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Abstract Curve-skeletons are compact and semanti-

cally relevant shape descriptors, able to summarize both

topology and pose of a wide range of digital objects.

Most of the state-of-the-art algorithms for their com-

putation rely on the type of geometric primitives used

and sampling frequency. In this paper we introduce a

formally sound and intuitive definition of curve-skeleton,

then we propose a novel method for skeleton extraction

that rely on the visual appearance of the shapes. To

achieve this result we inspect the properties of occluding

contours, showing how information about the symme-

try axes of a 3D shape can be inferred by a small set

of its planar projections. The proposed method is fast,

insensitive to noise, capable of working with different

shape representations, resolution insensitive and easy

to implement.

Keywords curve-skeleton · perceptual shape analysis

1 Introduction

Digital objects are flooding our environments: whether

they are reproductions of real existing objects or pro-

duced by artists and designers they are more and more

complexes bearing fine details. Skeletons and subdivi-

sions in parts (segmentations) are compact and seman-

tically sound approximations of the digital objects very
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useful in several different fields like, to name a few, com-

puter animation, medical imaging, mechanical design,

and shape archival, matching and retrieval. Focusing

on skeletons of three-dimensional objects we can dis-

tinguish between surface-skeletons and curve-skeletons,

where the former want to adhere more directly to defi-

nition of collecting all the equidistant points from the

boundaries of the shape, while the latter are collections

of curves and, thus, are, by definition, more compact

and simple to manipulate than the firsts. Especially

when dealing with the animation of digital characters,

the curve-skeleton is an extremely important feature

since it is the best guidance for changing the pose of the

character and performing interpolations among poses.

Digital machineries (e.g. range scanners) are very

good at capturing, even in the finer details, the sur-

face of a shape, while human sight and perception are

enormously more efficient in capturing the essential of

a shape: how many significant parts compose it, where

are the joints, and so on. In other words, a good way to

compute the curve-skeleton of a digital object is to try

to mimic what the human mind does when looking at

an object. This assumption is the basis of our approach

as described in the rest of the paper.

2 Related work

Previous methods for curve-skeleton extraction can be

sorted depending on the shape representation used as

input. There are algorithms that are able to work on

triangle meshes (e.g.: [8] [3] [27] [11] [28]) which is the

usual representation found in computer animation, oth-

ers well suited to process point clouds (e.g.: [7] [29])
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Fig. 1 Some result achieved with our method. The algorithm is able to perform with shapes of any genus, and with multiple
connected components. The topology of the shape is preserved as long as the occluding contours used to extract the skeletons
carry enough informations to observe it.

which range scanners produce as output with no further
post-processing, and others with discrete volumes (e.g.:

[17] [31] [10] [12]) since this is the format of acquisition

for machinery like CAT and MRI. Most of these algo-

rithms are able to perform well only when the model

resolution is fine enough, leading to unstable results

when they are applied to coarse models. As skeletons

are supposed to be high-level descriptors, the difference

between the descriptors computed starting from high

and low resolution models should be negligible. These

are the biggest drawbacks of the state-of-the-art skeleton

extraction algorithms: they are too tightly coupled with

geometric primitives and sampling frequency. They are

working more on the machine side, focusing on primi-

tives and resolution, than on the human side, focusing

on appearance.

2.1 Main contribution

We give a formal definition of curve-skeleton of digital

objects built as unions of Generalized Cones. We ex-

tend the contour interpretation to partially occluded

silhouettes, providing a definition of locally unique sym-

metry point and moving the early visual perception

theory from the global to the local setting. We formu-

late an algorithm to extract curve-skeletons from a set
of occluding contours.

3 Theoretical background

Shape analysis and recognition problems can be ap-

proached from another point of view, focusing more on
appearance and less on primitives. We largely based

our work on the perception based approach developed

during the 1970s. People from M.I.T. Artificial Intelli-

gence Laboratory, in particular David Marr, developed

the theory of early visual perception, a study of how the

human brain behave while looking to an image contain-

ing the projection of a real object. We briefly recall the

background of this theory with our contributions before

entering in the details of our proposed algorithm for

skeleton extraction.

3.1 The generalized cones theory

According to the early perception theory, in [20] Marr

and Nishihara stated that only the shapes belonging to

the class of generalized cones can be fruitfully analysed.

A generalized cone is the surface swept out by moving
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a cross-section of constant shape but smoothly varying

size along an axis [4], or more formally

Definition 1 (Generalized cone) Let ρ(r, θ) be a

simple closed planar curve twice continuously differen-

tiable, and let h be a twice continuously differentiable

positive real function. Let Λ be a line at some angle ψ

to the plane containing ρ, and denote positions along
Λ with z. Then, the surface GC = h× ρ is a generalized

cone with axis Λ, cross-section ρ, scaling function h,

and eccentricity ψ.

There are strong links be-

tween generalized cones and curve-

skeletons. First of all, only objects

that can be described in terms of gen-
eralized cones can be well described

by curve-skeletons. It is really dif-

ficult, for instance, to imagine the

skeleton of a mug, a door, or a crum-
pled newspaper because the natural

axis of these shapes are either too

weak to describe them or external to

the shape. In [9] Cornea et al suggested that the skeleton

of a shape having a cavity should contain at least one

loop around it but this would completely break down

the topological connection between an object and its

skeleton. To describe shapes containing tunnels or deep

cavities non mono-dimensional shape descriptors like

[21] or [22] would be more suitable.

We can express the relation between the generalized

cones primitives and curve-skeletons formalizing their

descriptions. Given a real object O

O =

n⋃
i=1

GCi(Λi, ρi, hi, ψi) ,

composed by n generalized cones, according with the

ideas expressed in [20] we define the skeleton of O as

the union of the axes of each generalized cone, that is

Skel (O) =

n⋃
i=1

Λi .

Sticking to this definition of skeleton, in the remain-

der of the paper we will introduce a new algorithm for

curve-skeleton extraction that makes use of the tools

provided by the early visual perception framework to

catch the axes of the generalized cones composing a

shape.

In [19] Marr formally proved that, under few hypoth-

esis, the axes Λi of an object O may be found just by

analysing one its occluding contour (see [30]). A similar

result, for a narrower set of shapes, have been achieved

some years later by Rao and Medioni. In [24] they proved

Fig. 2 Two raw point clouds produced by our method (left)
and [18] (right) for the Olivier hand model. The same set of
occluding contours has been used to make the comparison.
Back-projecting only occlusion free locally unique symmetry
points we can fully get rid of the noise, without any cleaning
or post-processing. Moreover, working in the continuous the
skeleton paths suggested by the cloud are naturally smooth
and appealing.

that the contour of a solid of revolution is symmetric

about the projection of its axis for any view. These re-

sults can be therefore used to find the component axes

of 3D objects without any a priori knowledge about

their shapes.

The main drawbacks of the perceptual approach arise

in the analysis of axes which are either foreshortened or
hidden behind another part of the shape (i.e. occluded).

To overcome the foreshortening problem we decided to

feed our algorithm with a set of silhouettes gathered

from different points of view, making sure that every

single axis is not foreshortened in at least one of them.

To handle occlusions we moved Marr theory from the

global to the local setting, so that we have been able to

get as much information as possible from every single

contour, either containing occlusions or not. The multi-

view approach is also justified by the fact that shapes

belonging to the class of unions of generalized cones

can have complex topology or pose. For these shapes a

view point that ensures that all the components are not

occluded or foreshortened sometimes does not exists at

all.

In literature there are several examples of centreline

extraction from multiple views, especially in the Com-

puter Vision field. Bullitt et al [6] used stereo views to

extract centerlines from medical datasets. Yoon et al [32]

employed a set of real cameras to catch many different

silhouettes of a human, gather them together to com-

pose a discrete volume, and then apply a curve-skeleton

extraction algorithm based on Gradient Vector Flow.

However, the theory of occluding contours has not ever

been taken into account until recently. In a previous

work [18] we assumed that the medial axis of a set of

silhouettes of a 3D model were projections of the curve-

skeleton of the shape. Then, we gathered the medial axis

points in the discrete 3D space in order to reconstruct
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Fig. 3 A comparison between Medial Axis Transform (left)
and Smoothed Local Symmetry (right). SLS is more powerful
as it is able to capture all the symmetries of the figured shapes.
Symmetry points are locally unique when their contact lines
with the boundary do not intersect each other at any other
symmetry point (close-up): red, blue and violet symmetry
points are not unique, as their segments intersect each other,
while the green point is locally unique.

the skeleton with an ad hoc heuristic. Even though our

assumption did not stand for every medial axis point of

each silhouette, we have been able to achieve good re-

sults for a wide class of shapes of different topology and

genus. Unfortunately, the drawbacks of our approach

became evident when the amount of occlusions was high.

In these cases the medial axis projected in the 3D space

will bring a high amount of noise, making the skeleton

extraction difficult and unstable. Nothing can be done

to distinguish between noise and skeleton points because

they both project into every single considered contour.

Moreover, our method did not guarantee the skeleton

paths to be centered because a discrete grid was used

during the extraction and the smoothness was achieved

only in post processing, thus deviating the curves from

the medial lines of the shape. The method proposed in

this paper is able to perform better with any kind of

shape, producing incredibly noise free point clouds (see

Figure 2) from which medial and naturally smooth skele-

ton curves can be easily computed, without requiring

any further post-processing.

The advantages of the perceptual approach are sev-

eral. Firstly, it is usually faster than the state of the art

counterparts; secondly, it is completely unrelated with

the geometric primitives used to describe the shape so

that it is possible to extract coherent skeletons from any

kind of representation (e.g. polygon meshes, implicit

surfaces, parametric surfaces). Moreover, as long as the

appearance of the object is preserved, resolution and

noise has a negligible impact on the final result.

Most natural and artificial objects are unions of

smooth elongated parts, and can, thus, be described as

unions of generalized cone primitives.

3.2 Inspecting symmetries

The symmetry set of a domain Ω ∈ R2 is the set of

the centres of circles tangent to the boundary ∂Ω at at

least two distinct points. We here describe the Smoothed

Local Symmetry, a local shape descriptor introduced in

[5].

Let a, b be two points

on the boundary ∂Ω,

and u the unit vector in

the direction ab. By def-

inition, the midpoint of

the segment ab belongs

to SLS(Ω) if and only if

the angle α between u

and the outward normal

at a is equal to that β

between u and the in-

ward normal at b.

SLS is a very powerful shape descriptor as it is able

to catch all the local symmetries of a contour; to have an

example one can look at Figure 3, where a comparison

with the Medial Axis Transform (MAT) is provided.

This is particularly interesting because makes easier the
characterization of locally unique symmetry points. A

symmetry point p = (a + b)/2 ∈ SLS(Ω) is said to be

locally unique if and only if

ab ∩ SLS(Ω) = p . (1)

For example, looking at Figure 3, one can note that

the most of the SLS points in the surroundings of the

sharp corners of the boundary are not locally unique.

When a point is locally unique, the distance ‖a− b‖ can

be used as an approximation of the local thickness of

the shape. This particular property will be discussed in

the remainder of the paper.

3.3 Analysis of occluding contours

When humans look at a silhouette, they perceive it

as a particular 3D shape even though such silhouette

could, in theory, be generated by an infinite number

of shapes. In this section we will briefly introduce the

theory of early visual perception, and we will discuss

some improvements of it, useful to analyse occluded

silhouettes.

Let GC be a generalized cone, and let Ω be its silhou-

ette as seen from a viewpoint v, with πv be the linear

projection which define the mapping πv : GC → Ω. We

call occluding contour the boundary ∂Ω, and contour

generator (GC∂Ω) the set of points p ∈ GC that project

onto ∂Ω. In [19] Marr proved that, given a generalized
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cone GC (Λ, ρ, h, ψ) and a projection function πv, if the

axis of symmetry of the projection πv (GC) is unique,

then it is the actual projection of the axis of symmetry

Λ. To prove it he assumed the following restrictions to

be globally satisfied

R1: each point on the contour generator projects to a

different point on the contour, that is, GC is convex

as seen from v or, in other words, the inverse π−1
v :

∂Ω → GC∂Ω is one-valued

R2: nearby points on the contour arise from nearby points

on the contour generator, that is, the mapping πv :

GC∂Ω → ∂Ω is continuous

R3: the contour generator is planar

The first thing we observed is that there is an inter-
esting link between Marr’s theory and the Smoothed

Local Symmetry (SLS). When restrictions R1-R3 are

satisfied the following relation is satisfied as well

πv (Λ) ⊆ SLS (Ω) . (2)

This is straightforward to prove because, by con-
struction, each symmetry point in Ω belongs to SLS(Ω).

Therefore, if Λ projects to the axis of symmetry of

Ω, it has to belong to SLS (Ω). It is important to no-

tice that, if the axis of symmetry of Ω is unique, then

πv (Λ) = SLS (Ω). In any other case, at least one sym-

metry point p such that p ∈ SLS(Ω) and p /∈ πv (Λ)
must exist. One should note that the relation above

is true only for medial descriptors able to catch every

possible symmetry. For example, for the Medial Axis

Transform (MAT) it would be false in the surroundings

of the sharp corners of the shapes in Figure 3.

What happens when the silhouette is partially oc-
cluded? Should we discard it? Or we can still get some
good information from it? The first thing to do is to

get rid of the symmetry points that have been affected

by occlusions. Occlusion-free symmetry points can be

locally characterized exploiting the locality properties

of SLS. To do this we define a function Φ : Ω → I+
that assign to each point of the silhouette the number

of points projected over it by πv. Since each symmetry

point p = (a + b)\2 ∈ SLS(Ω) depends only on the

behaviour of the boundary restricted to a and b we can

state that p is occlusion-free if and only if each point in
ab is occlusion-free, that is

∀ q ∈ ab, Φ(q) ≤ 2. (3)

Restrictions R1-R3 can be formulated in local fash-

ion too so now we are ready to define an occlusion-aware

equivalent of the Marr’s theory. Let p = (a+ b)\2 be an

inner point of SLS(Ω), if the symmetry is locally unique

and occlusion-free in p, and if restrictions R1-R3 locally

hold, then

p ∈ π(Λ) . (4)

Firstly, if R1-R3 are satisfied in a and b then p

will always be a SLS point, regardless the behaviour

of the rest of the boundary ∂Ω. Secondly, let Ω1, Ω2

be the connected components of Ω\ab. By construction

SLS is connected, hence two points λ1 ∈ Ω1, λ2 ∈ Ω2

always exists. Moreover, as the axis Λ and the mapping

π are linear, π(Λ) and ab have exactly one intersection.

Therefore, for (1) and (2), they intersect in p.

4 Curve-skeleton extraction

We propose here a novel curve-skeleton extraction algo-

rithm that exploits the theory presented in the previous

section to extract curve-skeletons of a 3D shape just

by looking at multiple silhouettes of it. The idea is, at

high-level, very simple and intuitive. Firstly, we gather

together multiple occluding contours of a 3D shape as

seen from different viewpoints. Secondly, we extract

from each contour the symmetry points that are pro-

jection of the axes of the generalized cones composing

the object. We eventually match such symmetry points

among the collected views in order to discover the axes

in the 3D space using basic computer vision tools.

4.1 Silhouette analysis

The usage of a local analysis of the occluding contours is

the major innovation of this paper and also the most in-

novative part of the proposed method over our approach

previously presented in [18]. Basically, it consists in tak-

ing silhouettes, calculate their symmetries, and filter all

the symmetry points that are not unique or occlusion

free. To compute the SLS an algorithm is proposed in [5].
While uniqueness can be easily checked during the SLS

calculation, to check if a point is occlusion free or not a

discrete version of the function Φ must be implemented.

To do this we employed the OpenGL stencil buffer, with

the following setting

glEnable(GL_STENCIL_TEST);

glStencilFunc(GL_ALWAYS, 0x1, 0x1);

glStencilOp(GL_INCR, GL_INCR, GL_INCR);

The code above makes sure that each time a object’s

primitive is projected over one pixel, the stencil buffer

entry corresponding to it will be increased by one.

4.2 View collection

The choice of the viewpoints is the core factor in the

construction of the perceptual skeleton of the object. In

[14] Laurentini stated that the number of silhouettes
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necessary to optimally describe a polyhedra with n faces

is: unbounded if the viewpoints are not allowed to lie

inside the convex-hull of the object; O
(
n5
)

if the view-

points are allowed to stay into the convex hull. Moreover,

even if the views choice is optimal, some problems may

occur, for example in case the object contains cavities

(see [13]). In our method silhouettes are gathered just

by rotating along the most important axis given by the

Principal Component Analysis (PCA) of the 3D shape

with a step of 3◦. We used at most 60 silhouettes for

complex models, thus covering a rotation of 180◦ around
the object (e.g. fertility and knots) and fewer views for

simple models (e.g. olympics). This choice proved to

be sufficient in most of our experiments. However, the

method does not depend on the particular camera po-

sitioning. Some heuristics, like [25] [23] and [26] would

accommodate better contours for some shapes.

4.3 Scanline matching

In all our experiments we used parallel projections in

order to produce rectified sequences of contours. This

choice makes the point matching problem very easy to

solve because candidate matches always lie in the same

scanline.

We used a two-step matching algorithm. Let p(i) and

p(j) be two symmetry points belonging respectively to

the ith and jth occluding contours. To have a positive

match p(i) and p(j) must belong to adjacent views, lie

in the same scanline, and their distance along the scan-

line must be lower than a predefined threshold. In our
simplified environment this can be stated as

∣∣ i− j ∣∣ = 1 ∧ p(i)r = p(j)r ∧
∣∣ p(i)c − p(j)c ∣∣ ≤ δ , (5)

where δ is the maximum allowed displacement be-

tween two consecutive observations of the same point of

a generalized cones axis (in all our tests δ = 2 pixels).

This first matching has the effect to group together all

the subsequent observations of a symmetry point. We

refer to this sets as bundles. However, the same point

can be observed for a certain number of views, disap-

pear due to an occlusion, and then appear again. In the

second matching step we merge together all the bundles

that have been generated by projections of the same

skeleton point. To do this we apply the correspondence

search algorithm proposed in [16]. Grouping in a single

set all the observations of a skeleton point makes the

algorithm more robust and also decrease the overall size

and redundancy of the cloud (see Figure 4).

Fig. 4 Four raw point clouds produced back-projecting 2D
symmetry points with our method. For each model we used
a set of contours gathered by rotating around the most im-
portant axis given by the PCA. From each silhouette we
select only the occlusion-free medial points, thus producing
incredibly noise free clouds for many different kinds of objects.

4.4 Back-projection

After all the 2D symmetry points projections have been

grouped in coherent bundles, the next step consists

in projecting the points back to the shape space, in

order to discover the skeleton paths. Every symmetry
point in the bundle defines a projective ray in the space;

the intersection of all these lines defines a candidate

skeleton point in R3. A projective ray is a line and it

can be expressed as the intersection of two planes in

the space. Let p ∈ R3 be the coordinates of a general

point belonging to the ray, and d be the Direction Of

Projection (DOP) of that ray. We can express it with

the following linear system

{
dyx− dxy = dypx − dxpy
dzx− dxz = dzpx − dxpy

For any bundle we therefore set up a dense linear sys-

tem Ax = b composed by 2n equations, where n is

the number of symmetry points in the bundle. The ma-

trix A contains the directions of projection of the rays

generating the symmetry points, the unknowns of the

problem are the xyz coordinates of a generalized cones’

axes point. To increase the overall robustness we discard

bundles having less than 3 points, therefore the sys-

tem is always overdetermined and can be solved in the

least square sense, according to the normal equations

x̃ =
(
ATA

)−1
ATb, such that
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x̃ = arg min
x

∥∥∥ b−Ax
∥∥∥2 .

An example of the point clouds produced by our

method can be seen in Figure 4. As one can note, due

to the power of the SLS filtering and the robustness

of the scanline matching, even for complex models like

Fertility and Neptune, the clouds are almost noise free

and the skeleton paths are quite clean.

4.5 Shape thickness

Beside the xyz coordinates of the skeleton points, an-

other important information can be inferred from the

SLS of the occluding contours. As stated in Subsec-

tion 3.2 when a symmetry point is unique, the distance

from its closest contact points can be thought as an ap-
proximation of the local thickness of the shape as seen

from a viewpoint. For each skeleton point we therefore

set the local thickness as the lower distance observed

among the SLS points involved in the back-projection

step. This information will be really useful in the follow-

ing step, where the skeleton paths will be reconstructed

starting from the point cloud just created. Thickness

information can also be used in a lot of applications. For

example in collision detection, where a coarse represen-

tation of a model can be really useful to detect collisions

between articulated objects, drastically reducing the

Method model
avg std

displ. dev

Our method

Eight

0.059918 0.009305
Dey and Sun [11] (θ = 0.0) 0.063134 0.012655
Dey and Sun [11] (θ = 0.5) 0.065679 0.012750
Tagliasacchi et al [28] 0.001762 0.011715
Livesu et al [18] 0.065188 0.025373

Our method

Knot 1

0,044990 0.022698
Dey and Sun [11] (θ = 0.0) 0.046228 0.023781
Dey and Sun [11] (θ = 0.5) 0.050125 0.024415
Tagliasacchi et al [28] 0.001570 0.012924
Livesu et al [18] 0.092037 0.027562

Our method

Knot 1

0.052322 0.008020
Dey and Sun [11] (θ = 0.0) 0.054011 0.008043
Dey and Sun [11] (θ = 0.5) 0.054063 0.008049
Tagliasacchi et al [28] 0.001742 0.013306
Livesu et al [18] 0.079337 0.018083

Table 1 Numerical comparisons with three state of the art
skeletonization algorithms. We considered a set of synthetic
shapes with convex cross section. We firstly sub-sampled the
skeletons and then, for each sample, we measured its distance
from the centroid of the local cross section. Mean displace-
ments are normalized respect to the diagonal of the axis
aligned bounding box containing the shape.

complexity of the problem. In Figure 7 an example of re-

construction achieved using about 50 maximal balls have

been produced for Fertility and Olivier hand models.

4.6 Curve extraction

The last step of our algorithm consists in the creation

of the skeleton paths starting from the point cloud

produced at the previous step. To do this we used an
approach firstly proposed in [15], and also used in [29].

As can be noted in Figure 4 point clouds have a very

thin structure along the branches, while points are a

bit scattered near the joints. We then employ a 1D

moving least square (MLS) approach for the branches,

iteratively projecting points onto their corresponding lo-

cally best fitting lines via principal component analysis

(PCA). At each iterative step we select a subset of points

lying in a small neighbourhood. Since the cloud has been

produced by the discrete representation of the contours,

we use as neighbourhood size a quantity proportional to

the distance between two points that would project in

two adjacent pixels. However, as near joints points are

too scattered, this neighbourhood measure is not able to

work properly to infer branch connectivity. To thin the

cloud and reveal how the branches connect each other

we therefore apply Laplacian smoothing, using our esti-

mation of the local thickness of the shape to infer point

connectivity. It is now clear how important thickness is:

in [29] the authors retrieved point connectivity with the

help of the Mahalanobis distance. This was the most

time consuming task of their algorithm; for 10K points

they needed about 3 minutes of computations.

5 Results and comparisons

We implemented our methods in C++, using the [2] for

the manipulation of geometric data structures and [1]

for numerical computations. Experiments were run on a

iMac equipped with 2.66GHz Intel Core 2 Duo and 4GB

RAM. The application runs on a single core. We used

silhouettes of size 500× 500 in all our tests; this choice

proved to be a good trade-off between efficiency and

precision. If necessary, higher resolution would permit

higher precision.

We discuss here the skeletons produced with our

algorithm according to the properties listed in [9]. Ho-

motopy is observed but not guaranteed. It depends on

the considered contours; we can guarantee it as long as

any cone axis is projected without occlusions enough

times to generate a bundle. Centeredness is also ob-

served but not guaranteed, in the sense that the least

square solution may move some skeleton point slightly
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Fig. 5 The pipeline of the whole process: we first collect a set of occluding contours from neighbouring viewpoints; the result is
a cloud of point sampling the axes of the generalized cones composing the shape; we eventually reconstruct the curve-skeleton,
and an approximation of the shape given by the union of the medial balls.

far from the cone’s axis. Being based on the visual ap-

pearance of the objects the algorithm is very robust. It

is almost insensitive to noise and missing parts (see fig-
ure 6). Moreover, thickness informations allow a rough

reconstruction of the shape (see Figure 7).

In Table 1 we compared our method with three state

of the art algorithms. In this comparison we considered

three synthetic shapes (a double torus and two knot

models) with convex cross section everywhere. We evenly

sampled the skeletons and, for each skeleton point, we

cut the mesh with a plane centered in it and having
as normal direction the direction normal to the skele-

ton curve. We then measured the distance between the

skeleton point and the centroid of the cross section, nor-

malizing it respect to the diagonal of the axis aligned

bounding box containing the shape. As can be noted

from the table our results are comparable with the re-

sults achieved in [11] and [28] while [18] behaves slightly

worse, probably because the curves are extracted from

a voxel grid and then smoothed in post processing, thus

deviating from the middle of the shape.

Fig. 6 Being based on shape appearance rather than on
geometry our method is able to handle noise successfully. In
this image two curve skeletons extracted respectively from a
noise-free and a noise-affected double torus.

In Table 2 we report running times and number

of considered contours for some models we tested. Our

method runs faster than the state of the art counterparts,
especially for high resolution models. For instance, on

models with approximatively 60,000 faces, we compute

the skeleton in half a second, [28] takes few seconds, [3]
few minutes, and [11] almost half an hour. Moreover,

since the most time consuming task is the rasterization,

times may be further lowered using smart rendering

techniques.

Fig. 7 Shape approximation of the Fertility model (55 balls)
and Olivier Hand model (42 balls). Maximal balls are spanned
along the skeleton paths, creating a good approximation of
the original shape. This representation can be useful for ap-
plications like hole filling, surface reconstruction and collision
detection.
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5.1 Implicit Surfaces

Triangle meshes are the most common data structure

for surface representation and all the state of the art

algorithms we compared with are able to deal with them.

However, they have two big drawbacks: they are only C0
continuous and their topology must be checked explicitly

in order to avoid self intersections that are not found in

real world objects.

When one wants to

overcome this drawbacks

uses other surface represen-

tations like parametric or

implicit surfaces. One of

the greatest advantages of

our method (as well as [18])

is the possibility to deal

with this representations

without any additional ef-

fort: the computation of the silhouettes can be merely re-

duced to the computation of the projection of the surface

onto the projection planes. Meshing an implicit surface
is instead a time consuming task, and this is why usually

the surface is calculated on-the-fly at raster time, with-

out any explicit representation. To the best of our knowl-

edge, contour based approaches are the only techniques

available in literature for the direct skeletonization of im-

plicit surfaces. In the figure above we show an example

of the curve skeleton extracted from a Dupin’s cyclide

with equation 693x4+1386x2y2−18880x2y+1386x2z2+

59000x2 + 693y4 − 18880y3 + 1386y2z2 + 187000y2 −
18880yz2 − 800000y + 693z4 + 67000z2 + 1250000 = 0.

To compute the projections, raster the silhouettes, and,

finally, compute the skeleton, we considered the zero set

of the equation.

6 Limitations and further works

It is worth to clearly remind that the method we describe

here is meant to work only for objects that can be

represented by a union of a finite number of generalized

joined cones. To describe shapes with weakly defined

symmetry axes, like mugs, busts or buildings, one should

probably use a different descriptor.

About the multi-view based approach, beside the

advantages, it carries some limitations. Back-projected

points are not guaranteed to be inside the shape. Even

if the matching algorithm is extremely robust, it can

happen that when there are a lot of occlusions some

points may be projected outside the shape due to a

wrong matching. Moreover, as we are dealing with con-

tours, we can only guarantee that the skeleton lie inside

the Visual Hull of the object rather than the object

itself. We lack a stop rule for the silhouette acquisition

system. Our method uses a set of silhouettes constructed

by rotating around the most important PCA direction;

however, as one can note by looking at Table 2, some

models need few contours and some others need more.

A stop rule to automatically determine how many views

we need should be used. About shape representations,

our method is able to work with any polygon mesh

and any discrete volume representation. Every kind of

representation that allow the calculation of occlusions

can be used interchangeably. We are currently working
to extend the work to point clouds. This can be done

by inferring the occlusion map (the discretized Φ func-

tion) by post processing the information contained in

the stencil buffer. We are also working to extend this

2D-to-3D paradigm to real objects moving in front of a

camera or multiple views of a static object.

7 Conclusions

In this paper we introduced an intuitive definition of

curve skeleton and we showed how the axes of a complex

generalized cone can be inferred just by looking their

planar projections from few viewpoints. We extended the

classical theory of early visual perception in order to deal

with occlusions, proposing a skeletonization algorithm

which is fast, insensitive to noise and missing data and

easy to implement. Moreover, we showed that the results

produced by our algorithm is qualitatively comparable

with the state of the art counterparts but it is more

versatile because it can be used with any kind of surface

representation. We also showed that the centeredness

of the skeletons produced by our algorithm is higher

than previous contour-based approaches, because our

skeleton curves are naturally smooth and do not need

any post processing.
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