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Abstract—Curve-skeletons are the most important descriptors for shapes, capable of capturing in a synthetic manner the most

relevant features. They are useful for many different applications: from shape matching and retrieval, to medical imaging, to animation.

This has led, over the years, to the development of several different techniques for extraction, each trying to comply with specific goals.

We propose a novel technique which stems from the intuition of reproducing what a human being does to deduce the shape of an

object holding it in his or her hand and rotating. To accomplish this, we use the formal definitions of epipolar geometry and visual hull.

We show how it is possible to infer the curve-skeleton of a broad class of 3D shapes, along with an estimation of the radii of the

maximal inscribed balls, by gathering information about the medial axes of their projections on the image planes of the stereographic

vision. It is definitely worth to point out that our method works indifferently on (even unoriented) polygonal meshes, voxel models, and

point clouds. Moreover, it is insensitive to noise, pose-invariant, resolution-invariant, and robust when applied to incomplete data sets.

Index Terms—Curve-skeleton, stereoscopic vision, visual hull

Ç

1 INTRODUCTION

SHAPE analysis focuses on the definition of mesh
descriptors that can capture the main features of an

object. This can give useful insights and knowledge on the
shapes to provide quantitative means of measuring the
similarity between two objects. Among the various descrip-
tors proposed in the literature, skeletons have been found to
be of great importance in many fields due to their
versatility. For instance, the thinness and centricity features
obtained by skeletons make them suitable to be used for
motion planning; also, their ability to accurately summarize
the topology of an object is used in shape retrieval, data
compression, and so on. The original 2D definition [1] states
that a topological skeleton or medial axis of a shape is the locus
of centers of the maximal inscribed disks. During the
decades, the term skeleton has been applied to every kind of
thin, monodimensional, graph-like structure that best
represents a given shape. Especially in the 3D case, the
direct extension of the definition (i.e., the centers of the
maximal inscribed balls), does not guarantee the thinness
criterion. Even if Dey and Sun [2] provide a formal
definition for curve skeletons in 3D, its exact computation is
hard and unstable, thus making preferable an ad hoc
skeleton extraction method that satisfies the desired goal-
specific criteria.

We propose a novel method based on the observation of
human capabilities in terms of shape recognition. Many
works have been carried out toward the understanding of
how human observers parse and interpret shapes [3], [4],
[5]. These studies have shown the importance of silhouettes

in early perception, demonstrating that we are able to give a
3D interpretation of a shape with no information other than
the contour [6], [7]. Despite the background in perception,
the idea of computing a curve-skeleton starting from 2D
data is unexplored in the field of geometry processing.
While the paradigm of recovering 3D shape information
using 2D data is well known in fields like Medical Imaging
(e.g., see [8]) or Computer Vision techniques (e.g., [9] and
[10]), no studies have been carried out toward the
connection between 2- and 3D skeletons of synthetic shapes.
The cited techniques are based on real-world images and
aim at problems where no a priori knowledge of the shape
is present [11], the availability of information on the shape
primitives has favored the proliferation of other extraction
methods. However, humans have strong recognition cap-
abilities even when a lot of data lack. Transferring these
capabilities in the field of computational geometry should
improve the reliability and robustness of the algorithms.

In an attempt to describe human vision, Marr [3]
suggested that 2D contours are interpreted as projections
of generalized cones. In his work, he demonstrates that, in the
absence of overlap along the boundary of the projection, the
axis of symmetry of a projected shape is the actual
projection of the axis of symmetry of the 3D shape [3,
Theorems 3, 4, and 5]. Even if the absence of overlap is a
strong constraint, and Marr’s work states that this property
is valid for most of the real-world cases (see Fig. 3), the
ambiguity given by superimpositions on the image plane
can be solved by looking at the object from many different
points of view. It has been shown that it improves the
recognition capabilities in human observers [12], suggesting
that multiple rotated projections of the object should be
sufficient to detect the features of the 3D counterparts.

Numerous works facing the curve-skeleton extraction
problem were published before this one. Some of them
working over voxelizations of the shapes; some others
working over triangle meshes. On one hand, voxel-based
methods usually tend to be computationally expensive,
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sometimes fail to preserve the topology of the object, and
are strongly dependent on the model resolution. On the
other hand, mesh-based methods are all dependent on the
resolution of the mesh, both in terms of running time and
output quality, raising the problem to find a tradeoff
between efficiency and quality.

Our main claims are that: our method is able to work over
any kind of shape representation (e.g., triangle meshes, quad
meshes, point clouds, polygon soups, etc.), and it overcomes
the drawbacks of both voxel- and mesh-based methods since
it achieves good results with coarse meshes and extracts the
curve-skeleton from fine meshes quickly enough.

We present a summary of the previous works in curve-
skeleton extraction in Section 2, followed by a short
introduction of the Computer Vision principles useful to
our work in Section 3. We then describe in detail our
approach in Section 4, with implementation details that help
in improving the efficiency of the computation. Section 5
shows the results obtained with our approach along with
limitations and comparisons between the proposed method
and other techniques, showing that our method is faster
than the current state-of-the-art algorithms. We finally
summarize our work in Section 6.

2 RELATED WORKS

Previous work on skeleton extraction consists of a large
number of methods and approaches due to their impor-
tance and usefulness in many fields. The heterogeneity of
such fields, however, makes it difficult to expose the
previous works under a common point of view. It is
however reasonable to subdivide the methods in two main
families according to the object representation used. In the
volumetric category, the works are based on a discretization
of the surface for extraction, while geometric methods
perform the skeletonization directly on the primitives that
define the surface. For an extensive survey on skeleton

extraction methods, along with a discussion on the common
characteristics of such techniques, one may refer to [13]. In
the rest of this section, we focus our attention only on some
methods most relevant to our work and mainly published
after the survey was written.

2.1 Volumetric Methods

Most voxel-based methods take advantage of the discretized
space and known topological constraints. Thinning-based
methods tend to iteratively shrink the shape while main-
taining the topological coherency in different fashions. In
[14], a hierarchical decomposition of the volume is
performed, thinning each simple subvolume to extract the
segments that form the final skeleton. In [15] and [16], the
goal is to parallelize the thinning process while trying to
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Fig. 1. Curve-skeletons extracted (top left to bottom right) from the Foot,
Dinopet, Hand, Horse, Olympics, and Octopus.

Fig. 2. Two examples of curve-skeletons extracted from data sets with
complex morphology: the ramifications of, respectively, normal and
aneurysmatic vessels.

Fig. 3. Most medial axes reflect the actual 3D shape when the overlap is
reduced (upper, Knot model). According to the direction of view, some
features may be missing (middle, Horse model), or completely unrelated
(lower, Hand model).



maintain the topology. Methods based on the discretization
of a function detect critical points in such functions in order
to extract the skeleton. In [17], a repulsive force function is
computed from the border of the object to the interior,
detecting ridges as skeletal points. In [18], thinning is guided
by the distance transform (DT), similarly to [19] where the
distance from the border is used to propagate a front with
different speeds. In [20], the thinning process is guided by a
measure called medial persistence to increase the robustness.

2.2 Mesh-Based Methods

Mesh-based algorithms are a highly heterogeneous family.
Since skeletons may be used for several purposes, the
methods for extraction vary strongly according to the goal.
In [2], Dey and Sun provide a formal definition of curve-
skeletons as a subset of the medial axis, introducing a
function called Medial Geodesic Function (MGF) based on
the geodesic distances between the contact points of the
maximal balls. The skeleton is extracted as the singularities of
the MGF. In [21], a Laplacian contraction is applied to the
object with topological constraint for skeleton extraction and
segmentation, in a manner similar to [22] where the
Laplacian contraction can be also applied to point clouds in
order to extract the skeleton. In [23], a deformable model is
grown into the object to detect the branches from both meshes
and point clouds, while in [24] the mesh is iteratively
decomposed into hierarchical segments, computing a center-
line compression error until a threshold is reached.

3 THEORETICAL FOUNDATIONS

Our approach borrows some tools and definitions from the
field of computer vision, where the bonds with human
perception are stronger. As some notions can be unfamiliar
to a shape processing audience, we briefly summarize the
definitions in this section in order to make the presentation
of our approach more self-consistent.

3.1 The Visual Hull (VH)

Let C � IR3 be a set of points of view; the visual hull of an
object O relative to C, VHðO;CÞ, is defined as the subspace
of IR3 such that, for each point p 2 VHðO;CÞ, and each point
c 2 C, the projective ray starting at c and passing through p
contains at least a point of O [25]

VHðO;CÞ ¼ p j cp \ O 6¼ ;; 8c 2 Cf g:

In other words, the visual hull of an object is the maximal
object that gives the same silhouettes of the original one
from any considered viewpoint. VHðO;CÞ is also the closest

approximation of O that we can obtain using its silhouettes
[25, Proposition 2], that is, the best representation of what a
human viewer would appreciate of the object in the absence
of other information.

3.2 Epipolar Geometry and Rectification

Epipolar geometry provides us a quite useful constraint
while trying to couple planar images of a point lying in the 3D
space in order to find its spatial coordinates. Let’s suppose to
have a pointM 2 IR3 and two projective cameras P1;P2 (with
P1 6¼ P2) which, respectively, project into the planes �P1

;�P2
.

Given the image point m1 ¼ P1ðMÞ, the point projected by

the secondary camera, m2 ¼ P2ðMÞ, must lie in the line
defined by the intersection between the plane �P2

and the
epipolar plane. Namely, the plane defined by the point M and
the centers of projection of P1 and P2, meaning that for each
m1 the corresponding point m2 must be searched in a
monodimensional space instead of a bidimensional one.

The epipolar constraint can be enforced with image
rectification in order to further reduce the complexity of this
search: when the epipolar planes are parallel, epipolar lines
become horizontal and the search is restricted to a scanline
matching, meaning that is possible to search for a correspon-
dence between the pixels along the same scanline in the two
images. While image transformations are employed for
rectification in real-world cases with projective cameras, this
effect is also obtained using affine projections: it can be
approximated by using a very long focal length camera. In
synthetic environment, like the one we present in Section 4.2,
the possibility to directly employ parallel projections can
increase the efficiency of the matching.

4 OUR PROPOSAL

The algorithm is, on a high-level, extremely simple and
intuitive. We first implicitly compute an approximation of
the Visual Hull of the object using a set of stereoscopic
projections from different points of view. A medial axis is
extracted for each silhouette and the spatial position given
by the stereoscopic match is used to vote the corresponding
voxel in a regular grid. Spurious votes are filtered out in the
grid if they fall outside the VH, and a maximized spanning
tree of the grid is computed. The tree is pruned and
processed according to an estimation of the radii of the
inscribed balls obtained by the 2D information so that no
artifacts remain in the final skeleton and the VH topology is
preserved. Finally, the skeleton is smoothed to improve its
visual appearance.

The next sections describe in detail each step of the
algorithm.

4.1 Camera Positioning and Medial Axis Extraction

The choice of the viewpoints is the core factor in the
construction of the approximated model of the object. Even
though it could be possible to specify a mesh-dependent set
of views [26], there is no way to understand whether the
obtainedVH is a satisfactory approximation of the shape [25].

We thus choose to evenly cover the space around the
object, employing a regular grid of cameras centered in the
vertexes of a discrete 21-point hemisphere. Covering just half
of the visible horizon is enough since the silhouettes
projection is symmetric. Both the shape and the hemisphere
are centered in the coordinate reference system, while the
cameras point toward the origin (see Fig. 4). Intuitively,
the more the viewpoints the more accurate theVH. However,
in our experiments, we found that finer resolution hemi-
spheres do not increase the VH accuracy significantly.

To project points in the 3D space, we then build up a set
of 21 stereo acquisition systems, pairing each camera in the
hemisphere with a second one, having direction of projec-
tion perpendicular to it. This direction is also parallel to the
less principal component of its projection (which is given by
the smallest eigenvector of its projection’s Principal
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Component Analysis). This way of choosing the two
directions of projection minimizes depth overlapping, and
should, thus, be the best possible ones (an example of stereo
pairs is in Fig. 5).

For each projected binary silhouette, we extract a
Distance Transform-based medial axis [27]. The medial axis
is stable and reliable, and the DT values of each pixel give
the thickness of the VH along the image plane, adding
volumetric information to each stereo projection. The
usefulness of this information will be evident in the
following tree processing step.

4.2 Matching and Radii Estimation

As pointed out in Section 3, a way to simplify the matching
is to employ parallel projections. Two affine cameras Pz and
Px are positioned, respectively, along the z and the x axis,
whereas the shape is centered in the coordinate system
reference. Such cameras are defined by the homogeneous
matrices

Pz ¼
1 0 0 0
0 1 0 0
0 0 0 1

2
4

3
5; Px ¼

0 0 �1 0
0 1 0 0
0 0 0 1

2
4

3
5:

In such system, epipolar planes are parallel and their
normal direction is the y-axis. As the epipolar constraint
coincides with the scanlines and projection rays are both

orthogonal and axis aligned, back-projection becomes
trivial: each pair of rays has the form

r
x ¼ p
y ¼ q

�
r0

z ¼ k
y ¼ q;

�

where y ¼ q is provided by the epipolar constraint and the
complete separation between x and z coordinates is
provided by the orthogonal directions of projection. The
back-projected point is then

r� r0 ¼ ½p q k 1�T :

To keep the back-projection so simple, we move the
shapes instead of the cameras. Let’s consider a shape S
centered in the coordinate system FðO;X Y ZÞ: given a set
of stereo points of view v1; v2, we define a new coordinate
system reference F0ðO;X0 Y 0 Z0Þ where the Z0 and X0 axes
correspond, respectively, to the lines joining v1 and v2 with
the origin O. To get the projection, we then bring S in F0
applying the transformation t�1ðSÞ, where t is the rotation
matrix defined such that F0 � tðFÞ.

The method is based on a discretized voting space that
can result in different vote accumulations depending on the
coordinate system. In order to improve the robustness to
rotational variance, we perform a Principal Component
Analysis over the mesh vertices in preprocessing. We then
rotate the object so that the first camera points toward the
eigenvector corresponding to the smallest eigenvalue. This
minimizes the information loss in projection. The up-vector
is set parallel to the greatest eigenvector, thus maximizing
data distribution on the y direction used in scanline
matching. In this way, we are able to define a pair of views
where the xy image is supposedly the best representative of
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Fig. 4. To evenly cover the space around the shape, we place cameras
in the vertexes of a discrete 21-points hemisphere. The shape is
centered in the origin of the frame, and each camera looks toward the
origin.

Fig. 5. Two stereo pairs, color-coded, that include the point of view from
which they are taken and the resulting silhouettes.

Fig. 6. We show that extracting the skeletons of different meshes of the same object in different poses, we always obtain the same result.



the shape, and tends to uniform the set of views used for
similar objects even under rotation.

The stereographic view system can accurately recon-
struct the original positions and radii of the medial axes
balls when matching is one-to-one. When the matching is
many-to-many, the direct xy to z matching results in
multiple points and the level of confidence of both ball
position and radius rapidly decreases as the number of
points increases. We employ a multiview voting system in
order to give higher weights to those branches that remain
consistent through a higher number of views.

The regularity of the grid makes the voting a simple
operation. Let suppose we have a match, falling in the voxel
i; j; k of the grid G. The update procedure consists just in
incrementing the correspondent cell

G½i; j; k� ¼ G½i; j; k� þ 1:

Each voxel stores also an estimated radius of the
inscribed ball thanks to Distance Transform information
on the generating images. Since the DT is an approximation
of the triple of the euclidean Distance, for each pixel we can
compute an estimated distance of the skeleton to the border
of the hull along the image plane. Let R½i; j; k� be the radius
associated with the voxel i; j; k. For each new vote in that
voxel, we update the radius as

R½i; j; k� ¼ min R½i; j; k�;min DTfront; DTsideð Þð Þ;

where DTfront and DTside are the DT values in the generating
pixels, taking the lowest radius estimate along all the views
that contribute to that pixel. In this way, we obtain a good
approximation of the distance of each voxel from the border
of the hull.

Each voxel in the grid G has a starting value of 0 and each
estimate of the radius has a starting value of 1. All the
nonvoted voxels will not be taken into account by the
further steps of the algorithm.

4.3 Grid Processing

The low reliability of many-to-many matches may result in
situations where spurious external branches stand out in
the grid, especially in meshes with complex topologies or a
high number of skeletal pixels in each scanline. Since we do
not store an explicit VH, but we define it implicitly using
the silhouettes and the direction of projection, we perform a
grid cleaning step where each cell is reprojected onto the
images. If it falls outside a silhouette (i.e., if the voxel is
outside the VH of the object), it is set to zero. In this way, we
get rid of the votes that are certainly spurious and do not
have to be processed as skeletal candidates. This technique

results in a strong improvement of the grid quality and,
due to the low number of views and the simplicity of the
operations, is computationally cheap and adds a little
overhead to the whole procedure. In Fig. 7, we show a
comparison between a cleaned grid on the Octopus versus
its uncleaned counterpart.

Once we have the voting grid, we can proceed with the
extraction of the final curve-skeleton. The most voted voxels
have the highest reliability in term of both position and
radius, thanks to the higher directions of radius estimation
and a higher centeredness in most views. We, then, choose
to give higher weights to these voxels when computing the
curve-skeleton. We extract a maximized spanning tree from
the grid adopting a technique loosely based on the Ordered
Region Growing (ORG) algorithm, described in [28], with
several adaptations in order to fit the different kinds of
structures we want to extract.

The ORG algorithm builds a tree-like representation of a
3D image (see Fig. 8), where each voxel is a node and the
edges between nodes form the path between two voxels.
Such paths satisfy the least minimum intensity constraint,
that is, the intensity in a path between two voxels is the
maximum intensity achievable. Let minðpijÞ be the mini-
mum intensity of each voxel in the path p between voxels i
and j, and let gij be the path obtained by the graph traversal
from node i to node j: it is guaranteed that minðgijÞ �
minðpijÞ for every other pij. This feature is highly desirable
in skeleton extraction, as the voxels with higher values in
the grid are the best representative of the shape, due to a
higher number of voting views, while low-valued ones
should be used only for connecting different high-valued
regions due to their expected inaccuracy or spuriousness.

The ORG tree is built as follows: starting from a seed
point G0 (the maximum valued voxel in the grid), the region
G1 is constructed from its 26-neighborhood, and edges
between the seed point and each neighbor are added to the
graph. Let Gi and Bi be, respectively, the region and its
boundary at the ith iteration, and si the maximum valued
voxel in Bi. Giþ1 and Biþ1 are constructed from si by adding
its unvisited neighbors, that is, those neighbors that are not
already contained in Gi. New edges are created between si
and each voxel in ðBiþ1 nGiÞ and the process is iterated
until every voxel has been included in the region.

4.4 Topological Operations

After building the ORG spanning tree, we process it to obtain
the final skeleton. Let N be the set of all the nodes of the
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Fig. 7. The cleaning process drastically improves the quality of the voxel
grid.

Fig. 8. The ORG spanning tree (left) is an unorganized set of connected
voxels. Only perceptually significant branches are extracted as part of
the skeleton (right).



spanning tree, with J the subset of nodes with at least three
incident arcs, L the subset of nodes with only one incident
arc, and A the set of all the arcs. Let Ai ‘ Nj define that the
arcAi is incident on the nodeNj. We define three topological
operations that, applied to the spanning tree, give the final
curve-skeleton. Such operations employ the definition of
zone of influence (ZI) [29] of a node, that is, the volume defined
by the maximal ball centered in it.

4.4.1 Perceptual Core Extraction

The skeleton consists of a very small subset of the spanning
tree (see Fig. 8), where the majority of the voxels have been
voted as a result of spurious matches. The skeleton is
extracted as the set of those nodes that are perceptually
relevant, as human interpretation does not suppose the
presence of dents or bumps in a shape without evidence (as
shown in [6]). We, thus, discard the tree branches not
projecting medial axes onto the images. In order to be
perceptually significant, a branch endpoint must stand out
in at least one view, that is, if and only if there is no
intersection between its ZI and the ZI of the joint node its
branch generates from

8Ak 2 A : Ak ‘ Li ^Ak ‘ Jj
) ZIðLiÞ \ ZIðJjÞ ¼ ;; Li 2 L; Jj 2 J:

See an example of this operation in Fig. 9a.

4.4.2 Branch Collapsing

Often segments of the skeleton that are supposed to converge
into a single junction point meet in different joints linked each
other by short arcs. We, thus, apply branch collapsing, until
convergence, for internal branches as long as there is
intersection between the ZI’s of each junction point

\
Ji2J

ZIðJiÞ ¼ ;:

Merged joints will have as coordinates the barycenter of
the junction points involved in the merging, and as radius,
the minimum radius of the junction points involved in the
merging. See an example of this operation in Fig. 9b.

4.4.3 Loops Recovery

If a shape has genus greater than zero, a subgraph of the
spanning tree cannot represent its topology. In order to
recover the proper topology, we check the zone of influence
of each leaf, closing a loop between all the endpoints whose
zone of influence have nonempty intersection (see an
example of this operation in Fig. 9c)

8Li 2 L; 8Ni 2 N n Lif g ZIðLiÞ \ ZIðNiÞ ¼ ;:

Note that the immediate neighbors of a leaf always
satisfy the condition above, thus, to be sure that we really
need to close a loop, an additional condition must be
satisfied. Let p be the skeleton point whose zone of
influence intersects the zone of influence of a leaf l. In the
path joining p to l, there must be at least one point having
empty intersection with ZIðlÞ. This condition must hold for
all the leaves involved in the loop closure.

To avoid the creation of fake loops, the topological
operations described above must be applied in the order we
presented them.

In order to increase the visual appearance of the
extracted skeletons, we end the processing applying
Laplacian smoothing to the branches, averaging the posi-
tion of each branch point respect to the position of its two
neighbors. However, to prevent branch shortening, such
operation does not involve skeleton leafs and joints.

5 RESULTS AND COMPARISONS

In this section, we show the results of our approach in terms
of skeleton quality, robustness and timings, along with
some comparisons between our method and other skeleton
extraction techniques. All the timings are obtained by
single-thread implementations on an iMac with Intel Core 2
Duo, 2.66 GHz, 4 GB RAM, and Ati Radeon 2600 Pro GPU.

Our approach is capable of extracting correct skeletons
that accurately reflect the topology of most kinds of meshes
of any genus (see Olympics in Figs. 1, 3, and 9c), even with
complex morphologies like the Angiography and the
Aneurysm models (see Fig. 2), where the multiview system
helps in solving the ambiguities caused by projection. The
results are visually appealing and satisfy most of the
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Fig. 9. The three topological operations.



expected criteria of curve-skeletons listed in [13]. Homo-
topy is achieved through the loop recovery operation
described in Section 4.4. While there is no strict guarantee
of correctness, the algorithm produces good results as long
as the topology of the VH equals the topology of the shape
and the estimated radii differ slightly from the actual
inscribed balls. The tree extracted from the grid satisfies
thinness and connectedness, while the algorithm is robust,
efficient and guarantees invariantness to isometric trans-
formations. Some properties are not fully satisfied. Cen-
teredness is observed, but not strictly guaranteed.
Componentwise differentiation and hierarchy are ob-
tained in most of the objects, but the view-based approach
has some limitations in capturing secondary junctions in
some meshes, this behavior is discussed later. Reconstruc-
tion cannot be fully guaranteed by monodimensional
descriptors like curve-skeletons, however, the union of the
maximal balls centered in each skeleton point can produce a
coarse-shape approximation. Finally, our skeletons cannot
satisfy the reliability criteria: no effort has been made
toward direct shape-object visibility.

Our experiments show that the three resolution para-
meters (mesh, projection, and grid) have little influence on
the overall results both in terms of timing and output
quality. While the overhead coming from bigger silhouettes
is negligible and the grid resolution affects only slightly the
ORG construction, the main computational bound is given

by the shape projections: the mesh resolution influences the
timings as more time is needed by the GPU to rasterize the
primitives of the object. Quality wise, however, our method
extracts coherent skeletons from simplified meshes, so it is
possible to reduce the running times by decimating high-
resolution meshes with nearly no information loss (see
Table 1). The method is also unaffected by changes in grid
and image resolution; Fig. 10 shows how the different
parameters affect the final computation; it can be noted that
the skeletal structure is consistent and stable and, thus, is
worth choosing low resolutions for both parameters plotted.

The projection approach makes the method very robust
when used on noisy data and even on incomplete ones. It is
capable of extracting skeletons from nonwatertight meshes,
as soon as their visual aspect is reasonable, since the holes
are not influencing the production of the silhouettes. An
example of these features can be found in Fig. 12.

5.1 Extraction from Raw Point Clouds

An appealing feature of our approach is its capability of
extracting curve-skeletons from raw point sets (see some
examples in Fig. 14), as it needs no information about
normals, thus differing from the majority of previous works
in the field [30] which specifically need point clouds with
normals. By performing a morphological closing of the
projected image, it is possible to reconstruct a silhouette
that allows to proceed with the skeleton extraction. To
obtain an accurate silhouette, the size of the structural
element must be chosen as a function of the density of the
cloud, even if, for sparser point sets, narrow regions may be
merged due to its higher size. However, the experimental
results remain more than acceptable. The general benefits of
the approach apply also to the point set case: the skeleton is
noise insensitive and robust.

5.2 Comparisons

In this paragraph, we compare our approach with four
techniques cited in Section 2; in the volumetric category, we
compare to the Force Following algorithm [17] and Cell
Complex Thinning [20], while we chose to compare to
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TABLE 1
Comparisons among Skeletons Extracted from the Raptor

Model (2M Faces) at Various Resolutions

In the first row, there are the decimation percentages. Each cell shows
the Hausdorff and average error (in percentage of the length of the
bounding box diagonal), showing that our output is mostly insensitive to
strong decimation.

Fig. 10. Results obtained at different silhouette (column-wise) and voxel grid resolutions (row-wise): the difference, in time, between the fastest
(upper left, 0.31 secs) and the slowest (lower right, 5.02 secs) is one order of magnitude.



Laplacian Contraction [21] and the Medial Geodesic

Function [2] in the mesh-based category (see Fig. 11). The

timings, as listed in Table 2, show that our algorithm is

noticeably faster than the state-of-the-art counterparts.
As for the volumetric methods, the main factor influen-

cing timing is the thickness of each branch. The Hand mesh,
for instance, even though has higher resolution than meshes
like the Horse or the Octopus, is processed faster, due to the
thinness of its palm and fingers. A finer voxelization,
needed for higher accuracy, then results in a strong increase
in computational time, while our method is insensitive to
the grid dimension. Parameters are a key factor also in
terms of topological coherence. The Force Following

algorithm, for example, may result in great gaps between
the skeletal points, and a shape-dependent parameter
tuning has to be found in order to obtain a coherent
skeleton. The same can be said for the Cell Complex
Thinning algorithm, which can produce both 1D and 2D
skeletons, depending on the parameters setting. Our
skeleton is unaffected by parameter changes, and failures
in the topological reconstruction can be ascribed to a low-
quality estimation of the radii or to the VH.

Comparisons with mesh-based methods show that our
method is faster, especially for high-resolution meshes
because of their dependence on the vertices. This depen-
dence also affects the output quality when the resolution of
the object is lower than a certain threshold. A coarse mesh
with few vertices results in too few nodes for the skeleton or
in an information loss (Fig. 15b and 15c, respectively), while
our method can accurately reconstruct the descriptor as
long as its visual appearance is coherent.

5.3 Limitations

Our method is intended to work on character-like meshes as
animals, human figures, or cylindrical, and articulated
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TABLE 2
Time Comparison (in Milliseconds) among the Different Methods Tested

Fig. 11. Visual comparison of different curve-skeletons extracted from
the Memento model (52,550 faces).

Fig. 12. The projection approach leads to robustness under noise and
incompleteness. We introduced increasing artificial noise in the upper
right and lower left meshes, while in the lower right one we drilled a hole,
highlighted in red.



objects as tools, that is, the class of shapes where the Visual
Hull is a good approximation of the actual shape. The
multiview system computes a skeleton of the VH of the
shape rather than the object itself, making our algorithm
unreliable for objects with no VH features (e.g., the cup in
Fig. 16). However, a curve-skeleton may not be the best
descriptor for such kind of objects in first place, where a
surface skeleton like [31] would better describe the shape
when no protruding cylindrical regions are found. As long
as it makes sense to choose a curve skeleton for the shape
(e.g., for purposes of segmentation or animation), our
algorithm is able to perform well.

Being based on the shape approximation given by the
visual hull, the algorithm cannot extract all the features
which are overlapped in every projection (e.g., the buckyball
molecule in Fig. 16) or which are much smaller with respect
to the projection resolution. In Fig. 13, the ears of the dog
remain visually close to its head in every silhouette, being
ignored by our algorithm while detected in approaches like
Laplacian mesh contraction. However, higher resolution
projections are able to isolate small features in at least one
view, solving the problem. In our opinion, this reflects the
behavior of human vision where the saliencies in an object
are relative to the scale of observation [32]: a distant observer
will notice less features in an object than a near one, while
detecting anyway the most important parts (see Fig. 10).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel approach to skeleton
extraction that takes advantage of the principles of human

perception and stereoscopic vision to reconstruct a 3D curve-
skeleton of the visual hull of the shape starting from the 2D
medial axes of the projections of the object into the image
plane. The method is robust, fast, parameter free, and capable
of yielding high-quality skeletons even from low-resolution
meshes and raw point sets. The skeletons reflect the topology
of the shape and capture the main features of the object,
achieving rotational and pose invariance (see Fig. 6). The
graph-like structure makes this descriptor suitable for shape
matching or retrieval algorithms (such as [33] or [34]), while
the correctness in branch detection suggests a possible use of
the skeletons as a guidance in segmentation algorithms. The
insensitivity to holes suggests also a use in skeleton driven
hole filling, taking into account the average vertex-skeleton
distances to perform a shape-aware filling.

Future works will include skeleton-driven reconstruction
of raw point sets, as our method helps in understanding the
topology of, possibly incomplete, raw point clouds and may
prove itself useful for guiding the remeshing of such point
sets (as opposed to other techniques like [35] or [36]). The
scope of the method has been restricted to an external
Visual Hull processing, but an extension to a user-specified
set of viewpoints in order to capture the topology of
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Fig. 16. Two examples of data sets where our method fails: a model of a
mug (top), and an isosurface of the buckyball molecule (bottom).

Fig. 14. With our method, we can extract skeletons even from
unoriented point clouds. By performing a morphological closing of the
cloud projections, we reconstruct a set of filled silhouettes fed to the
skeleton extraction for further stages.

Fig. 15. Skeletons extracted from a very coarse model (1,000 faces).
Primitive-based approaches cannot recover the underlying shape when
too little information is available.

Fig. 13. Two different skeletons for the dog’s head, computed,
respectively, with 256� 256 (left) and 512� 512 (right) pixel silhouette
images. It is our opinion that the loss of fine details in low-resolution
projections reflects the behavior of human vision where the saliencies in
an object are relative to the scale of observation [32].



complex meshes, or to detect features that cannot be found
by an external Visual Hull, can make an interesting
possibility for future improvements. Moreover, the algo-
rithm is extremely parallelizable, from the silhouette
processing [37] to matching and voting, as the viewpoints
act independently from each other; future improvements
could be achieved by a parallel implementation of the
voting section using GPUs or cloud computing.
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