
LoopyCuts: Practical Feature-Preserving Block Decomposition
for Strongly Hex-Dominant Meshing

MARCO LIVESU∗, CNR IMATI, Italy
NICO PIETRONI∗, University of Technology Sydney, Australia
ENRICO PUPPO, University of Genoa, Italy
ALLA SHEFFER, University of British Columbia, Canada
PAOLO CIGNONI, CNR ISTI, Italy
∗: joint first authors

Fig. 1. Given a surface mesh and a curvature and feature aligned cross-field (a) LoopyCuts generates a sequence of field-aware cutting loops (b), and uses these
loops to generate solid cuts through the object (c), decomposing the model into a metamesh consisting of hex (green), prism (blue) and other (orange) simple
blocks (d). It converts the metamesh into a hex-mesh via midpoint refinement. The output hex-mesh (e,f) is well-shaped and well-aligned with the input field.

We present a new fully automatic block-decomposition algorithm for feature-
preserving, strongly hex-dominant meshing, that yields results with a drasti-
cally larger percentage of hex elements than prior art. Our method is guided
by a surface field that conforms to both surface curvature and feature lines,
and exploits an ordered set of cutting loops that evenly cover the input
surface, defining an arrangement of loops suitable for hex-element gener-
ation. We decompose the solid into coarse blocks by iteratively cutting it
with surfaces bounded by these loops. The vast majority of the obtained
blocks can be turned into hexahedral cells via simple midpoint subdivision.

Authors’ addresses: Marco Livesu∗ , CNR IMATI, Genoa, Italy, marco.livesu@gmail.com;
Nico Pietroni∗ , University of Technology Sydney, Sydney, Australia; Enrico Puppo, Uni-
versity of Genoa, Genoa, Italy; Alla Sheffer, University of British Columbia, Vancouver,
Canada; Paolo Cignoni, CNR ISTI, Pisa, Italy
∗ : joint first authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART1 $15.00
https://doi.org/10.1145/3386569.3392472

Our method produces pure hexahedral meshes in approximately 80% of the
cases, and hex-dominant meshes with less than 2% non-hexahedral cells
in the remaining cases. We demonstrate the robustness of our method on
70+ models, including CAD objects with features of various complexity,
organic and synthetic shapes, and provide extensive comparisons to prior
art, demonstrating its superiority.

CCS Concepts: • Computing methodologies → Mesh models;
Mesh geometry models; Volumetric models; Shape analysis.
ACM Reference Format:
Marco Livesu∗, Nico Pietroni∗, Enrico Puppo, Alla Sheffer, and Paolo Cignoni.
2020. LoopyCuts: Practical Feature-Preserving Block Decomposition for
StronglyHex-DominantMeshing.ACMTrans. Graph. 39, 4, Article 1 (July 2020),
17 pages. https://doi.org/10.1145/3386569.3392472

1 INTRODUCTION
Hexahedral and hex-dominant volumetric meshing of 3D shapes
is a well investigated, yet still open, research topic. At their core,
hexahedral meshing algorithms balance fidelity to the input surface
geometry against element quality. They seek to generate meshes
with well shaped, or box-like, elements whose outer surface closely
aligns with that of the input model. To achieve high surface fidelity

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392472
https://doi.org/10.1145/3386569.3392472
cino

1:2 • Livesu, M. et al

and to keep the element budget low, users prefer meshes whose
external edges align with the surface curvature directions and follow
geometric or semantic feature curves.
Despite multiple attempts, quality all-hex meshing remains elu-

sive, and industrial models are still meshed using semi-manual block
decomposition, a tedious and time consuming process [Lu et al.
2017]. Existing automatic methods for quality all-hex meshing are
applicable to only a subset of inputs; while more general methods
produce inferior quality meshes or fail to capture surface features.
These challenges motivated the rise of hex-dominant approaches
that can robustly handle a large spectrum of inputs. Unfortunately
state-of-the-art hex dominant methods tend to produce excessive
numbers of non-hex elements.
We propose Loopy Cuts, a practical and robust new meshing

algorithm positioned in between these two extremes. LoopyCuts
mimics manual block-decomposition, automatically generating all-
hex feature-preserving meshes on a large spectrum of inputs and
yields strongly hex-dominant meshes, with minuscule

non-hex element count, on the remaining inputs. Our method sig-
nificantly outperforms prior approaches that attempted to automate
block-decomposition (Section 2).
Our method is based on two simple observations. We first note

that we can obtain a decomposition that produces well-shaped el-
ements by choosing a set of cutting surfaces bounded by cutting
loops distributed strategically across the input model’s surface. We
further note that by selecting a set of loops that are aligned with a
surface cross-field and interpolate the input features, we can pro-
duce a decomposition that respects the geometric characteristics of
the input model.

We generate the desired mesh as follows (Figure 1). Starting from
a curvature and feature aligned cross-field (a), we extract a set of
well-distributed loops on the object surface (b). We build cutting
surfaces that interpolate these loops and adapt to the shape of the
input model by using iso-surfaces of Hermite Radial Basis Functions
(c). We use these surfaces to decompose the volume into a coarse
complex of simple polyhedral blocks, the meta-mesh, terminating
once the blocks satisfy our quality requirements (d). Finally, we
refine these blocks via midpoint subdivision, producing a strongly
hex-dominant mesh (e-f).

We validate our framework by testing it on more that 70 inputs of
varying complexity, including both mechanical and organic models,
which exhibit a range of geometric and user prescribed features
(Section 7). Across all tested models, we obtained 76% pure hexahe-
dral meshes; the remaining hex-dominant meshes contained less
than 2% non-hexahedral elements. We highlight the advantages of
our method by comparing our results to those produced using a
range of existing hex and hex-dominant strategies, showing that we
consistently produce quality meshes with significantly less non-hex
elements than prior approaches.
Our overall contribution is a fully automatic method for block

decomposition for strongly hex-dominant meshing. We generate
comparable or better quality meshes than previous automatic and
semi-manual approaches, while guaranteeing feature-preservation.
This contribution is made possible by our novel technical ingredi-
ents: (i) the definition and computation of a field-aware loop network

that evenly samples the surface and its features; (ii) the robust gen-
eration of valid smooth cutting surfaces that interpolate these loops;
and (iii) a robust method to devise a cellular complex from the cut
arrangement, which can then turned into a strongly hex-dominant
mesh via simple midpoint refinement.

2 RELATED WORK
Hex-dominant meshes. In recent years hex-dominant methods

have emerged as an alternative to pure hexahedral meshes. These
methods offer superior robustness, and can produce quality meshes
for objects with complex features at the cost of introducing some
non-hexahedral elements. Early methods start from a tet mesh and
use various grouping schemes to detect clusters of tetrahedra that, if
merged together, form hexahedra. Pellerin et al. [2017] greedily ex-
plore the combinatorial space of all possible agglomerations of tets
that produce hexahedra in a given simplicial mesh. Their approach
produces hex-dominant meshes with a poor amount of cuboidal
elements (under 60% across all examples shown). Yamakawa et
al. [2002] similarly produce hybrid meshes with around 50% hexa-
hedral cells. Sokolov et al. [2016a] obtain higher hex to tet ratios
by first computing a guiding field that samples the volume at a
regular grid, and then apply agglomeration to a mesh obtained by
tetrahedralizing such grid. They obtain hex-dominant meshes with
up to 95% hexahedral cells (although in the worst case they ob-
tained less than 30%). Notably, the hybrid meshes these methods
produce are non conforming, meaning that there are interfaces
where e.g. a quadrilateral face of a hexahedron is touching two
triangular faces of two tetrahedra. To grant mesh conformity, layers
of zero-volume elements need to be positioned in between. Gao et
al. [2017a] directly generate conforming hybrid meshes using poly-
hedral agglomeration. They use a similar tetrahedral mesh obtained
by sampling a guiding field, but generate hexahedra via a set of local
topological operators that modify mesh connectivity, thus granting
mesh conformity at any time. Unfortunately, this approach cannot
control the type of elements generated and can produce arbitrarily
complex polyhedra (up to 40 facets in some examples, see Table 1
in [Gao et al. 2017a]). Levy and Liu [2010] obtain a hex-dominant
mesh by applying the agglomeration scheme proposed in [Meshkat
and Talmor 2000] to a CVT. None of these methods can generate
a pure hexahedral mesh, even for simple shapes. Our method pro-
duces a pure hexahedral mesh in the majority of cases (76% of the
models tested), and produces conforming meshes with less than 2%
non-hexahedral cells in the remaining cases, much less than any
prior method.

Hexahedralmeshing. Generation of high-quality hexahedralmeshes
is a well researched, yet still open challenging problem; see [Blacker
2000; Owen 2009; Shepherd and Johnson 2008] for in depth reviews.
Methods that overlay a regular [Lin et al. 2015; Schneiders 1996] or
adaptive [Gao et al. 2019; Ito et al. 2009; Maréchal 2009] Cartesian
grid onto the model to form hexahedra are unbeaten in terms of
robustness, and can hexmesh virtually any shape. However meshes
produced with these methods do not typically align to surface cur-
vature, and cannot precisely incorporate surface features. Moreover,
grid cells that intersect the surface are warped to approximate the
input geometry, typically producing poorly shaped elements that

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

LoopyCuts: Practical Feature-Preserving Block Decomposition
for Strongly Hex-Dominant Meshing • 1:3

can hardly be optimized due to limits in the mesh structure. An
extension of the grid idea consists in applying a uniform Cartesian
grid to an orthogonal polyhedron (or polycube [Tarini et al. 2004]),
and then use a volumetric map between the polycube and the target
shape to position cubes in the interior of the object [Fang et al. 2016;
Gregson et al. 2011; Huang et al. 2014; Livesu et al. 2013]. Although
less robust than classical grid methods, polycube approaches have
reached a fair level of maturity, and can reliably process datasets
containing dozens of shapes [Fu et al. 2016]. None of these methods
are able to preserve sharp creases that do not align with the grid,
even for extremely simple shapes (Figure 2).
Frame-field-based methods rely on a map that is aligned to a

given field, and define mesh edges as the integer iso-lines of such
map [Huang et al. 2011; Jiang et al. 2014; Kowalski et al. 2016; Li
et al. 2012; Nieser et al. 2011; Solomon et al. 2017]. Frame field
methods can generate high quality meshes that align to both surface
curvature and sharp features, which are seamlessly incorporated
into the mesh connectivity. Sadly, not all frame fields are suitable
to produce a hexaheral mesh. The generation of a hexable frame
field remains an open problem that hinders the applicability and
robustness of these techniques. In practice, frame field methods
cannot handle even simple shapes like the ones showed in Figure 3
without requiring manual intervention. The most recent approaches
can produce a field that is compliant with a given singular structure,
and can therefore produce a valid hexahedral mesh if correctly
initialized [Corman and Crane 2019; Liu et al. 2018]. However, it
remains unclear how to compute a good singular graph for a given
shape, and the process is still trial and error [Liu et al. 2018]. All in all,
the most recent attempts to quality hexahedral meshing are either
robust but lack the ability to align to surface curvature and sharp
features, or produce high quality meshes but are extremely fragile.
To this end, we believe LoopyCuts offers a good compromise between
robustness and quality meshing. Similarly to frame field methods,
the meshes we produce align to both curvature and features, and
at the same time our approach exhibits a superior robustness, as
demonstrated in Section 7.

Block Decomposition. Decomposition techniques aim to cut ob-
jects into parts, which can then be meshed conformingly using ex-
isting algorithms. Inside-out skeleton [Livesu et al. 2017, 2016] and
medial-axis based decomposition approaches [Li et al. 1995; Quadros
2014; Sheffer et al. 1999] fail to generalize to complex shapes. Meth-
ods that start from a dense hexmesh and derive a coarse block
decomposition from it [Cherchi et al. 2016; Gao et al. 2015, 2017b]
may fail to align with features not present in the input mesh. Surface-
driven block-decomposition techniques use . cuts to define either
the primal [Blacker 1996; Liu and Gadh 1997; Miyoshi and Blacker
2000; Ruiz-Gironés et al. 2011] or the dual structure [Gao et al. 2018]
of the mesh. Since the cuts used by dual methods do not correspond
to mesh edges, these methods have challenges when attempting
to capture input features. Both established [Shepherd and Johnson
2008] and recent [Kowalski et al. 2012; Wang et al. 2017] primal
block-decomposition methods are limited in the set of geometries
they can be applied to. In particular, they rely heavily on the sharp
feature networks on the model surfaces, and cannot process free-
form natural shapes, or shapes with smooth and rounded features.

Fig. 2. Polycube- (left), and grid-based methods (middle), fail to conform to
features not aligned to the major axes,resulting in loss of geometric fidelity
and formation of elements with non planar facets. While geometric fidelity
can be improved via refinement, the features cannot be matched (bottom).
Our output meshes are by construction aligned with all surface features at
a coarsest scale (right).

Fig. 3. State of the art tools based on volumetric fields [Liu et al. 2018]
require manual intervention to mesh even simple objects like the joint and
hand models. LoopyCuts automatically produces hexahedral meshes with
comparable singular structure, without requiring a volumetric field.

Our method follows the block-decomposition
approach popularized by these techniques, and
inherits their core advantages. However, con-
trary to primal methods, it does not solely rely
on the input feature curve networks; It can ro-
bustly handle generic free-form models with
both smooth and sharp features (Figure 3) while
preserving all desired features. The torus and the
wave in the inset are examples which [Gao et al.
2018] and [Wang et al. 2017], respectively, list as
failure cases. A recent system [Takayama 2019]
lets users interactively design dual sheets that define a valid all-hex
mesh topology. Our approach is inspired by this work and shares a
similar use of Hermite RBF for the definition of internal surfaces,
but generates high quality decomposition fully automatically.

Cross-fields and field-coherent loops. Generating and tracing direc-
tion fields on surfaces, or other spatial domains, is becoming a fun-
damental preprocessing step in numerous applications in computer
graphics and geometry processing [de Goes et al. 2016; Vaxman
et al. 2016]. Paths traced using most existing methods are not de-
signed to be closed, and are typically terminated when approaching
a singularity or another similarly directed path. A range of recent
methods seek to connect cross-field singularities with short, field

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:4 • Livesu, M. et al

aligned paths [Boier-Martin et al. 2004; Carr et al. 2006; Daniels II
et al. 2009]. We trace closed field-coherent loops away from singular-
ities following the approaches of [Campen et al. 2012; Pietroni et al.
2016], which both rely on the formalism introduced in [Kälberer
et al. 2007]. We use the discrete graph based structure of [Pietroni
et al. 2016] to efficiently trace such loops and compute field-aware
geodesic distances.

3 OVERVIEW
We take in input a 3D model described by a closed triangle mesh
M, together with a set of line features demarcated as chains of
edges onM. We decompose the volume enclosed byM into blocks
using a sequence of cuts, producing conforming blocks with shared
surfaces. From such blocks, we extract a meta-mesh MM formed of
polyhedral cells, which approximates the volume enclosed byM.
While choosing the cuts we exploit a strategy that tends to create
polyhedral blocks with vertices of valence three, which can be easily
split into hexahedra via midpoint subdivision.
Our process is mainly driven by two heuristics: a loop sampling

strategy to generate a set of loops on M, which will act as seeds
to generate cutting surfaces; and the other to diffuse cutting sur-
faces, which interpolate such loops through the volume generating a
block decomposition. In post-processing, we perform one step of mid-
point subdivision to obtain a hexa-dominant decomposition and we
smooth the resulting mesh with a state-of-the-art method in order to
improve the shape of its cells. The whole process is fully automatic
with a single parameter controlling the surface approximation error.

Loop sampling. Section 4. We define a space of field-coherent loops,
similarly to [Pietroni et al. 2016], and a notion of distance in such
space. We start by generating a set of loops that incorporate the
line features in input, then we extend such set by a furthest point
sampling technique in the space of loops. This strategy tends to
generate an arrangement of loops that form a nearly uniform quad-
dominant grid on the surface ofM. Loops are sampled to provide
a set of cuts sufficient to: incorporate the input line features as
edges of MM; obtain a good approximation of the outer surface of
M; obtain polyhedral cells when cutting the volume through the
loops. The set of extracted loops is usually larger than needed in
the subsequent block decomposition process; it is sorted so that the
loops containing line features are used first, while the following
loops refine the subdivision ofM into progressively smaller patches.

Block decomposition. Section 5. We pick loops from the sorted
sequence in order; for each loop, we generate a Hermite surface that
interpolates the loop and cuts through the volume. Each cutting sur-
face intersects the surface ofM and possibly other cutting surfaces,
thus generating cells of the meta-meshMM. Both the arrangement
of loops and the surface diffusion process are aimed at obtaining
intersections just between nearly orthogonal lines and surfaces. In
particular, each edge in the meta-mesh is obtained by intersecting
exactly two surfaces (either two cutting surfaces, or a cut and the
surface ofM); likewise, each vertex in the meta-mesh is obtained
by intersecting exactly three surfaces. The meta-mesh is updated
and analyzed after each cut and the decomposition stops as soon as
all cells are valid polyhedra and the outer surface is approximated

within the given threshold error.

Hexa-dominant meshing. Section 6. Most cells in the final meta-
mesh are already either hexahedra or prisms. This is due to the
fact that, being cuts guided by loops that intersect orthogonally,
they tend to split the volume by intersecting in groups of three
orthogonal surfaces at each vertex of MM. However, some cells of
MM may be more general polyhedra, possibly including vertices
of valence two or valence four. This can be due either to vertices
formed by the line features in input, or to special configurations
that arise in the intersection of surfaces. We analyze the topology
ofMM and we attempt further cuts to eliminate such problematic
configurations, whenever possible. After that, we apply one step of
midpoint subdivision: hence, cells having all vertices with valence
three are split into hexahedra. This means that if we manage to
eliminate all cells with vertices with a valence different from three
in MM, we eventually obtain a full-hexa mesh; otherwise, a few
non-hexa elements will remain. In our experiments, the majority of
models can be decomposed into full-hexa meshes, while the number
of non-hexa elements in the remaining models is very low. The final
step of mesh smoothing is standard and allows us to obtain elements
with balanced size and overall good shape.

4 COMPUTING CUTTING LOOPS
The input of this phase consists of meshM and a set of line features
on M. Its output consists mainly of a sorted sequence (queue) of
loops Q = (ℓ1, . . . , ℓk).
We build the loops of Q in such a way that they induce a quad-

dominant layout onM, subdividing the surface into patches. Such
layout embeds the line features in input and each patch is well
approximated with a polygon; furthermore, Q is sorted so that the
layout is uniformly refined while adding loops from Q in order.
In order to build the queue of loops, we impose a cross-field on

M that we use to define a space of field-coherent loops, and a notion
of distance in such space. The queue of loops is thus obtained with
a customized furthest loop sampling process in such space.

Subsection 4.1 provides a few preliminary notions about line fea-
ture classification and cross field definition. Subsection 4.2 formally
defines the space of loops and the distance on it. Subsection 4.3
describes how we initialize the queue of loops starting from the line
features in input, while Subsection 4.4 describes how we replenish
the queue with further loops. Subsection 4.5 describes how this
method is implemented in the discrete setting. Finally, Subsection
4.6 describes the output from the discrete process, which is passed
on to the block decomposition phase.

4.1 Preliminaries
Classification of line features. For each line feature in input ℓ on

meshM, let p be a point on ℓ and let (t, b,n) be a local frame at p,
where t is the tangent of ℓ and n is the normal of M at p, thus b is
the bi-normal on the tangent plane (see Figure 10). We say that p
is a corner if the absolute value of the discrete curvature of ℓ at p
is larger than a threshold θ̂ , or p lies at the intersection of different
line features, or p is a dangling endpoint of ℓ. We break the feature
curves into segments bounded by corner vertices and treat each
segment as a separate curve in the following.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

LoopyCuts: Practical Feature-Preserving Block Decomposition
for Strongly Hex-Dominant Meshing • 1:5

Fig. 4. Axamples of concave (red), flat (green) and convex (blue) features.
In order to obtain a good volumetric decomposition, we generate one and
two cutting surfaces through flat and concave features, respectively. Convex
features generate no cuts, while they are embedded as edges of the meta-
mesh.

Next we consider the discrete normal curvature ofM in direction
b at each point p ∈ ℓ and we integrate such value along ℓ. We
say that ℓ is flat if the absolute value of the integrated curvature
is smaller than a threshold θ̄ ; while it is either convex or concave
if the integrated curvature is larger than θ̄ , or smaller than −θ̄ ,
respectively. For all our experiments we have used values θ̂ = 45◦
and θ̄ = 10◦. See Figure 4 for examples of concave, flat and convex
features on a simple CAD model. The set of all convex feature lines
CF is part of the output of this phase.
For the sake of simplicity, we classify features by simply thresh-

olding the angle formed by consecutive edges along a feature for
corner detection; and the dihedral angle between faces incident
at each feature edge for feature classification. More sophisticated
methods for detection of smooth features and curvature estimation
can be used, though, which remain independent of our method
[DeCarlo et al. 2003].

Cross field. We compute a cross-field X on the surfaceM using
state-of-the-art methodology [Bommes et al. 2009; Diamanti et al.
2014]. We constrain the field to follow all line features in input
and the main curvature directions at points with high curvature
anisotropy, according to [Bommes et al. 2009], elsewhere. Note that
the cross field is well defined also if no line feature is provided in
input, e.g., for smooth organic objects.

4.2 Field-Coherent Loops
A loop is a simple closed line on the surface of M. We trace field-
coherent geodesic paths w.r.t. cross fieldX, as in [Pietroni et al. 2016].
A formal definition of field-coherent paths and loops rests upon the
stratificationM4 ofM as defined in [Kälberer et al. 2007] and briefly
summarized in Appendix A.1. Informally we define a field-coherent
geodesic loop through a point p ∈ M to be a closed curve that goes
through p, is loosely following one of the directions of X and is
as short as possible according to the anisotropic distance defined
in Equation 3 (Appendix A.1). Roughly speaking, field-coherency
forces a loop to approximately follow the underlying direction field
onM4 until it gets back to its origin. Note that strictly aligning to
X would often produce complex loops that spiral and self-intersect.
Our strategic choice to balance field coherence with loop length
consistently produces high quality cutting loops (Figure 5). We
empirically verified that on average our tracing produces only about
5% of loops that self-intersect, which we discard. Such situations
are typically triggered by atypical global structures of the field and
arrangement of singularities.

Fig. 5. Strictly aligning to a cross field (left) may result in complex loops
that spiral and self-intersect (middle left). Our tracing system allows drifting
to balance field coherency with loop length, yielding simple loops (middle
right) that result in high quality topological structures (right).

2 loops 3 loops 4 loops 5 loops

6 loops 7 loops 8 loops 9 loops

10 loops 11 loops 12 loops 24 loops

Fig. 6. A sequence of farthest loop sampling on a torus endowed with
a curvature-aligned cross field. The sequence is initialized with the first
vertical loop and the inner loop in the doughnut hole is identified as its
farthest loop. In the following steps, loops are sampled alternately in the
two homological classes, so that they tend to uniformly cover the surface
of the torus. Blue loops satisfy the topological integrity constraint defined
in Section 4.4, red loops do not. If a constraint that fosters the fulfillment of
such condition is added, steps 6 and 7 would be swapped.

Each point p onM, which is away from a field singularity, can
be crossed by at most two field-coherent geodesic loops, which
are orthogonal to one another at p, disregarding the traced curve’s
orientation. The space of loops L consists of the (infinite) collection
of all non self-intersecting loops onM.

We introduce a notion of (non-symmetric) distance between loops
of L, as the average over one loop of the shortest distance from each
of its points to the other loop. Given the loops ℓi and ℓj we define:

d(ℓi , ℓj) =
1
|ℓj |

∫
ℓj

dist(ℓi ,pθ)dpθ (1)

where dist(ℓi ,pθ) is the length of the shortest field-coherent geo-
desic path joining a point of ℓi to pθ . To get an intuition for this
distance, consider that two parallel loops can be close to one another
or not depending on their geodesic distance onM, while loops that

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:6 • Livesu, M. et al

are either intersecting orthogonally, or wind about different handles
of an object (of non-null genus) are always far apart.
Now considering a given set of loops L = {ℓ1, . . . , ℓk }, and a

loop ℓ ∈ L not belonging to L, we can generalize:

d(L, ℓ) =
1
|ℓ |

∫
ℓ
minℓi ∈Ldist(ℓi ,pθ)dpθ , (2)

hence the notion of farthest loop ℓ̄ from L is well-defined as

ℓ̄ = argmaxℓ∈Ld(L, ℓ).

On the basis of this distance, we will define a farthest loop sam-
pling process. Figure 6 shows an example of farthest loop sampling
sequence on a simple torus model.

4.3 Adding Feature Loops
We first consider the set of concave and flat features in input. Note
that a line featuremay already be a loop, as in Figure 7.a.We initialize
our queue of loops Q by adding such closed features and extending
the other features to loops. The order of this initial set is not relevant.

Note that open line features may end at cross-field singularitiesX,
where loops are undefined (see Figure 7.b). We extend each such fea-
ture into a loop by constraining the loop to run infinitesimally close
to it on one of its sides, while leaving it free elsewhere. Depending
on the side we choose for tracing, the loop may take different routes
(see Figure 7.c-d). We extend concave features by tracing a loop on
each side, which will generate two different cutting surfaces (see red
feature in Figure 4). The relevant side of a loop is implicitly encoded
by its orientation. Note that some loops may encompass more that
one line feature, as in Figure 7.e. We proceed as follows:

• For each closed feature f : if f is flat we add it to Q with arbi-
trary orientation; if f is concave, we add two different copies
of the loop coinciding with f with opposite orientations;

• We extend each open concave feature to two complete loops,
defined as above, with opposite orientations, and add them
to Q;

• Similarly, we extend each open flat feature to a single loop,
by tracing it in arbitrary orientation, and add it to Q.

4.4 Sampling Further Loops
The arrangement of loops obtained from line features is usually
not sufficient to induce a layout fine enough for our purposes. We
extend this set further with a farthest loop sampling process, which
starts at the given set Q and iteratively appends to the queue the
loop that lies farthest from its content, according to the distance (2)
defined in Subsection 4.2. We stop adding loops to Q as soon as the
following two conditions are satisfied:

(1) Topological integrity: each loop ℓi in Q has at least three
intersections with some other loop(s); in case loops ℓi and ℓj
intersect in more than a place, such intersections cannot be
consecutive along either loop.

(2) Geometric fit: each patch intercepted by the network of
loops of Q on the surface M is approximated well enough
with a corresponding polygon. In order to obtain a rough and
quick estimation of accuracy, we just compare the areas of
the patch and the polygon. The area of the patch is measured
directly onM. The polygon is obtained by joining the corners

of the patch with straight line segments, while its area is
estimated by triangulating it. The two areas must differ for no
more than a threshold ε/2; the same threshold ε will be used
in the subsequent block decomposition for a similar purpose;
here we use half of the threshold to have a greater accuracy
and ensure some redundancy in the loops we generate.

Note that, unlike the other thresholds used by ourmethod, which are
fixed once and for all, ε is the unique parameter that can be set by the
user to control the geometric accuracy of our block decomposition
with respect to the boundary ofM.

In Figure 6, the red loops violate topological integrity, which is
satisfied once the 7th loop is added. At that point, the torus can be
approximated by four triangular prisms. Depending on the value of
ε further loops may be necessary to satisfy geometric fit.

4.5 Loop tracing and sampling in a discrete setting
We trace field-coherent loops by following the approach of [Pietroni
et al. 2016]. A brief summary of the method is provided in Appen-
dix A.2. Discretization impacts on our method in two aspects. First
of all, we need to substitute the infinite space of loops L with a
dense enough finite pool of loops P from which we sample. Second,
while field-coherent loops in the continuum may intersect only or-
thogonally, discrete loop tracing may produce loops that overlap or
intersect tangentially: we must avoid tangential intersections, be-
cause they would corrupt our layout. We provide a formal definition
of tangential and orthogonal intersections in Appendix A.1.
We generate the pool P dynamically. Right after extending the

line features to loops, we define set Q = Q ∪ CF as the set that
contains all loops already in Q together with the set of all convex
feature curves. We form the initial pool as follows.

(1) We sample all curves of Q at fixed intervals and, for each
sample, we trace orthogonal loops that we add to P. Traced
loops are constrained to avoid tangential intersections with
the elements of Q;

(2) We perform a Poisson-Disk point sampling on M [Corsini
et al. 2012] to obtain a set of well distributed seed points P
and, for each p ∈ P, we trace the two orthogonal loops, each
constrained by the elements of Q as above, and we add such
loops to P.

Each time we add a new loop ℓ to Q, we replenish the pool with
new loops obtained by sampling ℓ as described in item (1).
Rather than running a plain farthest point sampling, we use an

additional criterion to promote the fulfilment of topological integrity.
Let Q̂ be the subset of Q made of loops that do not fulfill topological
integrity, as defined in the previous subsection. We give higher
priority to those loops in P that intersect at least one loop in Q̂;
among them, we select the loop ℓ that maximizes its distance from
all loops in Q and we add ℓ to Q. Next, we remove from P all loops
that intersect ℓ tangentially, and retrace them from their sources in
P, constrained to the updated Q.
This step can be repeated at will and fosters the formation of a

queue Q that satisfies topological integrity and consists of loops
uniformly distributed overM. Figure 8 shows a few steps of discrete
loop generation on an object containing sharp features. Note how

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

LoopyCuts: Practical Feature-Preserving Block Decomposition
for Strongly Hex-Dominant Meshing • 1:7

(a) (b) (c) (d) (e)

Fig. 7. (a) Closed concave curve features form two coincident loops each, with opposite orientations; (b) an open curve feature (c) is extended to form two
distinct loops; (d) a closeup on field topology of traced loops (displaced from the feature in the rendering); (e) a loop connecting two open concave features
(one hidden behind the gear tooth).

Fig. 8. Construction of the loop queue Q (thick lines). Loops corresponding
to line features added in the top left image. Farthest loop sampling with
priority on topological integrity shown in the other images (left to right,
top to bottom). The thin lines are loops in the pool P, where color denotes
distance from the features already present in Q: blue close, yellow far.

the pool P becomes progressively more dense as the process goes
on.

4.6 Output from the discrete process
The output consists of the queue of loops Q and the set of convex
features CF . All elements in both sets are polylines defined by
sequences of points on M. For each point p on such a polyline, we
also estimate the surface normal n at p and encode each polyline
as a sequence of pairs ((p1,n1), . . . , (ph ,nh)). Note that the surface
normal is computed by using all triangles incident at p for flat and
additional loops; while for concave loops we consider only the faces
to the side of the feature that generated the loop. The number nf of
elements of Q enclosing the line features in input is reported, too.

Unfortunately, there is no guarantee that every open feature can
be completed to a loop: indeed, loop tracing may produce a self-
intersecting line, which is discarded (in the continuum setting, too).
In case we cannot extend a line feature to a loop, we report the
polyline corresponding to such feature as an incomplete loop in
Q. This just means that Q may contain some open line. The next

decomposition phase is designed to deal with incomplete loops in a
transparent way.

5 BLOCK DECOMPOSITION
The block decomposition phase receives in input: the mesh M; the
queue Q of loops, which starts with the (possibly incomplete) nf
loops covering all the non-convex features of the model; and the
collection of its convex features CF . The queue of loops is scanned
in order and, for each loop, a cutting surface is generated, thus
decomposing the volume ΩM enclosed by M into progressively
finer blocks, until some convergence condition is met. We build a
metamesh MM consisting of polyhedral cells, each corresponding
to a block in the decomposition; meshMM approximates volume
ΩM – hence its outer surface approximates M – and it embeds
all line features in input as chains of edges. In the following, we
discuss in details the strategy used to form the cutting surfaces and
to generate the metamesh: Subsection 5.1 provides the necessary
tools; while Subsection 5.2 describes our method.

5.1 The metamesh: tetrahedra, blocks and cells
In order to support our block decomposition algorithm, we first build
a tetrahedral mesh MV bounded by mesh M and filling volume
ΩM . Each time we cut the volume, the cutting surface is embedded
by splitting the tetrahedra it intersects, so that the cutting surface
can be represented as a collection of faces ofMV .
A block is a maximal set of tets of MV that are connected by

adjacency without crossing any cutting surface (Figure 9 upper left).
After each cut, we assign labels to the tets of MV with a simple
flooding process, so that all tets forming a block are assigned the
same label. Facets that are incident to tets with different labels are
grouped to form the block faces; edges of the tet mesh that are
incident at two such faces are grouped to form the block edges; and
vertices that are incident at three such faces are the block vertices.
Boundary faces and convex features in input are also incorporated
to form boundary faces and edges of the outer blocks.
Note that faces, edges and vertices of each block, which result

from this simple labeling process, are oblivious of the underlying
microstructure of MV and define the combinatorial structure of
the boundary of the block. In order to assess whether a block is a

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:8 • Livesu, M. et al

Fig. 9. We define blocks as clusters of a labeled tetrahedral mesh (top left)
bounded by cutting surfaces (top right). Each block defines an element of the
metamesh (top, middle), and can be of four types: cuboids (green), prisms
(violet), polyhedra with all valence three vertices that yield hexahedra under
midpoint refinement (orange), and other polyhedra which do not admit a
pure hexahedral decomposition (red).

polyhedron we require that: its volume has genus zero; each face of
the block is homeomorphic to a disc and bounded by at least three
edges; there are no dangling edges inside faces. All such conditions
can be easily checked in a combinatorial way.
If a block is a polyhedron, we add a corresponding cell to the

current metameshMM (Figure 9 upper middle). The metamesh is
initially empty, and it is regenerated after each cut by adding all
valid polyhedral cells. Note that the geometry of each cell ofMM

is defined as follows: its vertices are fixed from the corresponding
intersections of surfaces (Figure 9 upper right); its edges are straight
line segments joining pairs of vertices; and its faces are polygons
bounded by such edges. Since such polygons are not necessarily
planar, the surface of each polygon is approximated by triangulating
it. Block decomposition ends when the metamesh MM fills the
whole ΩM , while approximating its outer surface M sufficiently
well. See below for details.

5.2 Cutting the volume
The decomposition initially consists of a unique block and its outer
surface is possibly subdivided just from the convex features in CF .
Unless we are in the trivial case – i.e., there are just convex features
and they alone define a valid polyhedron approximating the input
sufficiently well – this initial block needs to be subdivided on order
to obtain a metamesh.

Stop condition. In all cases, we use the first nf loops in Q, which
contain all the non-convex features, to generate cutting surfaces;
next we scan the rest of Q and we decompose the volume with
further cutting surfaces, until the following two conditions are met:

Fig. 10. A cutting loop and its associated cut. Cuts are defined as cubic
HRBF that interpolate loop points and the binormal (blue) to the surface
(green) and loop tangent (red).

(1) The metamesh MM has the same topological type of the
domain ΩM ;

(2) The outer surface of MM approximates the input M suffi-
ciently well. Similarly to the phase of loop generation, the
quality of approximation is evaluated by measuring the dif-
ference of area between each outer face ofMM and its cor-
responding patch of surface on M.

Quality of approximation is controlled with the same threshold ε
used during loop generation.

Generating cuts. For each loop ℓ ∈ Q, we generate a cutting sur-
face as follows. The loop comes in the form ((p1,n1), . . . , (ph ,nh))
where each pi is a point onM and ni is the surface normal at pi ; we
set a local frame at pi as already described in Section 4.1 (Figure 10).
Now we seek a surface that interpolates ℓ and is tangent to ni at
all pi ’s, i.e., all bi’s are normal to the cutting surface. Similarly to
[Takayama 2019], we follow [Macêdo et al. 2011] to generate a cubic
Hermite radial basis function Φℓ defined over the whole volume
and constrained to the following conditions at all i = 1, . . . ,h:

Φℓ(pi) = 0

∇Φℓ(pi) ∥ bi .

Computing a cut is very efficient, as it amounts to solving a (dense)
4h×4h linear system which depends on the size of the loop, and not
on the complexity of the underlying volume mesh. Function Φℓ is
evaluated at all vertices of the tetrahedral meshMV and its zero
isosurface satisfies our requirements. We use a marching tetrahedra
algorithm [Doi and Koide 1991] to extract the connected component
Sℓ of such zero isosurface, which has loop ℓ on its boundary. Note
that we discard other connected components that possibly exist and
intersect the volume elsewhere (Figure 11).

Loop pairing. Note that surface Sℓ may cut the surfaceM in places
other than ℓ. This will certainly happen in case ℓ is an incomplete
loop, and it may happen also if Sℓ pierces the shellM along other
loops. See Figure 12 for examples.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

LoopyCuts: Practical Feature-Preserving Block Decomposition
for Strongly Hex-Dominant Meshing • 1:9

Fig. 11. Cutting along the red loop requires a HRBF whose zero level set
intersects the torus at two disjoint connected components. We take just the
component incident at the starting loop, discarding the other (in red).

Fig. 12. Top: vertically cutting along the blue loop at the base of the cylinder
to extrude it generates a new loop at the bottom of the model which does
not conform with the cross field. Bottom: horizzontally cutting along the
blue loop generates a membrane that also interpolates the red lop at the
inner side of the same feature. In this case a new cutting membrane that
interpolates both loops is computed, and used to halve the model.

Let ℓ̄ be one such loop. In some cases, especially with CAD objects,
there might exist some loop ℓ̂ from Q that approximates ℓ̄ closely.
The existence of ℓ̂ is easy to check right after tet classification in the
marching tetrahedra algorithm, before splitting the mesh. For each
loop in Q, we simply check whether the value of function Φℓ at its
vertices, as well as the angle between its bi-normal and ∇Φℓ are
close enough to zero. A loop ℓ̂ is taken as a good representative for
ℓ̄ if such conditions are met at all its vertices. In all our experiments,
the two thresholds for the function value and the angle are set at
0.1 and 10◦, respectively.
In case we find one such loop ℓ̂, we discard the current cutting

surface and we generate another one by constraining it at both ℓ
and ℓ̂. The same mechanism applies even if we find more than one
such loop, in case the cutting surface has multiple boundary loops.

If we do not find any pairing loop for ℓ̄, we keep the current cut-
ting surface as is. Note that ℓ̄ usually will not be field-coherent in the
sense defined in the previous section, therefore it might interact with
other loops from Q in an uncontrolled way. The presence of such
loops is necessary to comply with situations like the one depicted
in Figure 12 (top), which cannot be captured by the surface cross
field. On the other hand, their interaction with the other loops may

produce artifacts that may need special care during post-processing,
as explained in Section 6.

Sanity checks. The cutting surface Sℓ may intersect other cutting
surfaces inserted previously inside the volume. Intersections are
found trivially on the basis of the labeling of cells of any dimension
inMV , which is updated after any new cut with simple flooding.
Before accepting Sℓ as a valid cut, we make the following sanity
checks:

• No boundary tangency: Sℓ does not contain any triangle, edge
or vertex lying on the surface ofM, except for vertices and
edges belonging to its boundary loops;

• No cut tangency: Sℓ does not contain any triangle already
belonging to another cutting surface;

• No multiple intersections at edges: each edge of Sℓ may be-
long to at most another cutting surface;

• No multiple intersection at vertices: each vertex of Sℓ may
belong to at most other two cutting surfaces;

• No bubbles: the boundary of the intersection between Sℓ and
any other cutting surface consists of an open line.

In case surface Sℓ violates any of the conditions above, we discard
the cut and revert to the previous configuration. In this way, we are
certain that cuts intersect two by two at edges and three by three at
vertices. Consequently, all inner vertices of the metamesh will have
valence three. On the outer surface of MM, however, few vertices
of valence different from three may be generated, as we will discuss
in the next section.

6 HEX-DOMINANT MESHING
Once enough cuts have been incorporated in the volume and the
metamesh satisfies both topological and geometric convergence
criteria expressed in Section 5.2, MM is formed of valid polyhedral
cells. If all vertices of each such cell have valence three, then cells
can be turned into hexahedra with a single step of midpoint refine-
ment [Li et al. 1995]. Due to our cutting strategy and sanity checks
reported in the previous section, we guarantee that the valence three
condition is satisfied at all internal vertices of the metamesh. On the
surface, however, awkward configurations may lead to the genera-
tion of vertices with valence 2. In case any vertex with such valence
is present, we run a simple heuristic that tries to remove them by
either adding or removing cuts. This process is not guaranteed to
converge to a pure hexahedral mesh, and may also oversimplify
MM, affecting geometric convergence. In the latter case, we just
revert to the initial version of the metamesh, and use the procedure
described at the end of this section to produce a hex-dominant mesh.

Balancing vertex valence. Vertices with valence 2 arise whenever
two loops, or a loop and a convex feature, have two consecutive
intersections. A visual example is given in Figure 13. Note that, while
we try to avoid this circumstance during loop sampling, by imposing
the topological integrity constraint (see Section 4.4), this can happen
when: some loop cannot be used to produce a cut because it violates
sanity checks; some new loop originated from cuts tangentially
intersects twice some other loop or feature; convex features in input
were already in such configuration. While we provide no formal

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:10 • Livesu, M. et al

a

b c

d

a

b c

d

e

a

b c

d

a

b c

d

e

Fig. 13. Top left: loops ℓ1, ℓ2 intersect at two distinct points, a, b , and are
connected by three chains of edges. Both vertices have valence two with
respect to the cells of the metamesh that stay at their left and right (w.r.t. the
right cell a is adjacent to b, d , and b is adjacent to a, c). Consequently, the
resulting polyhedron (bottom left, in red) does not produce hexahedra under
midpoint refinement. Right: adding loop ℓ3 in the metamesh produces a new
point, e , which splits the previous chains connecting a, b , also balancing
vertex valence. The resulting polyhedron (in orange) is now hexable with
midpoint refinement.

proof, we empirically observed that these are the only practical
circumstance originating valence two vertices.
As shown in Figure 13 a possible remedy to balance vertex va-

lences and secure a local full hexahedral decomposition consists
in selecting a third loop and either cut through it, or just use it to
form surface edges inMM. Since we strive for a minimal decom-
position, among the two solutions we opt for the latter, bacause
it does not change the number of blocks. If no such loop is found
within the non used loops of Q, we try to recover by reverting one
of the two offending cuts (the last that was inserted). Removing one
loop may open analogous issues in the metamesh elsewhere. We
keep removing loops (and related cuts) until either all issues are
resolved, or the stop condition defined in Section 5.2 is violated. In
the latter case, we revert to the original MM. We observed that
this strategy succeeds in approximately 50% of the cases. Finally, if
the models contains sharp features, surface vertices may also have
valences higher than 3 (imagine the tip of a pyramid with squared
base). Since these vertices directly depend from the input creases,
we do not attempt any remedy, and keep them in the output mesh,
which will therefore be hex-dominant.

Mesh generation. From a topological perspective, the generation
of the output mesh startingMM consists in a simple midpoint re-
finement. In order to obtain a good geometric approximation of the
input mesh, we carefully reposition newly inserted surface vertices.
Specifically, each surface face of MM corresponds to a disk like
patch of surface triangles of the tetmesh. Assuming theMM face
contains n sides, we first parameterize each patch on a discrete
n−gon centered at the origin of the uv space with geometric Tutte,
and position the metamesh midpoint at the point on the tetmesh

that maps to the origin in uv space. This approach guarantees that
the new point is projected to the input surface, regardless of the
geometric distance between the MM face and its corresponding
patch in the tet mesh. Edge midpoints are sampled in the same way,
using the parameterization associated to one of the two patches ad-
jacent to its sides, and finding the coordinates of the corresponding
edge midpoint in parametric space. We eventually improve surface
smoothness by applying plain laplacian smoothing for interior ver-
tices, and laplacian smoothing in tangent space for surface vertices.
Similarly to [Livesu et al. 2015], we smooth vertices inside features
along their corresponding feature lines, and keep vertices at the
intersection of multiple features fixed at their original position.

MIN SJ 0.12
AVG SJ 0.77

MIN SJ 0.84
AVG SJ 0.98

Fig. 14. Even though the polycube mesh (left) is almost four times larger
than ours (2.7K vs 0.7K elements), it is not as effective at capturing the
sharp features on the object (see the square-like little holes at the bottom).
Meshes derived from our block-decomposition naturally align with features,
and yield a quality mesh with much higher average and minimum scaled
Jacobians. Polycube mesh was computed with [Livesu et al. 2013]; both
hexmeshes were optimized for maximal minimum Jacobian with Edge-Cone
Rectification [Livesu et al. 2015].

7 RESULTS
We validate our method on a vast range of models, mostly sourced
from Hexalab [Bracci et al. 2019] and Thingi10K [Zhou and Jacob-
son 2016] databases. We tested CAD-like models containing sharp
creases of different complexity (Figures 16, 17), organic shapes such
as animals or statues, synthetic shapes, and tubular objects (Fig-
ures 18, 19). LoopyCuts does not require parameter tuning: we used
ε = 0.1 to produce all our results. We report statistics in Table 1.
Overall, LoopyCuts produced full hexahedral meshes in 76% of the
cases, and hex-dominant ones in the remaining 24%. As discussed in
the previous section, all non-hexahedral elements lie on the outer

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

LoopyCuts: Practical Feature-Preserving Block Decomposition
for Strongly Hex-Dominant Meshing • 1:11

metamesh Output Mesh
Model Verts Cuts H P O N H O % Time
Plate 1 21K 1 2 0 0 0 16 0 100% 4s
Plate 2 4K 1 2 0 0 0 16 0 100% 4s
Plate 3 8K 2 2 1 0 0 28 0 100% 3s
Plate 4 45K 9 29 9 4 0 346 0 100% 42s
Bearing Plate 12K 16 43 12 16 0 712 0 100% 78s
Beveled Shoulder 13K 10 14 0 0 0 112 0 100% 22s
Bimba 29K 24 97 82 40 0 1560 0 100% 81s
Blade 30K 48 214 217 104 16 4102 23 99.4% 203s
BladeFEM 13K 70 490 107 77 12 5338 23 99.6% 200s
Bolt 14K 19 32 56 24 0 784 0 100% 47s
Bone 7K 24 54 80 18 0 1016 0 100% 27s
BracketInches 26K 90 732 438 574 64 14573 89 99.3% 979s
Bunny 25K 32 162 88 46 0 2172 0 100% 112s
Busto Bimba 8K 28 109 97 42 0 1768 0 100% 73s
Cactus 3K 39 86 136 20 0 1616 0 100% 41s
Cat 12K 20 111 71 72 0 1888 0 100% 65s
Clef 5K 61 0 200 24 0 1328 0 100% 42s
Cube w circle 2K 11 56 16 8 0 812 0 100% 43s
Cube Carved 14K 2 14 6 4 0 212 0 100% 26s
Cube Minus Sphere 15K 5 3 3 1 0 64 0 100% 3s
Cup 38K 7 29 4 0 0 256 0 100% 88s
Cylinder Plate 11K 4 0 12 0 0 88 0 100% 10s
Dancer 27K 61 87 208 96 9 2776 18 99.4% 249s
Des6 14K 90 1321 310 312 23 15598 34 99.8% 639s
Deckel 20K 25 329 92 131 36 4784 72 98.5% 128s
Dog 8K 38 54 123 43 0 1816 0 100% 116s
Ellipse 12K 11 24 28 8 0 392 0 100% 29s
Eraser Ball 12K 39 144 211 178 0 3900 0 100% 129s
Femur 13K 47 270 154 18 2 3524 4 99.8% 102s
Gear 14K 23 39 6 6 0 406 0 100% 50s
Gyroidpuzzle 23K 73 181 68 104 24 2788 39 98.4% 450s
Halved Oblique Scarf 15K 75 622 54 40 13 5854 23 99.6% 281s
Hand 7K 61 77 100 15 0 1300 0 100% 137s
Hanger 12K 21 64 10 0 10 688 14 98% 40s
Hinge 20K 24 6 19 24 0 428 0 100% 68s
Holes2 8K 61 45 39 12 0 858 0 100% 394s
Impeller 30K 30 16 96 0 0 1024 0 100% 205s
Indorelax 20K 61 40 120 124 19 2146 41 98.1% 296s
Inlay Dovetail 27K 11 18 0 0 0 144 0 100% 44s
Joint 4K 12 56 12 0 0 650 0 100% 51s
Kiss 25K 56 145 278 397 41 6662 88 98.6% 413s
Kitten 12K 22 87 66 34 0 1728 0 100% 71s
Knob 18K 22 53 24 22 0 744 0 100% 53s
Kong 39K 21 55 100 55 0 1520 0 100% 93s
Lever Arm 10K 31 50 37 24 0 818 0 100% 46s
Mech10 2K 7 16 15 3 0 230 0 100% 8s
Mech Piece 33K 5 3 4 0 0 XX 0 100% 21s
Mechanical02 12K 33 34 102 63 0 1372 0 100% 65s
Mechanical05 12K 87 502 298 269 8 8398 13 99.8% 488s
Mechanical06 (teaser) 17K 93 287 265 101 0 4744 0 100% 533s
Mechanical08 5K 73 652 121 24 11348 42 99.6% 453s
Metatron 9K 71 47 14 0 0 568 0 100% 121s
Mid2FEM 17K 33 72 20 0 0 908 0 100% 57s
Motor Tail 22K 54 54 44 2 0 916 0 100% 163s
Nugear 36K 86 370 98 30 8 3964 15 99.6% 727s
Pig 16K 16 124 54 38 0 1592 0 100% 51s
Pinion 24K 30 0 0 0 0 240 0 100% 61s
Prism 7K 0 0 1 0 0 12 0 100% 1s
Rabbit 21K 60 200 176 50 0 3040 0 100% 460s
Rod 12K 21 11 28 14 0 704 0 100% 47s
Sculpt 12K 14 12 8 0 0 168 0 100% 18s
Sphinx 28K 60 178 267 70 0 3944 0 100% 672s
Teapot 17K 34 97 65 65 13 2380 24 99% 145s
Torque 10K 16 57 58 11 0 880 0 100% 38s
Torque1 15K 57 155 97 72 0 7320 0 100% 797s
Torus 8K 35 41 82 0 0 1968 0 100% 350s
Trebol 21K 14 14 45 25 0 552 0 100% 32s
Tris Open 8K 9 15 0 0 0 120 0 100% 13s
Tris Closed 13K 3 3 1 0 0 30 0 100% 4s
U-joint 15K 9 8 0 4 0 48 0 100% 9s
Vessel 7K 61 10 134 22 0 1000 0 100% 80s
Vertebrae 20K 59 711 343 298 32 7682 42 99.5% 357s
Wave 8K 7 9 5 0 0 136 0 100% 7s
Wedge 12K 1 1 1 0 0 14 0 100% 2s
Wheel 38K 83 419 302 115 21 7316 33 99.6% 872s
Wrench 7K 11 7 6 0 0 100 0 100% 5s

Table 1. Output statistics: input mesh size (num. vertices); number of cuts;
number of hexahedra (H), prisms (P), andother hexable (O) and non hexable
(N) polyhedra in the metamesh; number of hexahedra and other polyhedra
after midpoint refinement as well as ratio between them; computation time.

Fig. 15. Left: an input cube with a user-demarcated circular feature on one
of its faces. Middle: the hexahedral mesh produced by LoopyCuts. Right:
cut through view showing the inner mesh connectivity (the cube is rotated
to highlight the singular structure beneath the circular feature).

surface. Following midpoint subdivision all cell faces are quadrilat-
eral, and all internal or non-feature vertices have valence three w.r.t.
each of their incident cells. The valence of surface vertices at the cor-
ners of the feature network depends on the network valence (e.g. on
an 8 sided pyramid the valence of the tip will be 8). After subdivision
most cells have 6 faces, but we have no theoretical bound on face
count. In our experiments we encountered cells with up to 10 faces.
In all cases, the ratio between the number of hexahedra and the
total number of elements in our hex-dominant meshes was above
98%. As Figure 20 shows, we generate full hexahedral meshes across
many inputs for which state-of-the-art hex-dominant meshing tech-
niques introduce multiple non-hex elements. In general, our method
produces meshes with much higher percentage of hex elements
than previous hex-dominant methods such as polyhedral agglomer-
ation [Gao et al. 2017a] and PGP3D [Ray et al. 2018; Sokolov et al.
2016b]. Meshes produced with the former have only 60% to 90% hex
elements (80% on average) and contain complex hybrid elements
that cannot be turned into hexahedra with midpoint refinement,
and may have up to 40 facets (see Table 1 in [Gao et al. 2017a]).
Meshes produced with PGP3D span from 33% to 95%.

Sharp crease alignment. One of the key advantages of our tool is
its ability to directly incorporate sharp creases into the block decom-
position. Methods that work in the dual space typically use snapping
to place edges on the creases after dualization. Similarly, methods
based on a parameterization snap function values to make sure that
each crease is interpolated by an integer isoline. Both procedures
are inherently fragile, and may introduce poor (or even flipped)
elements in the mesh. Using LoopyCuts features can be directly
incorporated into the metamesh as surface edges, and therefore
reproduced exactly into the resulting mesh (Figure 14). As Figure 15
shows it fully supports non-geometric features; any curve defined
on the surface can be tagged as a feature and either used for cut-
ting, or just included in the metamesh as a chain of surface edges.
We currently support feature curves made of chains of consecutive
mesh edges; isolated (point-like) features could also be addressed
by tracing two orthogonal loops starting from each such point.

Mesh structure. As discussed in [Cherchi et al. 2016; Gao et al.
2017b] hexmeshes with a coarse block structure are preferable in a
variety of engineering applications, e.g. because they can be encoded
more efficiently, and their domains can be used to fit tensor products

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:12 • Livesu, M. et al

Fig. 16. A gallery of full hexahedral meshes of CAD models produced with our method.

Fig. 17. A gallery of hex dominant meshes of CAD models produced with our method.

to solve PDEs with IGA. Our meshes are primarily driven by the
input field, which is then propagated inwards by the cutting system.
As demonstrated by the output cross-sections shown, the internal
structure of our meshes is coarser and more regular compared to
those produced by octree-based methods, on par with polycube and
frame field methods (Figure 21).

Comparison with [Takayama 2019]. Takayama propose a system
to create hexahedral meshes by interactively tracing dual sheets.
While there are fundamental differences between the two methods
(dual vs primal, interactive vs fully automatic) there are also a few
analogies. We both use HRBF to define cuts, and both use a reference

tetrahedral mesh to store information about blocks and to extract
the final mesh. As Figure 22 shows the meshes produced by the two
systems are of comparable quality. However, as acknowledged by
the author, designing a mesh in the dual space is quite challenging,
and the generation of complex models like the bunny may take
hours of work even for experts. Additionally, due to implementation
constraints, the system proposed in [Takayama 2019] cannot use
cuts that do not globally split the object in multiple connected
components, making meshing impossible on objects with non-zero
genus, such as the torus. Our system supports such cuts.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

LoopyCuts: Practical Feature-Preserving Block Decomposition
for Strongly Hex-Dominant Meshing • 1:13

Fig. 18. A gallery of hexahedra meshes of organic and synthetic models
produced with our method.

Fig. 19. A gallery of hex dominant meshes of organic models produced with
our method.

Customization. Our LoopyCuts algorithm is fully automatic, but
can support different controls for customizing the block decomposi-
tion. In particular, users can: (i) prescribe a customized cut sequence;
(ii) manually pair loops to define cuts that interpolate multiple cy-
cles; (iii) mark an open or closed curve as a feature, in order to
incorporate it in the metamesh; (iv) customize convergence, stop-
ping the cutting process at any moment. Figure 23 demonstrates the
use of a subset of these features to produce a coarse full hexahedral
mesh of a model with complex feature lines for which the automatic
mode produces a dense hybrid mesh.

Implementation details. We implemented LoopyCuts as a single
threaded C++ application, using VCG [Visual Computing Lab 2018]
for field processing, CinoLib [Livesu 2017] for polyhedral meshes,
Tetgen [Si 2015] for tetrahedralization, and Eigen [Guennebaud
et al. 2010] for numerics. Cross fields aligned to line features and
surface curvature were computed using MIQ [Bommes et al. 2009]
and PolyVector Fields [Diamanti et al. 2014]. Sharp creases were
automatically detected by thresholding dihedral angles, whereas
other features were manually marked. Note that both field com-
putation and feature detection are external to our algorithm, and
alternative techniques may be used. LoopyCuts is agnostic to how
this information is computed.

[Gao et al. 2019] [Takayama 2019] Loopy Cuts
Bone 0.41/0.80 0.05/0.74 0.43/0.86 -0.43/0.85 0.47/0.89
Bunny 0.29/0.79 -0.77/0.74 -0.78/0.81 -0.37/0.88 0.45/0.91
Joint 0.19/0.88 0.25/0.93 0.69/0.96 0.39/0.87 0.72/0.95
Rod 0.04/0.81 0.22/0.76 0.55/0.87 0.10/0.84 0.32/0.93

Table 2. Element quality comparisons against [Gao et al. 2019]
and [Takayama 2019]. For each method we report minimum and aver-
age Scaled Jacobians. Note that [Gao et al. 2019] already optimize their
meshes for maximum quality, while [Takayama 2019] and LoopyCuts do
not. For these latter methods we therefore report quality before and after
mesh optimization, performed with [Livesu et al. 2015].

8 CONCLUSIONS
We presented a new approach to block-decomposition for hex-
dominant meshing. As demonstrated LoopyCuts outperforms prior
hex-dominant meshing methods providing pure hexahedral meshes
for 76% of the inputs, and hybrid meshes with less than 2% of non-
hexahedral cells for the remaining ones. Our strategic choice to
operate directly on the primal mesh allows us to preserve all input
feature curves, contrary to many prior approaches. Our technical
contributions consist of: a novel method to trace geodesic field
aligned closed loops; the definition of a metric that induces a regu-
lar sampling of such loops on the surface; and a robust algorithm to
transform a labeled tetrahedral mesh into a polyhedral mesh. We
will release our data and a reference implementation of LoopyCuts
in a public GitHub repository. In particular, pure hexahedral meshes
will be shared on Hexalab [Bracci et al. 2019].

Limitations and Future work. While we obtained valid results
on all the models we processed, there is no theoretical guarantee
that the decomposition produced from a given sequence of loops
will satisfy all topological and geometric constraints. We envision
three potential failure cases. First, our loop formation strategy relies
on the underlying cross-field. On surfaces where the cross field
directions change multiple times, the resulting loops may be too
complicated or the tracing may not be able to close loops properly,
avoiding self-intersections. Second, tangential intersection between
cuts may create inner pockets and force the algorithm to revert the
majority of the cuts, leading to an incomplete decomposition where
the topology of each block is not rich enough to define a proper
polyhedron. Lastly, we cannot guarantee that the loop set defined
in Section 4 is large enough to accommodate a valid decomposi-
tion of the input object. Our method can produce valid but poor
quality meshes in two known scenarios: when the field has a poor
singularity layout, exhibiting close by sin-
gular vertices that trigger an uneven dis-
tribution of sampled loops (this resulted in
the uneven meshing of the Sphinx in Fig-
ure 20, see inset) or when long and highly
non planar loops traverse surface regions
with high normal variation. Cuts associ-
atedwith such loopsmay be poorly shaped,
producing decompositions that do not tightly conform to the input
driving field. While rare, a few such configurations occurred dur-
ing our experiments (Figure 24). Finally, a practical limitation of
our current implementation stems from the fact that we use simple

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:14 • Livesu, M. et al

Fig. 20. Visual comparison between Loopy cuts (LC) and the polyhedral agglomeration (PA) method proposed in [Gao et al. 2017a]. LC produces hexahedral
meshes for many of their results. In all the other cases, the amount of non hexahedral elements (in red) never exceeds 2%, significantly less than PA.

Laplacian smoothing to relax mesh vertices after midpoint refine-
ment. Therefore, currently produced meshes may contain elements
with negative Jacobian, or have minor local projection flaws intro-
duced by the smoother. These defects can be addressed with more
advanced optimization schemes, see Figure 14 and Table 2, where
a few meshes have been optimized using [Livesu et al. 2015] and
compared with [Gao et al. 2019; Livesu et al. 2013; Takayama 2019].

Our method can be augmented with additional user controls. Fur-
ther indirect control can be provided by editing the guiding surface
field using interactive tools such as those described by [Jakob et al.
2015]. Such tools can be used to prescribe additional soft constraints
on the meshing process promoting alignment to secondary features
or symmetries. Addressing all the above aspects is an interesting
avenue for future research.

ACKNOWLEDGMENTS
We are deeply grateful to Nicholas Vining for help with paper editing
and proofing. This work is supported by NSERC and by the Italian
Ministry of Education, University and Research under Program
PRIN 2015, Project DSurf, Grant N .2015B8TRFM002.

REFERENCES
T. Blacker. 1996. The Cooper Tool. In Proc. 5th Int. Meshing Roundtable. 13–29.
T. Blacker. 2000. Meeting the challenge for automated conformal hexahedral meshing.

In Proc. 9th Int. Meshing Roundtable. 11–20.
I. Boier-Martin, H. Rushmeier, and J. Jin. 2004. Parameterization of triangle meshes

over quadrilateral domains. In Proc. Eurographics Symp. on Geom. Proc. 193–203.
D. Bommes, H. Zimmer, and L. Kobbelt. 2009. Mixed-integer quadrangulation. ACM

Trans. Graph. 28, 3 (2009), 77.
M. Bracci, M. Tarini, N. Pietroni, M. Livesu, and P. Cignoni. 2019. HexaLab. net: an

online viewer for hexahedral meshes. Computer-Aided Design 110 (2019), 24–36.
M. Campen, D. Bommes, and L. Kobbelt. 2012. Dual loops meshing: quality quad layouts

on manifolds. ACM Trans. Graph. 31, 4 (2012), 110.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

LoopyCuts: Practical Feature-Preserving Block Decomposition
for Strongly Hex-Dominant Meshing • 1:15

Fig. 21. Hexahedral meshes of the Bimba model, obtained with an octree
method [Gao et al. 2019], a polycubemethod [Fu et al. 2016], and LoopyCuts.
The octree method’s output does not align with surface curvature, and has
a dense singular structure where each hexahedron is a separate 1×1×1
domain of the base complex. Our cutting method is guided by a surface
field, and – similarly to polycubes – generates a sparse singular structure
that aligns with the boundary, producing a coarse block layout.

N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart. 2006. RectangularMulti-chart Geometry
Images. In Proc. Eurographics Symp. on Geom. Proc. 181–190.

G. Cherchi, M. Livesu, and R. Scateni. 2016. Polycube Simplification for Coarse Layouts
of Surfaces and Volumes. Comput. Graph. Forum 35, 5 (2016), 11–20.

E. Corman and K. Crane. 2019. Symmetric Moving Frames. ACM Trans. Graph. 38, 4
(2019), 1–16.

M. Corsini, P. Cignoni, and R. Scopigno. 2012. Efficient and Flexible Sampling with
Blue Noise Properties of Triangular Meshes. IEEE Trans. Vis. Comput. Graph. 18, 6
(June 2012), 914–924.

J. Daniels II, C. T. Silva, and E. Cohen. 2009. Semi-regular Quadrilateral-only Remeshing
from Simplified Base Domains. Comput. Graph. Forum 28 (July 2009), 1427–1435.

Fig. 22. Hexmeshes obtained semi-manually using dual sheet model-
ing [Takayama 2019] (left) and LoopyCuts (right). While the meshes have
comparable quality, manually designing a hexmesh in the dual space is a
complex process that may takes hours even for experts. Loopy cuts took 112
and 47 seconds to automatically hexmesh the Bunny and Rod, respectively.

Fig. 23. Left: in automatic mode LoopyCuts produces a dense hybrid mesh.
Non hexahedral elements are induced by cuts that deviate from the sharp
creases (middle). Right: In user-assisted mode users can selectively apply
only the wanted cuts, producing amuch coarser full hexahedral mesh (right).

Fig. 24. Complex long loops that traverse surface areas with high normal
variation may introduce poor cuts (left), that eventually produce a mesh
where the surface edge flow is not compliant with the input cross field
(right). In our experimentation we encountered only a few pathological
cases of this kind, over more than a hundred models tested.
F. de Goes, M. Desbrun, and Y. Tong. 2016. Vector field processing on triangle meshes.

In ACM SIGGRAPH 2016 Courses. ACM, 27.
D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. 2003. Suggestive Contours

for Conveying Shape. ACM Trans. Graph. 22, 3 (2003), 848–855.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:16 • Livesu, M. et al

O. Diamanti, A. Vaxman, D. Panozzo, and O. Sorkine-Hornung. 2014. Designing N -
PolyVector Fields with Complex Polynomials. Comput. Graph. Forum 33, 5 (2014),
1–11.

A. Doi and A. Koide. 1991. An efficient method of triangulating equi-valued surfaces
by using tetrahedral cells. IEICE Trans. Inf. and Sys. E74, 1 (1991), 214–224.

X. Fang,W. Xu, H. Bao, and J. Huang. 2016. All-hexMeshing Using Closed-form Induced
Polycube. ACM Trans. Graph. 35, 4 (2016), 124:1–124:9.

X.-M. Fu, C.-Y. Bai, and Y. Liu. 2016. Efficient Volumetric PolyCube-Map Construction.
In Comput. Graph. Forum, Vol. 35. 97–106.

S. Gao, Z. Zheng, R. Wang, Y. Liao, and M. Ding. 2018. Dual Surface Based Approach to
Block Decomposition of Solid Models. In Proc. 27th Int. Meshing Roundtable.

X. Gao, Z. Deng, and G. Chen. 2015. Hexahedral mesh re-parameterization from aligned
base-complex. ACM Trans. Graph. 34, 4 (2015), 142.

X. Gao, W. Jakob, M. Tarini, and D. Panozzo. 2017a. Robust Hex-dominant Mesh
Generation Using Field-guided Polyhedral Agglomeration. ACM Trans. Graph. 36, 4
(July 2017), 114:1–114:13.

X. Gao, D. Panozzo, W. Wang, Z. Deng, and G. Chen. 2017b. Robust structure simplifi-
cation for hex re-meshing. ACM Trans. Graph. 36, 6 (2017), 185.

X. Gao, H. Shen, and D. Panozzo. 2019. Feature Preserving Octree-Based Hexahedral
Meshing. In Comput. Graph. Forum, Vol. 38. 135–149.

J. Gregson, A. Sheffer, and E. Zhang. 2011. All-Hex Mesh Generation via Volumetric
PolyCube Deformation. Comput. Graph. Forum 30, 5 (2011), 1407–1416.

G. Guennebaud, B. Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org. (2010).
J. Huang, T. Jiang, Z. Shi, Y. Tong, H. Bao, and M. Desbrun. 2014. L1-Based Construction

of Polycube Maps from Complex Shapes. ACM Trans. Graph. 33, 3 (2014), 25.
J. Huang, Y. Tong, H. Wei, and H. Bao. 2011. Boundary aligned smooth 3D cross-frame

field. In ACM Trans. Graph., Vol. 30. ACM, 143.
Y. Ito, A. M. Shih, and B. K. Soni. 2009. Octree-based reasonable-quality hexahedral

mesh generation using a new set of refinement templates. Int. Jou. Num. Meth. Eng.
77, 13 (2009), 1809–1833.

W. Jakob, M. Tarini, D. Panozzo, and O. Sorkine-Hornung. 2015. Instant field-aligned
meshes. ACM Trans. Graph. 34, 6 (2015), 189–1.

T. Jiang, J. Huang, Y. Wang, Y. Tong, and H. Bao. 2014. Frame field singularity correction
for automatic hexahedralization. IEEE Trans. Vis. Comput. Graph. 20, 8 (2014), 1189–
1199.

F. Kälberer, M. Nieser, and K. Polthier. 2007. QuadCover: Surface Parameterization
using Branched Coverings. Comput. Graph. Forum 26, 3 (2007), 375–384.

N. Kowalski, F. Ledoux, and P. Frey. 2016. Smoothness driven frame field generation
for hexahedral meshing. Computer-Aided Design 72 (2016), 65–77.

Nicolas Kowalski, Franck Ledoux, Matthew L Staten, and Steve J Owen. 2012. Fun
sheet matching: towards automatic block decomposition for hexahedral meshes.
Engineering with Computers 28, 3 (2012), 241–253.

M. Lanthier, A. Maheshwari, and J.-R. Sack. 2001. Approximating shortest paths on
weighted polyhedral surfaces. Algorithmica 30, 4 (2001), 527–562.

B. Lévy and Y. Liu. 2010. Lp Centroidal Voronoi Tesselation and its Applications. ACM
Trans. Graph. 29, 4 (2010), 119.1–119.11.

T. S. Li, R. M. McKeag, and C. G. Armstrong. 1995. Hexahedral meshing using midpoint
subdivision and integer programming. Comput. Methods App. Mech. Eng. 124, 1-2
(1995), 171–193.

Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo. 2012. All-hex Meshing Using Singularity-
restricted Field. ACM Trans. Graph. 31, 6 (2012), 177.1–177.11.

H. Lin, S. Jin, H. Liao, and Q. Jian. 2015. Quality Guaranteed All-hex Mesh Generation
by a Constrained Volume Iterative Fitting Algorithm. Computer-Aided Design 67, C
(2015), 107–117.

H. Liu, P. Zhang, E. Chien, J. Solomon, and D. Bommes. 2018. Singularity-constrained
octahedral fields for hexahedral meshing. ACM Trans. Graph. 37, 4 (2018), 93.

S. Liu and R. Gadh. 1997. Automatic Hexahedral Mesh Generation by Recursive Convex
and Swept Volume Decomposition. In Proc. 6th Int. Meshing Roundtable. 217–231.

M. Livesu. 2017. cinolib: a generic programming header only C++ library for processing
polygonal and polyhedral meshes. https://github.com/mlivesu/cinolib/. (2017).

M. Livesu, M. Attene, G. Patané, and M. Spagnuolo. 2017. Explicit Cylindrical Maps for
General Tubular Shapes. Computer-Aided Design 90 (2017), 27 – 36.

M. Livesu, A. Muntoni, E. Puppo, and R. Scateni. 2016. Skeleton-driven Adaptive
Hexahedral Meshing of Tubular Shapes. Comput. Graph. Forum 35, 7 (2016), 237–
246.

M. Livesu, A. Sheffer, N. Vining, and M. Tarini. 2015. Practical Hex-Mesh Optimization
via Edge-Cone Rectification. ACM Trans. Graph. 34, 4 (2015).

M. Livesu, N. Vining, A. Sheffer, J. Gregson, and R. Scateni. 2013. PolyCut: Monotone
Graph-Cuts for PolyCube Base-Complex Construction. ACM Trans. Graph. 32, 6
(2013).

J. H.-C. Lu, W. R. Quadros, and K. Shimada. 2017. Evaluation of user-guided semi-
automatic decomposition tool for hexahedral mesh generation. Jou. Comput. Design
Eng. 4, 4 (2017), 330–338.

I. Macêdo, J. P. Gois, and L. Velho. 2011. Hermite Radial Basis Functions Implicits.
Comput. Graph. Forum 30, 1 (2011), 27–42.

L. Maréchal. 2009. Advances in Octree-Based All-Hexahedral Mesh Generation: Han-
dling Sharp Features. In Proc. 18th Int. Meshing Roundtable. 65–84.

S. Meshkat and D. Talmor. 2000. Generating a mixed mesh of hexahedra, pentahedra
and tetrahedra from an underlying tetrahedral mesh. Int. Jou. Num. Meth. Eng. 49,
1-2 (2000), 17–30.

K. Miyoshi and T. Blacker. 2000. Hexahedral Mesh Generation Using Multi-Axis Cooper
Algorithm. In Proc. 9th Int. Meshing Roundtable. 89–97.

M. Nieser, U. Reitebuch, and K. Polthier. 2011. CubeCover - Parameterization of 3D
Volumes. Comput. Graph. Forum 30, 5 (2011), 1397–1406.

Steven Owen. 2009. A Survey of Unstructured Mesh Generation Technology.
http://www.andrew.cmu.edu/user/sowen/survey/hexsurv.html. (2009).

J. Pellerin, A. Johnen, and J.-F. Remacle. 2017. Identifying combinations of tetrahedra
into hexahedra: a vertex based strategy. Procedia Engineering 203 (2017), 2–13. 26rd
International Meshing Roundtable (IMR26).

N. Pietroni, E. Puppo, G. Marcias, R. Scopigno, and P. Cignoni. 2016. Tracing Field-
Coherent Quad Layouts. Comput. GraphḞorum 35, 7 (2016), 485–496.

W. R. Quadros. 2014. LayTracks3D: A New Approach to Meshing General Solids using
Medial Axis Transform. Procedia Engineering 82 (2014), 72 – 87. 23rd International
Meshing Roundtable (IMR23).

N. Ray, D. Sokolov, M. Reberol, F. Ledoux, and B. Levy. 2018. Hex-dominant meshing:
mind the gap! Computer-Aided Design 102 (2018), 94–103.

E. Ruiz-Gironés, X. Roca, and J. Sarrate. 2011. Using a computational domain and a
three-stage node location procedure for multi-sweeping algorithms. Advances in
Eng. Software 42, 9 (2011), 700–713.

R. Schneiders. 1996. A grid-based algorithm for the generation of hexahedral element
meshes. Eng. with Computers 12, 3 (1996), 168–177.

A. Sheffer, M. Etzion, A. Rappoport, and M. Bercovier. 1999. Hexahedral Mesh Gen-
eration using the Embedded Voronoi Graph. Eng. with Computers 15, 3 (1999),
248–262.

J. F. Shepherd and C. R. Johnson. 2008. Hexahedral mesh generation constraints. Eng.
with Computers 24, 3 (2008), 195–213.

H. Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans.
Math. Software 41, 2 (2015), 11.

D. Sokolov, N. Ray, L. Untereiner, and B. Lévy. 2016a. Hexahedral-Dominant Meshing.
ACM Trans. Graph. 35, 5 (2016), 157:1–157:23.

Dmitry Sokolov, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. 2016b. Hexahedral-
dominant meshing. ACM Transactions on Graphics (TOG) 35, 5 (2016), 1–23.

J. Solomon, A. Vaxman, and D. Bommes. 2017. Boundary element octahedral fields in
volumes. ACM Trans. Graph. 36, 3 (2017), 28.

K. Takayama. 2019. Dual Sheet Meshing: An Interactive Approach to Robust Hexahe-
dralization. Comput. Graph. Forum 38, 2 (2019), 37–48.

M. Tarini, K. Hormann, P. Cignoni, and C. Montani. 2004. Polycube-maps. In ACM
Trans. Graph., Vol. 23. ACM, 853–860.

A. Vaxman, M. Campen, O. Diamanti, D. Panozzo, D. Bommes, K. Hildebrandt, and
M. Ben-Chen. 2016. Directional field synthesis, design, and processing. In Comput.
Graph. Forum, Vol. 35. 545–572.

Visual Computing Lab. 2018. The VCG Library. Italian National Research Council -
ISTI. http://vcg.isti.cnr.it/vcglib/

R. Wang, C. Shen, J. Chen, H. Wu, and S. Gao. 2017. Sheet operation based block
decomposition of solid models for hex meshing. Computer-Aided Design 85 (2017),
123 – 137. 24th International Meshing Roundtable (IMR24).

S. Yamakawa and K. Shimada. 2002. Hex-dominant mesh generation with directionality
control via packing rectangular solid cells. In Proc. Geometric Modeling and Processing.
IEEE, 107–118.

Q. Zhou and A. Jacobson. 2016. Thingi10k: A dataset of 10,000 3d-printing models.
arXiv preprint arXiv:1605.04797 (2016).

A COMPUTING CUTTING LOOPS

A.1 Field-coherent loops
Following [Kälberer et al. 2007], the four com-
ponents of a cross field X can be separated on
a stratification M4 of manifold M into four
sheets, defined as follows (inset). For every
point p of M, except the singularities of X,
consider four copies p0, p π

2
, pπ and p 3

2 π
, each

consisting of p together with one of the four
directions of X at p, such that p0 = −pπ and
p π

2
= −p 3

2 π
. We call each such copy pθ of p a

point-arrow meaning that it incorporates both a position on M and
a direction on its tangent space. SpaceM4 consists of four sheets,

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

http://vcg.isti.cnr.it/vcglib/

LoopyCuts: Practical Feature-Preserving Block Decomposition
for Strongly Hex-Dominant Meshing • 1:17

Fig. 25. Tracing loops along curve features requires modifying the graph G

to avoid the endpoint singularities: we consider the triangles on one side of
a curve feature (a), we choose the Steiner points of G of that side (b) and
we weight to zero the red arcs inside the corridor (c), and inhibit the green
arcs exiting from the corridor (d).

each corresponding toM less the singularities of X, such that the
point-arrows pθ defined above are distributed among the layers
to form a smooth direction field (see inset). Generally speaking,
if X has singularities, the direction field on M4 turns about such
singularities, thus sliding between different sheets, andM4 consists
of a single connected component. SpaceM2 is the quotient space
of M4 obtained by identifying pairs of point-arrows pθ and −pθ ,
thus consisting of two sheets, each endowing a line field. Manifold
M can be also seen as a quotient space of M4, by identifying the
four point-arrows at each point p.
Following [Pietroni et al. 2016], a smooth (oriented) curve ℓ on

M4 is said to be a field-coherent path if its tangent direction at
all points does not differ for more than π/4 from the underlying
direction field on M4 (pink wedges in the inset). With abuse of
notation, we denote by ℓ also the corresponding curves on M2 and
M, regarded as quotient spaces ofM4. Two paths ℓ1 and ℓ2 are said
to intersect tangentially if they intersect inM2; while they intersect
orthogonally if they intersect in M but they do not intersect in M2.
The drift of a field-coherent path w.r.t. X comes from the angle

between the direction field and the tangent of ℓ at each point along
it. We adopt an anisotropic metric on M4 that increases the length
of a path proportionally to its amount of drift:

∥w ∥X = |w |(1 + α
∡(pθ ,w)

π/4
) (3)

wherew is a tangent vector at p, |w | is its Euclidean norm, pθ is the
reference direction onM4, ∡measures the unsigned angle between
a pair of vectors, and α is a parameter that tunes the amount of
penalty for the drift. A field-coherent geodesic path between to point-
arrows on M4 is a field-coherent path joining them that is shortest
according to the above metric. We define a field-coherent geodesic
loop to be a non-null field-coherent geodesic path that starts and
ends at the same point.

A.2 Tracing loops
We trace field-coherent geodesic loops with the discrete graph-based
approach of [Pietroni et al. 2016], which brings to the stratified

structure M4 the technique of [Lanthier et al. 2001] to evaluate
geodesic paths and distances. In short, in [Lanthier et al. 2001]
shortest paths and distances are found by a Dijkstra search on an
extended graph G, which is built overM edges and vertices, plus
Steiner points sampled on edges and arcs connecting vertices of
M and Steiner points across each triangle. In our case, four point-
arrows are generated per vertex and per Steiner point, which are
properly arranged onM4, and just field-coherent arcs connecting
them are considered. The graph G is built once, and used in all
subsequent processing. One important advantage of this method
is that crossings and overlaps of paths can be handled in a robust,
combinatorial way that does not involve numerics: it is possible
to precisely identify whether two paths intersect orthogonally or
tangentially by simply comparing arcs that belong to the same
triangle ofM and checking their underlying direction fields.

Measuring distances. Given a set of loops L, each represented
with a polyline, and a loop ℓ not belonging toL, we evaluate distance
d(L, ℓ), as defined in Section 4.2 as follows. We set a source for each
node of graphG traversed by each loop ℓi ∈ L andwe run a Dijkstra
propagation. Then distance d(L, ℓ) is computed, after propagation,
by collecting distances at all nodes traversed by ℓ. Note that a single
Dijkstra propagation is sufficient to set distances at all nodes of G,
thus it is sufficient to evaluate distances from all loops in a pool of
candidate loops.

Constrained propagation. Given a set of constraints L, as in Sec-
tion 4.5, we prevent any new loops from tangentially intersecting
loops in L by blocking Dijkstra propagation along arcs in G that
are orthogonal to those arcs belonging to paths already in L.

A.3 Extending features to loops
In order to force loops to run along line features, we modify the
graph G as follows:

• Given a line feature f , we create two corridors, each made of
a strip of triangles of M incident at f , one for each side of f
(see Figure 25.a);

• For each face in a corridor, we consider all Steiner nodes of
G that are coherent with the direction of f and that lie on
edges crossing the corridor (see Figure 25.b);

• We reduce the weight of arcs connecting pairs of such nodes
in the corridor (green arcs in Figure 25.c);

• We inhibit all arcs that connect such nodes with nodes at the
boundary of the corridor (red arcs in Figure 25.d).

For each line feature f , we create one seed node per side of f
and we trace a set of candidate loops from all such nodes. Note that,
in the modified graph, each path that enters a corridor is forced
to traverse it totally, and paths traversing several corridors (i.e.,
joining or bridging different line features) are favoured because of
their reduced cost (see Figure 7.d). Note that each feature may be
traversed by multiple loops in the set of candidates. In the process
of generating the loops that extends line features we select loops in
a greedy manner, preferring the ones that span the largest length of
open features.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Computing Cutting Loops
	4.1 Preliminaries
	4.2 Field-Coherent Loops
	4.3 Adding Feature Loops
	4.4 Sampling Further Loops
	4.5 Loop tracing and sampling in a discrete setting
	4.6 Output from the discrete process

	5 Block decomposition
	5.1 The metamesh: tetrahedra, blocks and cells
	5.2 Cutting the volume

	6 Hex-dominant meshing
	7 Results
	8 Conclusions
	Acknowledgments
	References
	A Computing cutting loops
	A.1 Field-coherent loops
	A.2 Tracing loops
	A.3 Extending features to loops

