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Fig. 1. We propose a novel set of dual schemes to turn an adaptively refined grid into a conforming hexahedral mesh. Compared with prior methods, our
schemes allow to process a broader class of input grids, and produce coarser hexahedral meshes with a simpler singular structure.

Hexahedral meshes are an ubiquitous domain for the numerical resolution
of partial differential equations. Computing a pure hexahedral mesh from an
adaptively refined grid is a prominent approach to automatic hexmeshing,
and requires the ability to restore the all hex property around the hanging
nodes that arise at the interface between cells having different size. The
most advanced tools to accomplish this task are based on mesh dualization.
These approaches use topological schemes to regularize the valence of inner
vertices and edges, such that dualizing the grid yields a pure hexahedral
mesh. In this paper we study in detail the dual approach, and propose
four main contributions to it: (i) we enumerate all the possible transitions
that dual methods must be able to handle, showing that prior schemes
do not natively cover all of them; (ii) we show that schemes are internally
asymmetric, therefore not only their construction is ambiguous, but different
implementative choices lead to hexahedral meshes with different singular
structure; (iii) we explore the combinatorial space of dual schemes, selecting
the minimum set that covers all the possible configurations and also yields
the simplest singular structure in the output hexmesh; (iv) we enlarge the
class of adaptive grids that can be transformed into pure hexahedral meshes,

relaxing the tight topological requirements imposed by previous approaches.

Our extensive experiments show that our transition schemes consistently
outperform prior art in terms of ability to converge to a valid solution,
amount and distribution of singular mesh edges, and element count. Last
but not least, we publicly release our code and reveal a conspicuous amount
of technical details that were overlooked in previous literature, lowering an
entry barrier that was hard to overcome for practitioners in the field.
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1 INTRODUCTION

Volumetric discretizations made of hexahedral cells are ubiquitous in
applied sciences, where they are used as computational domains for
the numerical resolution of partial differential equations [Schneider
et al. 2019; Wang et al. 2004, 2021]. Converting an adaptively refined
grid into a pure hexahedral mesh is one of the prominent approaches
to hexmeshing, and due to its unbeaten scalability and robustness is
the only fully automatic method that successfully transitioned from
academic research to industrial software [CoreForm 2020; Dassault
Systémes 2020].

Grid-based methods operate on carefully constructed lattices.
When adaptive grids are used, hanging nodes arising at the inter-
face between cells with different size are substituted by dedicated
topological schemes that locally restore the all hex connectivity and
provide the necessary conforming transitions . For ease of imple-
mentation and reproduction, the number of these schemes must be
low. At the same time, the scheme set must be rich enough to exhaus-
tively address all the possible configurations, such that convergence
to a conforming pure hexahedral mesh is always guaranteed.
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Fig. 2. The number of hexahedra incident to an edge directly impacts the maximum per element quality locally achievable. For each configuration, we show
edge valence and the best Minimum Scaled Jacobian that can be obtained from such connectivity . Our schemes always generate edges with valence between
3 and 6. On the dataset released with [Gao et al. 2019], both [Maréchal 2009] and [Gao et al. 2019] introduce singular edges with higher valence.

Early approaches unsuccessfully tried to directly incorporate
hanging nodes in the hexmesh, but this operation is not always
possible (Section 2). Maréchal [2009] was the first to observe that if
all grid vertices have six incident edges and all edges have four inci-
dent cells, then the dual of the grid yields only hexahedral elements.
The schemes he proposed operate on small groups of nearby hang-
ing nodes, regularizing their valence (i.e., the number of incident
edges) . In this paper, we dive into the details of the dual approach,
clarifying some ambiguous aspects of previous methods and also
introducing novel topological schemes that overcome the known
ones, permitting to obtain — for the same input grids — conforming
hexahedral meshes with lower element count and simpler singular
structure. Specifically, this article offers four main contributions.

Exhaustivity: we show that the original schemes proposed by
Maréchal [2009] and by [Gao et al. 2019; Hu et al. 2013] are not
exhaustive, in the sense that they only show the basic transitions,
without explicitly deriving the full scheme set that is necessary to
handle any possible configuration. Specifically, considering the class
of adaptive grids that can be processed with these methods, there
exist exactly 20 alternative transitions (Figure 3). As detailed in Sec-
tion 5, handling all transitions requires a non trivial blending of the
known elementary schemes, which was never addressed in previous
literature. Our analysis also revealed that previous approaches may
occasionally fail to produce a valid mesh (Section 7.2). Conversely,
our schemes are guaranteed to always produce the correct result.

Ambiguity: we show that prior schemes are ambiguous, because
transitions are internally made of chains of prismatic elements that
intersect orthogonally, passing one on top of the other. It follows
that schemes are internally asymmetric, and there are always two
possible ways to handle an intersection. In flat regions two chains
intersect once, hence there are two alternative ways to implement
them. Concave edges have three chains that intersect twice, hence
there are 22 configurations. Concave corners involve three chains
that intersect three times, hence there are 23 configurations. Inter-
estingly, these choices are often critical, as they may negatively
impact the singular structure of the output mesh.

Optimality: we explore the combinatorial space of dual schemes,
proving that there are multiple ways to bend a chain of prisms
around a concavity and that each method produces a dual hexmesh
with different singular structure. We also show that we can avoid
high valence edges by wisely selecting the best intersections. In
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this sense our schemes are optimal because, among all the possi-
ble chain intersections, they choose the ones that minimize edge
valences. Existing tools based on [Gao et al. 2019; Maréchal 2009]
unnecessarily insert edges with higher valence, negatively affecting
mesh quality (Figure 2).

Weak balancing: we extend the class of adaptive grids that can
be transformed into pure hexahedral meshes. Prior schemes require
the input grid to be (strongly) balanced, meaning that the difference
in the amount of refinement associated with any pair of cells shar-
ing an edge, face or vertex must be lower than 2. We introduce a
few additional schemes that permit input grids to obey to a weaker
definition of balancing, where only face-adjacent cells must have
compatible refinement. This extension allows to greatly reduce the
number of mesh elements, introducing up to 64% less hexahedra in
the output mesh for same input grid.

Summarizing, this study offers a comprehensive overview — and
hopefully a better understanding - of the transition schemes for
grid-based hexmeshing, also proposing novel ideas and advancing
the field. The schemes proposed in this paper make explicit for the
first time the full set of transitions that are necessary to process an
adaptively refined grid, and also substantially enlarge the class of in-
put grids that can be converted into a conforming hexahedral mesh.
We performed extensive comparative tests on multiple datasets [Gao
et al. 2019; Zhou and Jacobson 2016], producing more than 20 thou-
sand hexahedral meshes overall. Based on these results, we can
conclude that our schemes are consistently superior than prior art
in terms of ability to produce a valid result (i.e., conforming, all-hex),
mesh singular structure, and element count (Section 7). To grant
maximal diffusion, we publicly share the complete set of schemes
and the code necessary to install them. All these contributions have
been incorporated into the MIT licensed library CinoLib [Livesu
2019].

2 RELATED WORKS

Grid-based hexahedral meshing was pioneered by Schneiders, who
firstly proposed to use regular voxel grids [Schneiders 1996], and
soon later introduced adaptively refined grids, obtained through the
use of octrees [Schneiders et al. 1996]. Octrees had already been used
for adaptive mesh generation, but they were unsuitable to hexmesh-
ing because there were no topological schemes to suppress hanging
nodes, and there were no bounds on the topological complexity of
each cell [Shephard and Georges 1991].
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Fig. 3. Exhaustive set of all possible transitions that may arise in an adaptive grid with two alternative levels of refinement. Values next to each cube denote
the number of octants filled with a regular 4x 4x 4 sub-grid (blue). The red-shaded empty octants can be imagined filled with a coarser 2x 2X 2 sub-grid,

which is not rendered to make the figure easier to parse. These cases can be seen as a volumetric interpretation of the lookup table shown in [Nielson 2004].
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not document the exhaustive set of schemes that are necessary to
handle all the possible transitions described in Figure 3 . Based on
the same principles, we independently derived an optimal set of
schemes, for which we demonstrate both exhaustiveness and opti-
mality, in the sense that they produce coarser meshes with simpler
singular structure.

In recent years a few variations of the dual approach have been
proposed. Hu and colleagues [2013] propose to position transition
schemes at the inner sides of refined areas, reducing their volumetric
extent. The idea is to essentially shift the same schemes one level in-
wards in the grid, without changing them. Gao and colleagues [2019]
proposed to dualize the grid first, and then substitute clusters of
non-hexahedral elements with templated all-hex schemes which
reproduce patterns very similar to the ones designed by Maréchal.
Also these schemes are not exhaustive and, as discussed in Sec-
tion 7.2, the method implemented in [Gao et al. 2019] may fail to
produce a conforming hexahedral mesh. None of these prior meth-
ods supports weakly balanced grids, and necessitate to over-refine
the input grid to meet more stringent topological criteria for con-
forming hexmeshing.

Grid-based meshing pipeline. Transition schemes for conforming
hexahedral meshing are just a single building block of a more com-
plex pipeline. Typically, the process starts from a coarse regular
grid, which is adaptively refined to meet geometric or numerical
accuracy. The so generated grid is then further refined to make
it topologically suitable for hexahedral meshing [Maréchal 2009].
Transition schemes like ours are then used to secure mesh confor-
mity, and the relevant portion of the grid is extracted, discarding
unnecessary cells. Depending on the application, only the interior
or the exterior can be retained. For example, the typical goal of
FEM analysis is to discover stresses internal to the object, whereas
CFD is more concerned with the dynamics happening outside of
it (e.g., around the wing of an airplane). The simulation domain
is finalized by projecting its boundary onto the target geometry,
possibly preserving its feature lines [Gao et al. 2019; Lin et al. 2015].
Since many cuboids may have more than one facet exposed on
the surface (or more than one edge participating in a feature line),
mesh padding is used to improve mesh topology, ensuring that no
element becomes degenerate during the projection [Cherchi et al.
2019]. At the end of this process, the so generated mesh is ready for
use and can be coupled with the numerical solver of choice. While
this article is fully focused on the topological templates that ensure
mesh conformity, each one of the building blocks mentioned above
has a dedicated line of research. Our schemes are compatible with
any existing grid-based meshing pipeline.

Other pipelines. Hexahedral meshing is a vast topic, and a variety
of alternative techniques have been proposed in literature, such as
polycubes [Fang et al. 2016; Fu et al. 2016; Gregson et al. 2011; Huang
et al. 2014; Livesu et al. 2013], advancing front methods [Kremer
et al. 2014], sweeping methods [Gao et al. 2015], and methods that
align to some guiding field [Corman and Crane 2019; Li et al. 2012;
Liu et al. 2018; Livesu et al. 2020; Solomon et al. 2017]. Most of these
methods are notoriously superior than grid methods, in the sense
that they produce meshes with much simpler singular structure and
often much higher per element quality. Nevertheless, none of these

ACM Transactions on Graphics, Vol. 37, No. 4, Article 111. Publication date: August 2018.

algorithms can be compared with grid-based approaches in terms of
robustness and scalability, making the use of grids the only feasible
solution to reliably process large collections of shapes of any size
and complexity.

3 DUAL MESHING: CONSTRAINTS AND DESIDERATA

The dual idea is a broad topological concept, with applications in
many scientific fields. In mesh generation dualization has been
widely used, e.g. to transform a Voronoi diagram into a simplicial
mesh [Lévy and Liu 2010], or to generate quadrilateral [Campen
et al. 2012; Nielson 2004] and hexahedral [Gao et al. 2019; Hu et al.
2013; Maréchal 2009; Tautges and Knoop 2003] meshes.

Considering a (primal) cellular complex composed of V vertices,
E edges, F faces and C cells, its dual mesh is a cellular complex
having:

o one vertex for each primal cell c € C
e one edge for each primal face f € F
o one face for each primal edge e € E
o one cell for each primal vertex v € V

In particular, the valence of each dual vertex corresponds to the
number of faces of its associated primal cell. The valence of each
dual edge corresponds to the number of sides of its primal face. The
number of sides of each dual face corresponds to the valence of
its associated primal edge. The number of faces of each dual cell
corresponds to the valence of its associated primal vertex.

From a topological perspective, a hexahedron is a solid with 8
vertices, 12 edges, and 6 quadrilateral faces. Considering the defi-
nition above, one can always generate a pure hexahedral mesh via
dualization if and only if:

o cach primal vertex has valence 6, because its associated dual
cell has 6 faces

e each primal edge has valence 4, because its associated dual
face will be a quad

In addition to these strict topological requirements, it is practically
relevant to ensure that the so generated hexmesh has a good singular
structure, meaning that it locally resembles a regular grid almost
everywhere. To this end, it is desirable that the majority of inner
dual vertices have valence 6, and that the majority of dual edges
have valence 4. Thinking about these properties in terms of their
relation with the primal mesh, it turns out that a good adaptive grid
should have as many cells as possible composed of 6 faces, and as
many 4-sided faces as possible. In particular, it is important to avoid
primal faces with many sides, because they produce high valence
singular edges in the dual hexmesh, which negatively impact per
element quality (Figure 2). The schemes proposed in this paper
are designed to fully address topological constraints, and also to
optimize the fulfillment of practical desiderata.

4 BASIC TRANSITIONS

In this section we start from the basic scheme originally proposed
in [Maréchal 2009] and show how it can be adapted to convex,
concave, and corner configurations. As it will become clear in the
remainder of the section, there are multiple ways to perform this
task. We will exhaustively show all the possible versions and select
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Fig. 4. Basic scheme to transition from a flat 4x4 to a 2x2 grid. From left to right: there are 14 hanging nodes with valence 5 (black dots). The first chain of
prismatic elements with triangular cross section suppresses all hanging nodes but four. The second chain intersects the first one orthogonally, and secures
valence 6 for all vertices. The four upper cells reproduce the 2x2 structure, completing the transition. Some of the faces are transparent to better inspect the

interior topology.

Fig. 5. A 2D example of the dual approach proposed in [Maréchal 2009].
Left: an adaptively refined grid has two hanging vertices (black dots) at
the interface between elements of different sizes. Middle: connecting them
through the vertical edge in between ensures that all internal nodes have
valence four. Right: dualizing the grid yields a pure quadrilateral mesh.

the ones that are optimal with respect to the desiderata expressed
in Section 3.

The core idea is identical to the 2D case depicted in Figure 5,
where the two hanging nodes are suppressed by forming two trian-
gles connected through the vertical edge in between them. However,
the 3D realization is more convoluted, because any non conforming
transition between a 4x4 and a 2Xx2 grid generates 14 hanging ver-
tices with valence 5. Following the analogy with the 2D case, we can
imagine to extrude the triangles that suppress the hanging nodes,
which become chains of prismatic elements with triangular cross-
section. Each transition requires two such chains, that intersect
orthogonally at the middle of the grid. If the chains were identical,
their intersection would define a valence 8 vertex, violating the
constraints expressed in Section 3 and thus failing to produce a
pure hexahedral dual mesh. To keep vertex valences under control,
the trick is to make sure that the two chains do not intersect at
the same height, but rather one passes below the other, splitting
the valence 8 vertex into two valence 6 vertices. Consequently, any
time there is an intersection, one must choose which of the two
chains passes below the other, leading to ambiguity. Figure 4 shows
how the topology of the two chains must be arranged to secure the
correct vertex and edge valences. One could alternatively choose
to have the upper chain passing below the lower one. This choice
is completely harmless if the intersection occurs at a flat region,
because the global amount and type of primal mesh elements does
not change.

T

Fig. 6. When a chain of prismatic elements turns 90° to traverse a con-
vex edge, two tetrahedral elements (yellow) are necessary to adjust mesh
topology and provide the necessary bending.

Given this basic scheme, the whole idea behind dual hexmeshing
is to suppress all hanging nodes by designing a network of pris-
matic chains that wind around clusters of grid elements having the
same amount of refinement. Since each cluster is a regular sub-grid,
its outer surface is also regular, therefore chains always intersect
pairwise in an orthogonal manner. In practice, this means that all
we need is to be able to adapt the scheme in Figure 4 to allow these
chains to turn at the convexities and concavities of each refined
cluster.

4.1 Convex transitions

Two chains of prisms that meet at the convex edge of a refined
area can be welded together by using two tetrahedral elements that
form a bridge between the cross sections of the incoming chains
(Figure 6). Differently from flat and concave transitions, this scheme
is not ambiguous because no intersections between orthogonal
chains are involved.

4.2 Concave transitions

Transitions across concave edges are more complex, because four
different chains of prismatic elements are involved. Two of them are
parallel to the concave edge, and are positioned aside from it. The
other two are orthogonal to the concave edge, and are the ones that
need to be merged into a single chain that turns at the concavity.
These four chains intersect pairwise at the left and right of the
concave edge. Depending on how these intersections are realized,
the transition changes. There are two different ways two handle each
intersection (one chain goes below, one above), therefore there exist

ACM Transactions on Graphics, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Fig. 7. There are three different ways to bend a chain of prismatic elements along a concave edge. Left: if the chain passes below both intersections aside
the concavity, the bending can be realized with three pentagonal faces. Middle: if the chain passes below one intersection and above the other, the bending
necessitates hexagonal faces. Right: if the chain passes above both intersections, heptagonal faces are needed. Transition elements are highlighetd in yellow.
Note that in all cases two hexagonal faces are needed to handle the bottom and top corner faces (see the bottom left dashed lines). The leftmost solution is the
optimal one, because it introduces the least amount of high valence irregular edges in the dual hexmesh.

22 alternative solutions. Ignoring symmetries, the amount of unique
schemes reduces to three. Specifically, if the two chains that merge
at the concave edge pass both below their respective intersections,
their blending can be realized using three pentagonal faces (Figure 7,
left). If one of the two chains passes above its intersection, then
three hexagonal faces are needed (Figure 7, middle). Finally, if both
chains pass above their intersections, three heptagonal faces are
needed (Figure 7, right).

Recalling that primal faces become edges in the dual mesh, and
that the valence of such edges correspond with the number of sides
of their primal face, we can conclude that — depending on the scheme
of choice - concavities may introduce irregular edges with valence
5, 6 or 7. In order to optimize the criteria expressed in Section 3 we
always adopt the transition that produces valence 5 edges, obtain-
ing the simplest singular structure in the output mesh. Note that
regardless of the configuration of choice, the top and bottom lids of
a concave edge are essentially two quads with two corners cut (to
account for the incoming chains). This means that the full scheme
will still produce two valence 6 edges in the dual mesh (see the
dashed lines at the bottom left of Figure 7). Nevertheless, our choice
minimizes the extent of high valence singularities in the output
hexmesh, completely avoiding valence 7 edges and reducing the
amount of valence 6 singular edges to only two.

4.3 Transitions around corners

Prismatic chains never traverse the corners of a cluster of refined
elements directly, but each corner has three chains that wind around
it and mutually intersect each other three times. If the corner is
convex, these intersections are handled with the flat scheme in Fig-
ure 4, and always produce a mesh with equivalent singular structure.
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Fig. 8. Corners of a refined area always have three chains of prisms wind-
ing around them. Since each intersection chain can be arranged in two
different ways, there are 23 alternative configurations, which removing sym-
metries reduce to the two shown in this figure. The left configuration is
fully symmetric, as the chain traversing each concave edge passes above
one intersection and below the other one. The right configuration exposes
all the three possible cases (one chain fully below, one chain fully above,
and one chain both below and above). The leftmost configuration is better
because it only introduces valence 6 edges in the hexmesh, whereas the one
at the right also introduces valence 7 singular edges.

Conversely, concavities require to use a blending of the schemes
for concave edges shown in Figure 7. Differently from a single con-
cavity, which can always be handled with the simplest among the
three possible options, concave corners are the meeting point of
three mutually orthogonal concave edges. The interplay between
the chains winding around the corner is such that it becomes im-
possible to make sure that each chain passes below all intersections
it is involved in. More precisely, three mutual intersections and two
alternative ways to handle each one of them define a combinatorial



Fig. 9. A non trivial transition involving a flat area, two concave edges, and
one convex edge. The basis of the flat and convex schemes conflict (right),
therefore basic transitions cannot be used directly, but must be combined in
order to produce hybrid schemes that adapt to the local shape of the grid.

space of 23 alternative solutions. Removing the symmetries, there
exist only two ways to handle a concave corner: in one case, each
concave turn involves a chain that passes above one intersection
and below the next one (Figure 8, left). In the other case, all the three
transitions shown in Figure 7 arise. Also in this case, our preference
goes to the left configuration because it fully avoids the genera-
tion of singular edges with valence 7 in the output hexmesh and
minimizes the amount of valence 6 edges.

5 SCHEMES

The basic transitions shown in the previous section cannot be di-
rectly used to transform an adaptively refined grid into a pure hex-
ahedral mesh. As shown in Figure 9, many local configurations
will necessitate hybrid transitions, which are a blend of the atomic
patterns designed for the flat, convex and concave cases.

To enumerate all the possible local configurations that may arise,
we can imagine working in a grid where only two alternative refine-
ment levels are possible: coarse and fine. Note that this hypothesis is
not restricting: all grid-based methods assume that the adaptive grid
is balanced, which means that any couple of face, edge, or vertex
adjacent cells can differ by at most one level of refinement [Maréchal
2009]. It follows that indeed — at a local level — only two levels of
refinement are possible.

Let us imagine having a cube split into 8 octants, and filling
each octant either with a coarse 2x 2X 2 or with a finer 4X 4%
4 sub-grid. Since for each octant there are two possible choices,
there exist 28 alternative assignments. Ignoring symmetries and
removing the two fully regular grids obtained by filling all octants
with the same element, we obtain a set of 20 unique configurations,
which correspond to all the possible transitions that may arise in
a balanced adaptive grid (Figure 3). This combinatorial space is
equivalent to the one explored by primal approaches (Section 2),
and is also equivalent to that of Marching Cubes [Lorensen and Cline
1987], which associates a sign to the cube’s corners and obtains the
same 20 possible binary assignments. This relation is even clearer
in the dual version of MC [Nielson 2004], which shows a lookup
table that, up to a volumetric interpretation, is equivalent to ours.
Similar surface schemes had already been introduced in the Cuberille
algorithm [Chen et al. 1985; Herman and Liu 1979].
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Implementing a transition scheme for each of the 20 patterns
in Figure 3 is, therefore, the simplest way to have a lookup table
that exhaustively addresses all the cases. Note that this number is
much bigger than the three schemes often presented as exhaustive
in previous literature, and the reason is that prior works did not
present the actual schemes, but just a particular instance of the basic
transitions in Section 4.

To reduce the amount of configurations to the minimum, we
present here an alternative method we used to encode the patterns.
The basic idea is that many of the 20 schemes share some component,
sometimes exactly as it is, some other times up to a rotational and
reflection degree of freedom. We exploit this redundancy to define a
minimum set of 8 atomic elements, which never overlap, and can be
grouped together to reproduce all the 20 possible transitions. The
full set is depicted in Figure 10 and comprises: one flat element (F);
one hybrid flat and convex element (F+C); three convex elements
(C1, C2, C3) that handle 1, 2 or 3 prismatic chains incident to the
same grid cell; one element for concave edges (E), and two elements
for concave vertices, once for the center (VC) and one for its sides
(VS). The basic transitions discussed in Section 4 can be reproduced
by considering simple arrangements of these 8 elements. As an
example, the flat scheme in Figure 4 is composed of four elements
of type F which can be positioned by starting from one of them and
reflecting it four times across one of its lateral faces. Similarly, all
the transitions shown in Figure 3 can be obtained by compositions
of the same 8 atomic elements.

A pictorial illustration of the installation process is shown in
Figure 11. Note that the sequence of operations is not mandatory.
Since these atomic blocks do not conflict with each other, one can
start by positioning a single brick, and simply proceed by placing
the subsequent ones so as to preserve mesh conformity, always
obtaining the same result.

6 WEAKLY BALANCED GRIDS

All known methods for grid-based adaptive hexmeshing require that
the input grid is strongly balanced, which means that cells that differ
by more than one level of refinement must not share any vertex,
edge, or face. In this section we discuss a minimal extension of our
basic schemes, which allows to relax this stringent requirement,
embracing a much broader class of input grids and ultimately per-
mitting us to obtain coarser hexahedral meshes that fully preserve
the input prescribed refinement .

Our key observation is that when there is high disparity in the re-
finement associated to nearby cells, satisfying the strong balancing
criterion requires a conspicuous amount of additional refinement,
significantly increasing the cell count. Conversely, if the balancing
criterion was weaker, meaning that restrictions applied only to face-
adjacent cells, the amount of necessary subdivisions would be much
lower (Figure 13). From a combinatorial point of view, the exten-
sion to weak balancing opens conforming hexahedral meshing to a
much wider set of adaptively refined grids. Following the analogy
with the cube example in Section 5, one can enumerate all possible
configurations by considering a cube split into 8 octants, associating
to each octant either a 2X2x2, a 4X4x4, or a 8x8%8 sub-grid. Since
there are three alternative choices for octant refinement, there exist
38 = 6561 possible configurations. Discarding all configurations that
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Flat Flat + Convex Convex Convex
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Fig. 10. The 8 atomic schemes used to mesh all the transitions listed in Figure 3. Top: elements are color-coded with respect to their type. Green elements

belong to prismatic chains that suppress the hanging nodes of a refined cluster. Yellow elements allow the green chains to bend around convex and concave
edges. White elements are lids that fill the remaining volume. Bottom: hexahedralized transitions obtained with standard mesh dualization.

reflect

reflect

reflect

reflect reflect

Fig. 11. Example of installation of the atomic schemes in Figure 10 for a complex case involving flat, convex, and concave regions. All the necessary transitions
can be realized with a combination of rigid movements and reflections of the basic schemes. The installing sequence is not mandatory, and any alternative

sequence would provide the same result.

are identical up to a rotation, the number of unique configurations
goes down to 332. Furthermore, discarding all configurations that
violate weak balancing (i.e., all grids where octants with 2x2x2
and 8x8x8 refinement are face-adjacent), the number of remaining
unique configurations that must be handled is 58.

Weakly balanced grids may contain edges shared between cells
with three different levels of refinement, and vertices incident to
cells spanning four different levels of refinement. Luckily, the vertex
case does not require any special handling because — regardless of
the size disparity — any grid vertex has 8 incident cells and 6 incident
edges, which means that it always yields a hexahedron in the dual
mesh. This is also the reason why weakly balanced grids in 2D
do not necessitate dedicated schemes. Conversely, edges shared by
cells spanning three levels of refinement generate hanging vertices
that must be incorporated into the mesh connectivity. As shown in

ACM Transactions on Graphics, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Figure 12 there are four possible cases, which correspond to an open
concave edge, or a concave corner where 1, 2 or 3 of the incident
concave edges contain additional hanging vertices.

It is interesting to notice that the concave edges where the ad-
ditional hanging nodes arise are convex edges for the (twice more
refined) grid minors opposite to the concavity. This means that the
schemes we need are essentially a blend between the basic convex
and concave schemes shown in Figure 10. A pictorial illustration of
how to realize this blend for open concave edges is shown in Fig-
ure 14. Note that the tetrahedra that realize the convex transition are
located across the polygonal faces that permit the concave bending,
transforming them from n—gons to (n + 1)—gons. Specifically, the
transition for concave edges required the use of pentagonal faces,
which now become hexagons. The transition for concave corners
required the use of hexagons, which now become heptagons. In
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Fig. 12. Weakly balanced grids may exhibit configurations where cells with
three different levels of refinement are incident to the same edges, gener-
ating new hanging vertices that cannot be suppressed with prior schemes
(yellow dots). Each row shows one of the four possible cases: elements can all
be incident to the same concave open line, or to all (or a subset) of the three
concave lines that terminate in a concave corner. As can be noticed hang-
ing vertices belong to the finest sub-grids, and their suppression demands
a blend between a convex transition (for the yellow part) and a concave
transition (for the blue part).

terms of output results, this means that weakly balanced grids can
be transformed into pure hexahedral meshes with singular edges
of valence 3, 5, 6, and 7 using the 8 schemes in Figure 10, plus 5
additional schemes shown in Figure 15.

7 DISCUSSION

We implemented the whole scheme set and the software neces-
sary to process an input grid in C++, releasing the code within
the MIT licensed library CinoLib [Livesu 2019]. Specifically, the
8+5 atomic elements whose combination realizes all the possible
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unbalanced strongly balanced weakly balanced
0O} 0| 0] 0|0 313|3]3]| 3 1 213 2 1
0O} 0|0]0|O0 34| 4] 4] 3 2134 3|2
0/ o0 ! 00 3| 4 4| 3 3| 4 4| 3
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0O} 0| 0] 0|0 S| 3| 3] 3| 3 1 213 2 1

Fig. 13. Starting from an unbalanced grid (left), fulfilling strong balancing
demands 80 steps of extra refinement (middle). If weak balancing is permitted,
the amount of necessary refinement is reduced by 25%.

Fig. 14. Left: hybrid convex/concave transition involving three different
levels of refinement. Besides the three canonical chains of prisms of a
standard concavity (in red, blue, green), there are two extra chains that take
a convex turn around the concave edge (orange). Right: the two tetrahedral
elements that ensure the convex transition (orange) partially overlap with
the concave transition (yellow). As a result, the yellow faces - that were
pentagons in the basic concave transition — become hexagons.

Edge Vert Concave Vert Concave Vert Concave Vert Concave
Concave side center center center
(E-MR) (VS-MR) (VC3-MR) (VC2-MR) (VC1-MR)

FRONT

BACK

FRONT

BACK

Fig. 15. Hybrid concave/convex schemes to handle weakly balanced grid
having cells with three levels of refinement incident to the same grid edges.
Top: green elements are pieces of the prismatic chains. Yellow elements
allow concave bending. Orange elements allow convex bending. White cells
are lids to complete the volume. Bottom: hexahedralized transition blocks
obtained with standard mesh dualization.
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Fig. 16. A random subset of models used to validate our method. To produce these meshes we retained only the subset of grid elements completely internal to
the input shape, and projected and smoothed the boundary vertices using [Livesu et al. 2015].

schemes for strongly and weakly balanced grids are hardcoded as
general polyhedral meshes. Each such element can be installed in
various alternative orientations, because the octahedral group O
contains 24 rotations [Nieser et al. 2011; Solomon et al. 2017]. The
code we released for installation is designed to translate, rotate, re-
flect and scale the atomic blocks, reproducing any desired transition.
The so generated polyhedral meshes can be readily transformed
into pure hexahedral meshes with standard mesh dualization, which
is also available in the same library.

7.1 Validation

To validate our schemes, we implemented a classical grid-based
meshing pipeline as described in Section 2. Given an input shape,
we initialized an empty octree covering its bounding box, and then
iteratively split octants intersected by the input surface until the grid
size was at least twice as big as the local thickness of the shape, mea-
sured with the SDF [Shapira et al. 2008]. We then applied additional
refinement to satisfy the topological criteria necessary for process-
ing, and eventually installed the transition schemes described in
Sections 5 and 6, applying mesh dualization to produce the output
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meshes. With this pipeline, we batch processed the dataset released
with [Gao et al. 2019], which comprises 202 organic and CAD mod-
els, and the clean version of the Thingil0K [Zhou and Jacobson
2016] dataset, released by the authors of [Hu et al. 2018]. In all
cases, our method was able to successfully produce a conforming
hexahedral mesh. A mosaic of hexahedral meshes produced with
our method and projected and smoothed with [Livesu et al. 2015] is
shown in Figure 16. Note that the focus of this work is purely on the
transition schemes, and this is just a simplistic workflow that offers
no guarantees in terms of mesh quality and geometric fidelity. As
reported in Section 2 scientific literature offers various alternative
choices for octree splitting rules, padding, feature preservation, and
robust surface projection. Our approach can be combined with any
of the existing techniques to obtain a fully-fledged meshing pipeline.

7.2 Comparisons with prior art

We provide both direct and indirect comparisons with prior art.
Our natural competitors are the original approach proposed by
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input [Gao et al., 2019] ours

Fig. 17. A failure case for the dual method proposed in [Gao et al. 2019].
In this case, their algorithm is not able to produce a conforming hexmesh
starting from an adaptive grid that is fully compliant with the minimum
requirements for hexahedral meshing. Overall, testing their reference im-
plementation on the Thingi10K dataset, we isolated 37 similar failures. All
adaptive grids were created with the reference implementation released by
the authors. On the same grids, our method was always able to produce
a valid mesh with the 8 schemes for strongly balanced grids proposed in
Section 5. Input and outputs grids are included in the additional material
for all failure cases.

Maréchal in [2009] and the alternative set of schemes recently pro-
posed in [Gao et al. 2019]. We considered the ability to converge to a
valid solution (i.e., conforming, all-hex), the amount and distribution
of singular edges, and the mesh size. Our method provides advan-
tages with respect to all these criteria, as detailed in the remainder
of this section.

Setup. We performed a direct comparison using the original source
code released by the authors of [Gao et al. 2019]. Their software re-
alizes a complete hexmeshing pipeline, interleaving grid refinement
with surface projection, progressively increasing mesh density until
a target geometric accuracy is reached. Since our contributions are
purely on the topological step of the pipeline, we isolated from their
code the portions relative to adaptive grid generation, balancing
and dual scheme installation, fixing the octree depth refinement in
the static range [4,7]. For each input model, we run their code to
produce a conforming hexahedral grid, and also dumped on a sepa-
rate file the same grid prior to balancing and scheme installation,
which we loaded in our software and processed with our schemes.

Failures. Provided an adaptive input grid that fulfills all topologi-
cal requirements (i.e. balancing and pairing), the first and foremost
property of a set of transition schemes is its ability to produce a
valid output mesh that contains only hexahedral cells and is con-
forming. As detailed in Sections 5 and 6 our schemes fully cover the
combinatorial space of patterns for strongly and weakly balanced
grids, and are therefore guaranteed to always produce a correct
mesh. This was also empirically verified by processing our testing
datasets multiple times with varying settings (e.g., for balancing
and grid refinement), producing more than 20 thousand hexahedral
meshes overall.

The schemes proposed in [Gao et al. 2019] permit to substitute hang-
ing nodes with a frustum (Figure 4 in their paper) and also provide
three topological bridges to account for adjacent frustums that form
a flat, convex, and concave open-angle (Figure 5 in their paper).

Type ID F3 F4 F5 F6 F7
Flat F 5110 5 - -
Flat + Convex F+C 919 |4 ]| 2] -
Convex 1 cut C1 4 3 3 - -
Convex 2 cuts C2 8 1 4 1 -
Convex 3 cuts C3 12| - 3 3 -
Concave edge E 8 14| 7 | 1| -
Concave vertex central VC 9 | 21| - 6 -
Concave vertex side VS 8 |16 | 3 3 -
Concave edge E-MR |14 |10]10| 2 | -
Concave vertex central | VC1-MR | 16 | 17 | 4 5 1
Concave vertex central | VC2-MR | 23 | 14| 6 | 5 2
Concave vertex central | VC3-MR | 30 | 12 | 6 | 6 | 3
Concave vertex side VS-MR | 15|12 | 7 | 2 1

Table 1. Topological details for all the transition schemes proposed in the
article. For each scheme we report the number of polygonal faces they con-
tain. Once dualized, each polygon translates to an edge in the hexmesh with
valence corresponding to the number of sides in the primal (the subscript i
in the F; notation).

Concave corners are not taken into account, as well as conflicts that
arise between basic schemes (see, e.g., Figure 9). Restricting to the
four schemes they present, only 7 out of 20 possible cases shown in
Figure 3 can be handled. In their code, the authors complement their
schemes with a heuristic approach, which locally modifies the mesh
connectivity in order to ensure mesh conformity. This approach is
not documented in the article and, despite the software being able
to produce a conforming mesh in most of the cases, we isolated 37
failure cases in our testing dataset. Figure 17 shows a typical failure
case. All the other failures can be found in the attached material,
together with the associated input grids and our corresponding valid
solutions. Also [Maréchal 2009] does not propose an exhaustive set
of schemes. The article describes how to construct a flat transition
that is identical to ours (Figure 4), but it did not provide details on
how this can be modified to enable bending and winding around
concave edges and corners. To our knowledge, none of the authors of
prior articles were ever able to reproduce the schemes in [Maréchal
2009], and comparisons were always based on a one-month trial
of the commercial software implementing this method [Dassault
Systémes 2020]. The tool — formerly called MeshGems — has been
recently acquired by another group, and we were not able to obtain
an evaluation copy. An exhaustive set of schemes was likely devised
for this commercial tool, but we could not verify our assumption
due to the lack of reference software.

Singular Structure. Regarding the impact that transition schemes
have in the singular structure of the hexahedral mesh, in Table 1 we
detail the number of sides for each polygonal primal face. As men-
tioned in Section 3, primal faces with n sides transform into edges
with n incident hexahedra in the dual. Therefore, once dualized,
strongly balanced grids contain only singular edges with valence
3,5,6, whereas weakly balanced grids also contain valence 7 singular
edges, which appear when 4 out of the 5 additional schemes are used.
Since our schemes can be used as-is, without further modification,
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Fig. 18. Distribution of edge valences for 7589 models from Thingi10K. Each column corresponds to a specific model in the dataset and its height is proportional
to the relative impact of that valence in the output mesh. Lateral numbers indicate the minimum and maximum relative impacts. The 37 failure cases of [Gao

et al. 2019] were omitted from the analysis.
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Fig. 19. Cumulative relative impact of edge valences across all models in
the Thingi10K dataset. The vast majority of edges is regular (valence 4),
and the impact of other valences is very similar for both methods, with the
exception of valence 7 edges, which are completely avoided by our schemes
if the input grid is strongly balanced.

no edges with valence different from the ones declared here are
possible.
Considering the portion of Thingil0K where [Gao et al. 2019] pro-
duced a valid output, our method resulted superior to its competitor
in that it never introduced singular edges with valence higher than
6, whereas the schemes of Gao and colleagues introduced valence 7
edges in 7072 cases out of 7589 (93.2%). In Figure 19 we show a com-
parative analysis of the relative distribution of edge valences. As can
be noticed, the complete absence of valence 7 edges in our output
meshes does not impact the distributions of alternative valences,
which appear almost identical to the ones of our competitor. A more
detailed overview of valence distribution is depicted in Figure 18.
Avoiding high valence edges provides twofold advantages. On the
one hand, irregular edges with high valence impose tighter bounds
on maximum per element quality (Figure 2). Furthermore, they are
more difficult to handle for modern local/global untangling methods
such as [Aigerman and Lipman 2013; Livesu et al. 2015; Marschner
et al. 2020; Overby et al. 2021]. In fact, these tools operate by first
computing a locally optimal solution for each element separately,
and then reconcile all local solutions in a global step. This approach
intrinsically suffers the presence of high valence mesh elements,
because the number of alternative local solutions to be combined
grows, making it harder to find consensus between all of them.
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375 Thingi10K 8.4K

37 [Gao et al., 2019] 202

Fig. 20. Strongly balanced grids required up to 64% more elements than
weakly balanced grids in the Thingi10K dataset, and up to 46% more ele-
ments in the dataset released with [Gao et al. 2019]. In the plots above, each
column represents a different shape in the dataset, and columns are ordered
for increasing growth. Mesh growth was measured as (Hs — Hyw )/Hw,
with Hs and Hy being the number of grid cells obtained applying the
strong and weak balancing, respectively.

Mesh size. In the general case, an adaptive grid that has been
split to faithfully approximate a target geometry cannot be read-
ily transformed into a conforming hexahedral mesh. For this to be
possible, the grid must undergo two processing steps: (i) additional
refinement must be applied in order to fulfill minimal topological
requirements for the application of the transition schemes; (ii) grid
elements around the hanging nodes must be substituted with small
clusters of transition elements. We empirically observed that the
first operation consistently impacts mesh size much more than the
latter. This happened for all the test models in Thingil0k, where
step (i) more than doubled the original grid size on average and
increased it by a factor of 9x in the worst case, whereas the impact
of step (ii) was around 20% of the original grid size on average.
Being able to operate on a wider class of adaptive grids, our tran-
sition schemes mitigate the impact of step (i) on mesh size. This
is because processing a generic grid to fulfill weak balancing is
likely to require less refinement than the one necessary to fulfill
the strong balancing criterion required by the schemes proposed
in [Gao et al. 2019; Maréchal 2009]. To give some numbers, for the
dataset released with [Gao et al. 2019], in 167 out of 202 cases (82.7%)
weakly balanced grids were coarser than strongly balanced ones. For
Thingi10K this happened on more than 8K cases out of 8.4K (95.6%).
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The extent of the size reduction largely depends on the refinement
patterns induced by the input geometry, which in turn depends on
the shape morphology and the octree splitting rule used. In our
experiments, strongly balanced grids required 16% more elements
than weakly balanced grids on average, and 64% more elements
in the worst case. The histograms in Figure 20 show the details of
this comparison for all the tested models. Considering that most
applications involving hexmeshes require solving a global linear
system, and that the computational cost of a linear solve scales
cubically with the number of mesh vertices [Krishnamoorthy and
Menon 2013], weak balancing promises to introduce a significant
speedup for applications. Perhaps a more concrete evidence comes
from a recent technical report published by Ferrari, where the car
maker declares that by reducing cell count by 15% it was able to run
300% more CFD simulations, helping the engineers to develop their
cars or new solutions faster [Ferrari 2020] .

8 CONCLUSIONS

We have extensively studied the topological schemes that permit to
transform an adaptively refined grid into a pure hexahedral mesh.
Previous literature had already proved that directly incorporating
hanging nodes into the hexahedral mesh is not always possible.
Therefore, our analysis and contributions are restricted to dual
schemes, which aim to generate a general polyhedral mesh that
yields only hexahedral elements when dualized.

We started our study from the seminal work of Maréchal [2009],
who pioneered dual approaches. We have shown that both his
schemes and the schemes proposed in later articles are not exhaus-
tive and do not contemplate ambiguities that arise when one tries
to implement them. We explicitly describe and release, for the first
time, a set of schemes that fully cover the combinatorial space of
adaptive balanced grids, also relaxing the notion of balancing from
strict — as it was used in prior art — to weak. As a result, we were
able to enlarge the class of grids that can be transformed into con-
forming hexahedral meshes, showing with an extensive empirical
analysis that the meshes produced with our method are significantly
superior than prior art in terms of ability to produce a valid result
(i.e., conforming, all-hex), singular structure and element count.

At this stage, we believe that major improvements are unlikely to
come from alternative schemes for adaptive grids that are already
supported by the current ones, but rather on novel ideas to embrace a
broader class of input grids. In fact, based on our analysis the current
bottleneck in the pipeline is the amount of refinement that adaptive
grids must undergo to ensure the applicability of the transitions. Our
extension to weakly balanced grids is a first step in this direction,
because it opens hexmeshing to a new class of inputs. We believe
that more can be done in this regard, and we will devote our future
efforts to working in this direction.

Limitations and future works. While the transition schemes pro-
posed in this paper are topologically optimal, in the sense that they
minimize the extent of high valence irregular edges, they do not
guarantee that an embedded mesh with this connectivity will be
superior to a mesh obtained with alternative methods. Finding the
embedding that maximizes the geometric quality of a certain mesh

(e.g. to evaluate the quality of its connectivity) is an complex prob-
lem for which there exists no solution to our knowledge. The best
smoothing and untangling methods of which we are aware aim to
squeeze the maximum potential from a certain connectivity with
heuristic approaches. As mentioned in Section 7, since most of these
methods are local/global, we conjecture that they should benefit
from our findings, and we will devote part of our future works to
further investigate this topic.
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