)

where � = 0.15. This selective update aims to preserve the original
target lengths in areas where the mesh quality is sufficiently high, so
as to preserve the mesh in these areas as is, while updating them in
areas where the quality is poor.

3.5 Combined Framework

While the derivations above may seem lengthy the resulting for-
mulation and code are surprisingly simple as highlighted by the
pseudocode in Algorithm 1. We begin the optimization by estimat-
ing the ideal mesh edge lengths (Section 3.4). We then iterate the
local and global steps (Section 3.1.2). In the global step we em-
ploy penalty functions to optimize the alignment between the mesh
edges and their target directions. Each penalty step minimizes the
combined energy function

E = E
Qcone

+ E
penalty

+ E
regularize

+ E
boundary

(25)

Since the minimized functional is quadratic, we use a standard linear
solver (GMRES) to compute the minimizer. Once the iterations
converge (i.e. the vertex positions or the energy value no longer
change), one can optionally update the target lengths and repeat the
process.

Algorithm 1 Hex-mesh optimization via cone rectification.
1: procedure OPTIMIZE(hexmesh)
2: Compute target edge lengths, minimizing Eq. 22 (optional)
3: repeat/*Local/Global Solve */
4: Local Step: Compute Target Axis Directions n̂
5: Global Step:
6: Set weights wP

ij

= 1
7: repeat/* Penalty Function Update */
8: Minimize Eq. 25
9: Update weights wP

ij

(Eq. 15)
10: until Positions/energy (Eq. 25) converge w.r.t. previous penalty step
11: until Positions/energy (Eq. 25) converge w.r.t. previous global solve step

3.6 Maximizing Minimal Quality

As described, the framework above is designed to obtain inversion-
free meshes with high average element quality. However, many
simulation setups have minimal, or worst, element quality restric-
tions that go beyond simple convexity [Pébay et al. 2007]. Our
default setup aims for minimal angle between the cone axis and face
normals to be 85� and uses " = cos(85) in Equation 10. To achieve
a higher minimum, we propose a slight variation on our algorithm,
designed to progressively improve the minimal quality.

To this end we introduce two simple changes to Equations 10 and
16. Once all local solution spaces are not empty, i.e. all cone angles

↵
ij

are below 90

�, we replace the default minimal angle threshold "
(Equation 10) with a local threshold whose goal is to further improve
the local cone-quality,

n̂
ij

· n
k

> cos(↵
ij

+ ✏) for all t
k

2 T (e
ij

) (26)

Here ↵
ij

is the worst current angle between the directed edge e
ij

and its corresponding cone base and ✏ = 0.01. This change requires
all target axis directions computed by the local step to be better
aligned with respect to the cone’s base than they are right now.
We keep the previous target direction if and when this requirement
results in an empty solution space. We make no effort to improve
the local cones if ↵

ij

is above the high-quality threshold of 0.5
used in literature [Pébay et al. 2007]. We also compute the current
worst angle across all cones !. If this value is under 90�, we update
the angle based weight in the penalty function (Equation 16) to be
maximized at this worst angle,

W (↵
eij

) = 1 + 10e
�(cos(↵

ij

)�cos(!))

2

2�

2 (27)

We run the method with these updates, recomputing ↵
ij

and ! each
time the process converges. We stop when further improvement is
no longer possible, i.e. ! does not increase or once it reaches a user
specified minimal quality value.

4 Results

We tested our method on a range of input hex meshes generated using
a variety of state-of-the-art algorithms: PolyCube-based [Gregson
et al. 2011; Livesu et al. 2013; Huang et al. 2014] (bust, armadillo,
bunny, dancing children, cap, block, and dragon), singularity-
restricted field [Li et al. 2012] (hanger, impeller), grid-based [Schnei-
ders 1996] (cad6, part29, it-vhs) and octree-based [Marechal 2009]
(asm001, asm106, clef2) approaches. The number of inverted ele-
ments in these meshes varied from none, for the octree-based method,
to several thousand for the grid-based. In all cases our method gen-
erated inversion-free outputs and significantly improved the worst
element quality, with minimal deviation from the original surface
(Table 1, Figure 6). The deviation, measured using [Cignoni et al.
1998], is typically on-par or even smaller than what is reported by
recent hex-meshing methods, e.g. [Gregson et al. 2011; Huang et al.
2014]. We use the input edge lengths as targets for models with
grading (octree-based models and sphere plane), and estimate the
target edge lengths on all other models.

Model # Pre Post avg. time
hexa neg. avg / avg / dist. sec.

el. min min
asm001 25K 0 .83 / .08 .87 / .17 2.0⇥10�4 31
asm106 120K 0 .86 / .02 .91 / .25 8.6⇥10�5 110
clef2 10K 0 .86 / .05 .90 / .34 1.5⇥10�4 3
Bunny 37K 1 .90 / -.01 .97 / .61 4.6⇥10�4 20
Dancing ch. 35K 5 .86 / -.01 .94 / .35 2.2⇥10�4 19
King-Kong 160K 11 .95 / -.76 .97 / .27 4.1⇥10�4 119
Cap 4.5K 50 .74 / -.94 .87 / .11 6.6⇥10�4 91
Bust 5.2K 30 .73 / -.59 .92 / .11 9.0⇥10�4 4
Dragon 14K 84 .82 / -.99 .90 / .10 5.9⇥10�4 250
part29 52K 1.3K .87 / -.88 .93 / .35 2.9⇥10�4 69
it-vhs 72K 3K .78 / -.86 .88 / .35 1.4⇥10�4 85
cad6 73K 1K .86 / -.89 .93 / .29 1.6⇥10�4 58

Table 1: Hex quality statistics for various models processed with
our algorithm. Left to right: Model name, # of hex elements, # of
inverted elements in input, average/minimum MSJ prior to optimiza-
tion, average/minimum MSJ after optimization, average deviation
from input surface measured using Metro [Cignoni et al. 1998], and
run-time of our algorithm in seconds. MSJ optimal value is one.

To show that our method can successfully converge to a good so-
lution from a poor initial guess with unreliable edge lengths we
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Figure 6: Representative optimization results. For each model we show semi-transparent views visualizing the worst quality output elements
and all input elements of same or lower quality. Non-convex elements shown in red. Insets show MSJ histograms using a log scale.The bust
and dancing children models are provided courtesy of IMATI/Frankter Haar by the AIM@SHAPE-VISIONAIR Shape Repository.
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Figure 7: Results on artificially corrupted inputs highlight our method’s robustness. Mesh cross-sections used to better visualize hex shape.

Model # Pre Post avg. time
hexa neg. avg / avg / dist. sec.

el. min min
asm001 25K 24K (96%) -.52 / -.99 .85 / .12 2.7⇥10�4 779
clef2 10K 9K (90%) -.49 / -.99 .90 / .24 1.4⇥10�4 109
Hanger 4.5K 4K ( 89%) -.39 / -.99 .99 / .72 1.0⇥10�4 11
Impeller 11K 9K (82%) -.28 / -.99 .94 / .18 5.5⇥10�5 37
Armadillo 30K 28K (93%) -.53 / -.99 .94 / .13 2.5⇥10�3 102
part29 52K 50K (96%) -.52 / -.99 .93 / .24 3.4⇥10�4 180

Table 2: Statistics for corrupted versions of our input models.

generated a range of ”stress tests” by artificially corrupting the in-
put meshes, via a combination of hex-element rotation and vertex
displacement (Table 2, Figure 7). These corrupted meshes have
up to 90% inverted elements. Our method successfully untangled
these inputs, generating inversion-free, good quality results. We
also tested our method by displacing a random interior vertex and
holding it in place using hard constraints while optimizing the mesh.
In our experiments, we were able to displace an interior vertex by
up to 400% of the average interior edge length and still achieve an
inversion-free result.

Convergence and Runtimes. Figure 10 visualizes the typical con-
vergence behavior of our method. As demonstrated, on regular
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Figure 8: Optimizing inputs from Ruiz-Girones et al. [2014a;
2014b]. We improve both the worst and average element quality,
increasing the lowest element MSJ by at least 0.1.
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Figure 9: Employing the tetrahedral mesh optimizer of [Aigerman
and Lipman 2013]) on the overlapping tetrahedral decomposition
of an input hex mesh fails to produce satisfactory results. With
the surface vertices fixed (left) the method fails to untangle even
simple inputs, (right) with the surface relaxed the output surfaces
may deviate too far from the input. Our method successfully handles
both inputs, minimally deviating from the input.
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Figure 10: Typical convergence behavior on standard (left) and ar-
tificially corrupted (right) inputs. For each we plot both the number
of inverted elements (left) and the energy in Eq. 25 (right). X axis:
iterations. Y axis, left to right: number of inverted elements, log of
energy (normalized); log of inverted element count; log of energy.

inputs the method typically converges in under five iterations, and re-
quires up to 20 or 25 iterations for the corrupted inputs. Our runtimes
(Table 1) (measured on an Intel i7-4770K CPU with 16 gigabytes
of RAM), depend on both the size of the input and the number of
a priori inverted elements. Runtimes range from 2 seconds for the
block (Figure 9), which has 2.5K elements, 30 of them inverted, to
4 minutes for the dragon (Figure 6) which has 14K elements, 84 of
them inverted. For artificially corrupted models, our runtimes range
from 11 seconds for the Hanger, which has 4.5K elements, 4K of
them inverted, to just under 13 minutes for the asm001 which has
25K elements, 24K of which are inverted.

Comparisons. We provide both direct and indirect comparisons to
existing optimization methods. As shown by Table 3 our method con-

Model # Pre Post avg.
hexa neg. avg / avg / dist.

el. min min
EWC3
[Ruiz-Gironés’14a] 11K 4.5K .10 / -.99 .93 / .45 0
[Brewer’03] - - - .94 / -.03 0.02
(ours) - - - .96 / .56 1.3⇥10�5

Gear
[Ruiz-Gironés’14a] 4K 2 .89 / -.47 .89 / .46 0
[Brewer et al. 03] - - - .88 / .37 0
(ours) - - - .91 / .59 7.2⇥10�6

Linking rod
[Ruiz-Gironés’14a] 11K 16 .90 / -.39 .92 / .41 0
[Brewer et al. 03] - - - .92 / .26 0
(ours) - - - .95 / .55 5.1⇥10�6

Sphere plane
[Ruiz-Gironés’14a] 4K 147 .82 / -.66 .90 / .20 0
(ours) - - - .95 / .37 5.4⇥10�6

Half gear
[Ruiz-Gironés’14b] 16K 15K -.52 / -.99 .98 / .70 N/A
(ours) - - - .99 / .91 5.3⇥10�4

Block
[Aigerman’13] - - - .79 / -.98 0
(ours) 2.5K 31 .77 / -.70 .87 / .25 6.5⇥10�5

Block (stress)
[Aigerman’13] 2.5K 2.3K -.51 / -.99 .50 / .07 0.01
(ours) - - - .83 / .25 7.8⇥10�5

Armadillo
[Ruiz-Gironés’14a] 30K 323 .69 / -.76 .80 / -.74 0
[Brewer’03] - - - .91 / -.99 0
[Brewer’03] - - - .79 / -.99 0.02
(ours) - - - .90 / .14 7.2⇥10�4

Table 3: Numerical comparisons with [Ruiz-Gironés et al. 2014a;
Ruiz-Gironés et al. 2014b; Brewer et al. 2003; Aigerman and Lipman
2013]. Our method successfully untangles inputs on which previous
methods fail and improves the lowest element quality significantly
on others.

sistently generates higher quality (both lowest and average) meshes
than the popular Mesquite software [Brewer et al. 2003] based on
the methods of [Knupp 2001; Knupp 2003]. Since Mesquite has two
boundary preservation options - hard constraints, or none - we tested
both settings. With either setting, their method fails to untangle
many input meshes that we succeed on, such as the armadillo in
Figures 1 and 4. We also tested our method on a range of inputs
used in [Ruiz-Gironés et al. 2014b; Ruiz-Gironés et al. 2014a] (Gear,
EWC3, Linking and sphere plane) and, at our request, had the au-
thors of these papers run their methods on inputs we provided. As the
numbers show, our method consistently outperform these methods,
and is able to untangle inputs on which they fail (Figure 4,bottom).
While this is partly attributable to their implementation choice to
keep all surface vertex positions fixed, one can also observe areas
on the input where the method fails to untangle elements despite
the surface mesh being high quality (see the leg of the armadillo in
Figure 4, e).

Most raw hex-meshing outputs contain degenerate surface elements
and surface vertex locations which, if unchanged, prevent interior
improvement (see the chest of the Armadillo in Figure 1). While
methods such as [Ruiz-Gironés et al. 2014b] keep surface vertex
positions fixed, methods that aim to process real data must support
vertex movement while minimizing deviation from the input sur-
face. Our framework provides this trade-off, allowing vertices to
move tangentially, indirectly restricting Hausdorff distance. We
experimented with differerent values for the surface attraction ↵ and
boundary attraction � on the block model, which has a valid surface
mesh and where hex mesh quality improvement is bounded by how
much our method is allowed to deviate from the circular shape of
the cylinder base. With ↵ = � = 100.0, we produce an inversion-
free mesh with MSJ 0.12 and average distance 2.3 ⇥ 10

�5; with
↵ = � = 5000.0, we produce an inversion free mesh with MSJ



0.03 and average distance 2.0⇥ 10

�
5.

We indirectly compare our method to those of Paille et al [2013] and
Marechal [2009], as both frameworks intertwine connectivity and
positional optimization, preventing direct comparisons. While Paille
et al [2013] successfully generate inversion-free high-order meshes,
the finest-level linear meshes they produce may, as demonstrated by
the KingKong model, contain inverted elements. We successfully
untangle this model generating a high quality mesh.

We provide a two-fold comparison to the method of Marechal [2009]
that untangles meshes generated using the octree-based technique
by selectively deviating from the input surface, but, as the author
notes, it generates meshes with very low minimal quality (lowest
MSJ under 0.1, see Table 1). Our method is able to significantly
improve the quality of these meshes (asm001, asm106, clef2) with
only negligible deviation from the input surface. It is also able to
untangle and improve randomized versions of these meshes which
contain numerous inverted elements (Table 2, Figure 7) .

An alternative hex mesh optimization strategy is to treat the mesh as
a union of overlapping tetrahedra positioned at hex element corners,
then attempting to optimize the hex mesh quality using state of
the art frameworks for tetrahedral optimization, e.g. [Aigerman
and Lipman 2013]. This paper provides two frameworks - one for
direct tet mesh quality optimization and one for optimization of
a mapping between two tet mesh domains; and has two sets of
boundary conditions - keeping all surface vertices fixed or allowing
them to deviate freely. The direct framework fails to correct inverted
elements on all the inputs we tested. The mapping-based framework
can only be used if an inversion-free mesh with the same connectivity
is available, which is the case for PolyCube based hex-meshes, but
not for other inputs. As demonstrated in (Figure 9, top) with all
boundary vertices fixed, the method fails to untangle even simple
inputs. For this simple example, we use the parameter K = 10 as
their paper suggests. With the boundary free to move the method is
able to untangle the inputs we tried, but often drastically deviates
from the input surface (Figure 9, bottom), making it unsuitable for
simulation needs. Our method closely preserves vertex positions
while untangling the meshes in both examples.

Design Alternatives. We validate our key design choices in a
number of ways. We experimented with removing the regularization
energy E

regularize

from our global minimization step, and found
that 22% of our meshes failed to converge to valid solutions. Simi-
larly, we attempted to use only the regularization energy E

regularize

for our global minimization step - effectively removing our tetrahe-
dral cone alignment, and only relying on parallel and consecutive
edge alignment to attempt to improve mesh quality. When we did
this, 66% of regular input meshes and all the corrupted ones failed
to converge to valid solutions. To highlight the necessity of our
relaxed iterative optimization framework, we note that two thirds
of our regular meshes tested, and all corrupted meshes tested, expe-
rienced at least one failure to find a valid target edge direction n̂

ij

(Equation 9) before successfully improving; these meshes would fail
to converge to a valid solution using the strict global formulation of
Section 3.1.1.

Limitations. Our local/global framework offers no theoretical
guarantee that it will return an inversion free solution: despite recent
progress [Erickson 2014], the question of whether or not a given hex
mesh connectivity has an inversion free embedding remains open,
and multiple initial mesh configurations exist for which no inversion
free solution is possible when boundary vertices are fixed (Figure
11). In our experiments, however, we are able to generate inversion
free outputs even from heavily corrupted inputs, if and when the
boundary preservation constraints were sufficiently relaxed. In prac-
tice, our method can fail on models with extreme grading, as massive
differences (a factor of 32 or more) between the current and target
edge lengths can cause ill-conditioned matrices. We can also fail

when presented with unreasonable target edge lengths, for instance
when randomly and dramatically displacing all interior vertices by
over 400% of the average interior edge length, and then using the
distorted lengths as optimization targets.

MSJ < 0 MSJ > 0

Figure 11: The initial dragon mesh contains hexahedra with three
surface faces. In the zoomed-in mesh configuration no inversion-free
solution is possible without slightly relaxing the boundary vertices.

5 Conclusions

We have presented a novel method for improving the quality of
hexahedral meshes. Our entire framework is compactly described
by the 11 lines of pseudo-code in Algorithm 1. We demonstrate
a significant improvement on the state-of-the-art in terms of both
worst and average hex element quality, and untangle poor quality
meshes on which previous approaches fail.

Our approach was inspired by local-global optimization schemes
(such as [Aigerman and Lipman 2013] and [Sorkine and Alexa
2007]) that repeatedly optimize local cells, then combine local solu-
tions into a global one. In selecting cell resolution one must allow
enough degrees of freedom to avoid overconstrained local solutions,
yet take adjacent geometry into account for local solutions to be
as compatible as possible in the global stage. For hex meshes, our
edge-cone cell decomposition provides this balance, and has a clear
easily computed local optimum (axis maximally orthogonal to base).
The alternative of using the eight corner tets, or entire hexes, leads to
incompatible local solutions; while optimizing individual vertex po-
sitions requires complex Newton-type optimization and often leads
to overconstrained situations. Intuitively, we see hex-mesh cones
as the counterpart of the overlapping umbrella cells on surfaces in
ARAP deformation. By recasting the problem of hex mesh quality
improvement as an optimization problem on the cone of tetrahedra
surrounding every directed edge of the hex mesh, we are able to
convert a complex constrained non-linear optimization problem into
a series of tractable, simple, convex optimizations. Our choice, vali-
dated by our extensive reported results, is the core innovation of our
paper. We hope the theory behind it will interest future researchers.

Future Work. Practical improvements we would like to investigate
include optimization speedup, through the use parallel or multi-
grid solvers, and increased numerical stability in the presence of
heavily graded meshes. Our work also motivates several interesting
theoretical questions: our convergence rate as well as the robustness
of the alternative methods we tested appear to be directly linked to
the initial surface mesh configuration and the degree of input mesh
regularity, raising the question of how to quantify ”easy” or ”hard”
to optimize initial meshes.
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