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ABSTRACT
Different poses of 3D models are very often given in different positions and orientations in space. Since most of
the computer graphics algorithms do not satisfy geometric invariance, it is very important to bring shapes into
a canonical coordinate frame before any processing. In this paper we consider the problem of finding the best
alignment between two or more different poses of the same object represented by triangle meshes sharing the same
connectivity. Firstly, we developed a method to select a region of interest (ROI) which has a perfect alignment over
the two poses (up to a rigid movement). Secondary, we solved a simplified version of the Largest Common Point-set
(LCP) problem with a-priori knowledge about point correspondence, in order to align the ROIs. We eventually align
the poses performing least square rigid registration. Our method makes no assumption about the starting positions
of the objects and can also be used with more than two poses at once. It is fast, non-iterative, easy to reproduce and
brings the poses into the best alignment whatever the initial positions are.
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1 INTRODUCTION
Objects are often given in arbitrary position, orientation
and scale in space. Registration is the process of finding
the geometric transformation which brings different sets
of data into a congruent coordinate system.

Registration find its application in several fields, like
medicine, where data acquired with different modalities
(CT, MRI) have to be aligned for joint analysis [31]
[33] [20]; image mosaicking [24], where more images
have to merged seamlessly to produce a single, wider,
image; creation of super-resolution images [9], where
many different images of the same scene contribute to
compose a super-resolution representation; computer
vision [23], visualization [8], segmentation [10], object
recognition, shape matching and retrieval [12], and so
on.

In this work we focus our attention on a particular as-
pect of registration: our goal consists in finding the
best alignment between two triangle meshes having the
same connectivity and representing the same object in
different poses. This is quite important for algorithms
that deal with multiple poses, because usually they need
them to be aligned. For example, in [25] Marras and
colleagues considered a set of poses of the same object
as seen from different points of view, in order to find the
rigid parts of it and calculate its motion based segmen-
tation. As all the computations rely on the silhouettes

Figure 1: An example of pose registration of two differ-
ent armadillos, achieved using our method. In the inset
the ROI used for registering.

the alignment of the shapes is fundamental to properly
catch the parts involved in the movement and discard
the static ones. This is exactly the kind of algorithm we
are targeting: it uses multiple poses, it assumes that the



connectivity is invariant over them and it requires them
to be aligned.

Registration is also a fundamental building block of
many shape interpolation techniques. One can think for
example, given two poses, at the problem of generating
the complete sequence which describes the movement
bringing from one pose to the other [32]; or, given a set
of simple poses, at the problem of summarizing them
into a more articulated one [32]. Depending on the algo-
rithms used, for all these settings, a pre-alignment could
be either mandatory or suggested. Once again, it is quite
common in this scenario to have the same connectivity
among the models, because probably they have been
generated by the same reference triangle mesh.

The main question to answer to is: when are two poses
well aligned? Intuitively a good alignment scheme
should take into account only the parts of the object
which are not involved in the movement suggested by the
considered poses; leaving aside all the parts for which,
because of the change of pose, a perfect alignment does
not exist any longer. This is definitely true, but not suf-
ficient. Think for example at the horses in Figure 2:
there are more patches along the surface which remain
unchanged over the two poses. Moreover, it is clear
from that image, that such patches are likely to ask for a
different rigid registration scheme each other.

How can we handle this? One additional consideration
must be done. Our final idea about pose registration is
the following: a good rigid pose registration scheme
should take into account, among all the patches which
are common in the considered poses, only the patch
covering the largest area.

Indeed, there are a lot of good registration algorithms
in literature, but none of them is designed to face this
particular problem in which we need to align only a sub-
set of primitives and point correspondences are known a
priori. Global methods, like the ICP algorithms provided
by Besl and McCay in [11] and by Chen and Medioni
in [13] are not suitable to accomplish this task; first of
all because they are global, that is, they use all the avail-
able data to estimate the alignment scheme; secondary,
because ICP algorithms always converges monotoni-
cally to the nearest local minimum of a mean square
distance metric. This means that a coarse pre-alignment
is mandatory to avoid to fall in the wrong local minima.

In recent years many other registration algorithms have
been proposed to the scientific community. In [4]
Aiger and colleagues proposed a randomized alignment
scheme which is based on approximately coplanar 4-
points sets. Their algorithm is fast and resilient to noise.
However, we made some tests with the implementation
provided in [2], and we found that the results were not
satisfactory. The motivation is that such algorithm has

been designed to align range maps, which usually does
not have a priori correspondences and also require a high
percentage of overlapping, say more than 40%. Since
poses could be strongly different each other, we need
algorithms able to perform well, even in presence of
lower overlapping percentages.

Other algorithms are based on global quantities, such
as Principal Component Analysis or centroids (see for
example the method proposed by Chaouch and Verroust-
Blondet in [12]). They are not suitable too. The reason
is that a global descriptor computed over a shape bears
an arbitrary relationship to the value that would be com-
puted for a different pose of the same shape. It follows
that is impossible to align poses employing this kind of
techniques.

1.1 Main contribution
Our main contribution to solving the problem of rigid
pose registration is that we provide a simple method to
localize the greatest surface patch which preserve its
appearance over the poses. Such method is based on
the discrete Gaussian curvature, which is one of the most
familiar of all local shape descriptors (to have another
example of application of the Gaussian curvature one
can refer to [19]). The pose registration is eventually
achieved by applying a state of the art least square rigid
registration algorithm.

The rest of the paper is organized as follows: in Section 2
we briefly recap the mathematical notions over which we
built our work. In Section 3 we summarize our proposal.
In Sections 4 and 5 we discuss all the technical details
of the core of our algorithm. In Section 6 we analyze
three different approaches to multiple pose registration.
In Section 7 we present and discuss the results we have
obtained. In Section 8 we discuss on the limitations
our method have, and, finally, in Section 9 we draw the
conclusions.

2 MATHEMATICAL BACKGROUND
In this section we summarize the basic notions useful to
better understand our approach. After a brief introduc-
tion to the differential geometry of surfaces, focusing in
particular on discrete Gaussian curvature, we introduce
the Largest Common Point-set (LCP) problem along
with its most popular metrics.

2.1 Curvature in Differential Geometry
Let S be a C ∞ surface embedded in R3: curvatures de-
scribe the local bending of the surface. For every point
s ∈ S the two principal curvatures k1 and k2 are respec-
tively the maximum and the minimum normal curva-
tures, measured in their orthogonal principal directions
e1 and e2. The mean curvature can then be defined as



(a) k̂G deviation (b) low-pass filtering (c) Candidate ROIs (d) Selected ROI

Figure 2: Region of interest selection. From left to right: Gaussian curvature displacements between the considered
poses; Gaussian curvature displacements after the cutting-off of the 20% most affected vertices; all the candidate
ROIs and, finally, the ROI selected to align the poses.

kH = (k1 + k2)/2. The Gaussian curvature kG, instead,
is defined as the product of the two principle curvatures
kG = k1 · k2. Mean and Gaussian curvatures are among
the most important local properties of a surface [16]
[34].

Moving from C ∞ surfaces to meshes (which one can
view as C 0 surfaces) the definitions provided above need
to be reformulated. In discrete differential geometry the
geometric properties of the surface at each vertex are
considered as spatial averages around this vertex. Such
average is usually restricted to the triangles incident to
the vertex itself, which is often referred as the 1-ring or
star neighborhood.

Meyer and colleagues [26] provide a discretization of
the Gaussian curvature formula; the derived pointwise
discrete Gaussian curvature operator is

κ̂G (xi) =
1
A

(
2π−

# f

∑
j=1

φ j

)

where φ j is the angle of the j-th face at the vertex xi,
and # f denotes the number of faces around this vertex.

As we previously said, the curvature over a mesh vertex
is calculated as the spatial average around the vertex
itself. The definition of area we use is known as Voronoi
area and, for a vertex xi, is defined in function of its
neighbors x j as

AVoronoi =
1
8 ∑

j∈N(xi)

(cotα i j + cotβ i j)‖xi−xj ‖ ,

where α i j and β i j are the angles measured in the op-
posite corners with respect to the edge joining xi and
xj. This area proved to be sufficient in all our exper-
iments. However, our approach does not depend on
the particular choice of A . Mixed area, for instance,
would accomodate obtuse triangles and its application is
straightforward [26].

2.2 The LCP problem
The problem of finding the largest set of points which is
congruent to a subset of each input data is well known
in literature under the name of Largest Common Point-
set problem (LCP) [6] [7]. It has been studied both
from the theoretical and practical points of view and it
is widely used in different fields like computational biol-
ogy and chemistry (there is a frequent need to extract a
common pattern from multiple data), and surface recon-
struction from 3D scans (different range maps partially
overlapped have to be aligned before extracting the final
surface [4]).

Given two point sets A and B, the LCP between A and
B is the maximal subset A′ ⊆ A which is geometrically
congruent to some subset B′ of B. This implies that
two subsets are said to match only when the underlying
geometric transformation takes each point of A′ exactly
onto one point of B′. This statement is also known as
largest common point set problem with exact matching
metric [22] [27] [5].

In real applications, congruence between subsets is a
restriction too tight, a similarity metric (ε-congruence)
is used instead. Two common metrics for quantifying
the notion of similarity are the Hausdorff distance [14]
[15] [21], and the bottleneck matching metric [17].

The former is defined as the maximum distance between
a point in one set and its nearest neighbor in the other
set; the latter seeks a perfect bipartite matching between
two equal cardinality point sets such that the maximum
distance between any two matched points is minimized.

It is worth noticing that most of the problems we want to
solve with the LCP scheme, especially those involving
three and higher dimensional point sets, demand a one-
to-one matching between two point sets, making the
Hausdorff metric ill-posed. This motivates the study of
the problem using the bottleneck matching metric.

3 OVERVIEW
Our method can align pairs of meshes representing dif-
ferent poses of the same object. This implies that the



Figure 3: From left to right: mesh registration between two horses, two lions, two camels and two elephants. In the
bottom row there are the meshes in the original position and orientation, before registration.

cardinality of the vertices vector is the same, and the
two meshes share an identical connectivity.

Let M = (V,K) and M ′= (V ′,K) be the meshes we
want to align, where K describes the connectivity
and V = {v1, ...,vn} and V ′= {v′1, ...,v′n} describe the
geometric positions of the vertices in R3. In our
approach we take advantage of the particular nature
of the problem, setting up a simplified version of
the largest common point set problem (LCP) with
bottleneck matching metric and a priori knowledge
about point correspondences between the vertices of
the two shapes. In this simplified framework, once
defined the areas we want to overlap, we only have
to solve for the isometry which performs such alignment.

We can summarize the algorithm in four steps:

1. Calculation of the Gaussian curvature for each vertex
of M and M ′;

2. Selection of the subset of vertices we want to overlap
among those having similar Gaussian curvature in
both poses (see Section 4);

3. Estimation of the rigid movement which makes M
and M ′ ε-congruent (see Section 5);

4. Pose registration achievement by applying the geo-
metric transformation obtained at the previous step.

4 REGION OF INTEREST (ROI)
Let VkG ⊆V be the subset of vertices of M having simi-
lar Gaussian curvature in both meshes, up to a tolerance
threshold ε

VkG =
{

vi ∈V
∣∣∣ | κ̂G (vi)− κ̂G

(
v′i
)
|≤ ε , v′i ∈V ′

}
.

The distribution of the points in VkG ⊆V among the sur-
face identifies which parts of the surface have common
behaviour in both poses. Starting from this points we

perform region growing in order to define a set of can-
didate regions of interest for the alignment. Let vi be
a vertex in a candidate ROI and let N(i) be the set of
vertices sharing an edge with it (i.e., its one ring). If the
average Gaussian curvature deviation

∆κG (vi) =
∑ j∈N(i) | κ̂G(v j)− κ̂G(v′j) |

#N(i)

is lower than a predefined threshold σ , the candidate
ROI expands over N(i). We repeated this process itera-
tively starting from each seed point until convergence.
In Figure 2c the candidate ROIs for two poses of the
horse model.

The ROI selection depends on the threshold σ . As
one can note from Figure 2a, curvature deviation is ill-
distributed over the surface: few vertices have a huge
displacement, thus flattening the rest of the distribution.
In this scenario the automatic research of a good σ value
can be very difficult. We observed that vertices with high
curvature deviation are located in the areas involved in
the change of pose and, thus, they are meaningless for
the registration problem. We therefore decided to restrict
the research to a subset of vertices with small curvature
deviation. Let L D be the indexes of the vertices less
affected by curvature deviation (80% of the total number
of vertices); we eventually compute the σ value as

σ = 0.2 argmax
i∈L D

∣∣ κ̂G(vi)− κ̂G(v′i)
∣∣ .

Cutting-off of the vertices with greater deviation makes
the error distribution easier to be treated algorithmically
(see Figure 2b). All the results shown in this paper
have been achieved using the automatic σ calculation
described above.

We have now a problem with selecting the best ROI to
guide the whole registration process. Our idea is to con-
sider only the widest patch, thus we have to estimate the
area of each of them. The discrete Gaussian curvature
measured in a vertex of a mesh is the average of the
Gaussian curvatures computed in the area A around it



(see section 2). This area becomes now twice important:
first because it is involved in the discrete κ̂G formula;
second because also gives the possibility to measure the
global area of each candidate ROI as the sum of the
areas associated to each vertex in it. This is quite im-
portant because makes the measure of the patch’s size
independent from the underlying triangulation we are
dealing with.

5 ALIGNMENT
Given a region of interest P = {p1, . . . ,pn} in the first
pose, we want to find the rigid movement that optimally
aligns P and its dual in the second pose P ′. The trans-
formation T : P →P ′ we are looking for has the form

T =

(
R t
0T 1

)
,

where R ∈ R3×3 is a pure rotation matrix (i.e. RT R = I)
and t ∈ R3 is a translation. If P and P ′ were strictly
congruent, we would have ‖p′i−T (pi)‖= 0, i= 1, . . . ,n.
Unfortunately, congruence is very unlikely to happen;
in the common scenario a perfect alignment does not
exists, therefore we should find the best approximating
rotation and translation that fit P and P ′ in the least
square sense, i.e. minimizes

(
R̃, t̃
)
= argmin

R,t

n

∑
i=1
‖(R pi + t)−p′i ‖2 . (1)

This is a very well known problem in literature and there
are several existing algorithms to solve it. A compari-
son between four of them can be found in [18] while a
weighted instance of the problem has been studied by
Sorkine and Alexa in [29].

The best translation can be found by taking the deriva-
tive of (1) w.r.t. t and searching for its roots. One can
eventually find that

t̃ = p′−R p ,

with

p =
1
n

n

∑
i=1

pi p′ =
1
n

n

∑
i=1

p′i .

In other words the optimal translation t̃ maps the trans-
formed centroid of P in the centroid of its dual P ′. To
find the best rotation we can now consider the centered
vectors

xi = pi−pi yi = p′i−p′i

i = 1, . . . ,n, and the Singular Value Decomposition
(SVD) of their 3× 3 covariance matrix XY T (X and

Y are two 3× n matrices containing all the centered
vectors ordered by column)

XY T =UΣV T

The rotation we are looking for is

R =V

 1
1

det(VUT )

UT .

The last term in the diagonal matrix is setted to
det
(
VUT

)
instead of 1 in order to avoid reflections.

A formal and clear demonstration of the whole
minimization process can be found in [28].

6 REGISTRATION OF MULTIPLE
POSES

Our method can be also used to align more than two
poses at once. Given a set of poses M1, . . . ,Mn, three
different strategies are possible:

1. if we need to select a reference pose Mref, it can be
used to align all the other poses;

2. if there is a time-sequence leading to changes in the
poses, they can be registered in chain, that is, M1 vs
M2, M2 vs M3, . . . ,Mn−1 vs Mn;

3. if no reference pose and time-sequence exists, the
poses can be registered all together.

What is the best multi-registration schema? Actually,
each strategy has pros and cons: the best choice depends
on the applications. To summarize multiple simple poses
into an articulated one, the first scheme is likely to be
the best one. To add frames at a discrete sequence of
poses describing a movement, the second scheme would
be better.

7 RESULTS AND DISCUSSION
We implemented our methods in C++, using the VCG
Library [3] for the manipulation of geometric data struc-
tures, and the Eigen library [1] for the numerical com-
putations. Experiments were run on a iMac equipped
with 2.66GHz Intel Core 2 Duo and 4GB RAM, using
a single core. We used as dataset the shapes provided
by Sumner and Popović in their deformation transfer
for triangle meshes’s web page [30]. For each shape we
considered many different poses: from a minimum of
8 poses (horse), to a maximum of 47 poses (elephant
gallop).

Our tests have been organized as follows: for each cou-
ple of poses we run our algorithm three times, each time
applying a random rigid movement to the shapes, in



Figure 4: Some examples of registration achieved with our algorithm. In yellow, the subsets of mesh vertices used
to align the poses.

order to put them in general position. We had been able
to find a good alignment in every test we made (see Fig-
ures 3 and 4). In particular, for each couple of poses, we
always get the same numerical results, emphasizing the
robustness of our shape descriptor (i.e. discrete Gaus-
sian curvature displacements) with respect to isometries.
In Table 1 we report timings for each registration shown
in this paper. One can note that, since the most time
consuming task is the registration step, the complexity
of the whole algorithm depends on the size of the ROI
rather than the complexity of the mesh (i.e. the number
of vertices).

7.1 Multiple poses
For our experiments, we used the horse gallop sequence
dataset. Both reference pose and time sequence are
available for it, so we had been able to test each possible
strategy.

Theoretically, the third method presented in Section 6 is
more computationally expensive than the first two: it it
intrinsically quadratic, while the others are linear. But,
what we actually do in the third method, is the registra-
tion of all the poses versus a reference one using a ROI
computed on all the meshes. This leads to timing that
are comparable each other. As we can see in Table 2, all
the methods require the same time for the computation
of the curvature and alignment and the last one (all vs
all), is definitely the fastest for ROI computation (due to
the smaller number of vertices in the ROI). An example
of multiple registration is given in Figure 5.

We studied the quality of the registration schemas, mea-
suring the Mean Square Error (MSE) metric over the
vertices of the ROI:

MSE(Ma,Mb) =
∑i∈ROIab

∥∥∥v(a)i − v(b)j

∥∥∥2

2
#ROIab

.

We computed MSE errors over each possible couple of
poses, in order to have a reference ROI and a reference
error measure. We, then, tested each multi-registration

strategy, and measured the registration errors over the,
previously determined, reference ROI.

For each pair of horse meshes that we tested, MSE error
was very close to zero (Figure 6a), emphasizing the
registration capabilities of the method. Multiple pose
registration over a reference pose behaves well, however
some error peaks between two particular non-reference
poses can occur, for example between the third and the
eighth horses (Figure 6b). Chain registration suffers the
same problem: error is low for most of the poses but
there are peaks between first and last poses of the chain
(Figure 6c). Finally, as one could expect, we found
that the best error distribution over the poses have been
achieved considering all the poses together (Figure 6d).

8 LIMITATIONS
The proposed algorithm performs well with all the
shapes we tested on. It has, however, some limitations,
in the sense that there are no guarantees that the regis-
tration provided will be good for an end user, in other
words, the one the user expected. In particular, if the
model contains more parts that move rigidly and cover
more or less the same area the choice between these
parts as candidate ROI will be unstable. Moreover, in
case the selected ROI lies in a peripheral area of the
shape (e.g., a foot, a head or a hand) the result could
be unnatural. The definition of natural registration is

Figure 5: Multiple registrations of eight poses of the
Horse mesh.



Model Vertices ROI Curvature ROI Alignment Total
(ms) (ms) (ms) (ms)

Armadillos 165,954 3,541 307 126 6 439

Elephants 42,321 19,339 189 98 28 315

Flamingos 26,907 1,092 120 44 10 174

Camels 21,887 376 72 34 25 131

Horses 8,431 2,491 35 27 11 73

Cats 1 7,207 965 32 23 4 59

Cats 2 7,207 544 32 22 2 56

Lions 5,000 1,751 24 15 8 47

Cactus 5,261 410 22 2 3 27

Table 1: Running times of our algorithm, in milliseconds. In the rightmost column there is the total time needed to
align the poses while in the previous three columns there are the timings needed, respectively, for Gaussian curvature
calculation (Curvature), Region Of Interest determination (ROI), and the least square registration calculation
(Alignment). Second and third columns show, for each pair of poses, respectively the number of mesh Vertices
(Vertices) and the cardinality of the Region Of Interest (ROI) we used to align.
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Figure 6: Mean Square Error plots for multiple pose registration. From left to right, up to down: reference MSE
error measured between each possible pair of the sequence (a); MSE error obtained aligning all the poses in the
sequence against a reference pose (b); MSE error obtained aligning all the poses in chain (c); and MSE error
obtained comparing all the poses together (d).



somehow related to the human perception, it is the kind
of registration that a human can imagine when looks at
two different poses of the same object. We have tried
to set up a mathematical model which works like a hu-
man should work in the general case but, unfortunately,
natural registrations are as easy to do for humans as
incredibly difficult for machines, because is a matter of
shape understanding and matching.

One second limitation regards noise. The algorithm is
noise insensitive as long as all the models involved in
the computations are affected by the same kind and the
same amount of noise. In any other case, the Gaussian
curvature values would be totally unreliable, leading to
wrong registrations. However, this is usually not a big
deal: in shape interpolation and modelling one tends to
use almost the same meshes, deformed and readapted to
the new pose, thus bearing the same amount of noise.

9 CONCLUSIONS
Pose registration is the process of finding the best possi-
ble alignment among different meshes representing the
same shape in different positions. Since poses can be
strongly different each other the best alignment method
should be able to work only with local patches of the
surface, that is the regions of the shape having the same
properties (mainly curvature) in the given poses.

In this paper we presented a new, non-iterative, pose
registration scheme, which employs Gaussian curvature
as local shape invariant and we show that the proposed
method can be fast, robust and accurate in the most
relevant cases of pose registration: interpolation among
different poses and modelling.
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